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Set up: The PDE constraint

We consider a homogeneous linear system of PDEs

A u =
∑
|α|=k

Aα∂
αu, u : Rd → RM ,

where

I the coefficients are constant: Aα ∈ Lin(RM ;RN )

I ∂α denotes the ∂α1
1 · · · ∂

αd
d distributional derivative

Main assumption: The principal symbol

A(ξ) :=
∑
|α|=k

Aαξ
α, ξα = ξα1

1 · · · ξ
αd
d , ξ ∈ Rd.

satisfies the constant-rank condition

dim(ImA(ξ)) = r ∈ N0 for all ξ 6= 0.
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Motivation: A large class of variational models

Minimization of integral energies

If (u) :=

∫
Ω

f(u(x)) dx,

where f : RM → R has linear growth

|f(z)| h C(1 + |z|) z ∈ RM ,

defined on configurations

u : Ω ⊂ Rd → RM

satisfying
A u = 0 on Ω (A -free)
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Caveats:

I minimizing sequences uj are only L1-bounded:

uj
∗
⇀ µ in M (Ω;RM )

; fine oscillations + appearance of mass concentration

I Need for relaxation: extend the set of configurations

u ∈ L1(Ω;RM ) ∩ ker A −→ µ ∈M (Ω;RM ) ∩ ker A

; extend the functional

If (µ) =

∫
Ω

f(µa(x)) dx+

∫
Ω

f∞
(
dµ

d|µ| (x)

)
d|µs|(x),

I compensated compactness kicks in:

A uj = 0, A µ = 0

; certain oscillations/concentrations are prevented



I There are bad directions, such as the the wave-cone directions

ΛA :=
⋃

ξ∈Rd\{0}

kerA(ξ) ⊂ RM ,

where oscillations and concentrations are compatible with the PDE
; existence of solutions requires a type of convexity:

f is A -quasiconvex (throw it under the rug... for now)

Motto: Characterize,

by testing with A -quasiconvex integrands,

all possible ways in which

uj
∗
⇀ µ, A uj = 0,

may develop oscillations/concentrations.



Prototype problems

Curl-free fields (BV-theory)

RM = Rm×d

u = Dw (w : Rd → Rm) ⇔ curlu = 0

I geometric problems

I memory alloys

I sessile drops

I optimal design for
linear conductivity and
linear plate models
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Saint Venant conditions (BD-theory)

RM = Rd×dsym

u =
Dw +DwT

2
(w : Rd → Rd) ⇔ L(D2)u = 0

I linear elasticity

I perfect plasticity



Divergence-free systems and m-currents without boundary

RM ∼= Rk×d,
∧
m

Rd

∇ ·M =

∇ ·M
1

...

∇ ·Mk

 = 0, ∂T = 0

I optimal design with vanishing volume

I dislocations



Oscillations: Two ingredients

Lifting the rug a bit...

Definition 1 (Morrey ’66, Dacorogna ’82, Fonseca–Müller ’99)

A function f : RM → R is called A -quasiconvex if

f(z) ≤
∫
Td

f(z + w(y)) dy, z ∈ RM ,

for all w ∈ C∞c ([0, 1]d,RM ) with A w = 0.

–“Jensen’s inequality along A -free fields”

Notion of Young measure (oscillations)
Let uj ⇀ u in L1(Ω) (equi-integrable) and consider a parameterized family

ν = {νx}x∈Ω ⊂ Prob(RM ).

We say that “uj generates ν” provided that

νx(A) = “Probability{uj(y) ∈ A : j →∞, y ∼ x}” A ⊂ RM ,
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Theorem 2 (Oscillations; Fonseca–Müller ’99)

A family ν = {νx}Ω ⊂ Prob(RM ) is generated by a sequence of
equi-integrable A -free functions if and only if

(i) there exists u ∈ L1(Ω;W ) such that A u = 0 and

u(x) = E(νx),

(ii) for all linear growth A -qc integrands f : RM → R it holds

f(E(νx)) ≤
∫
RM

f(z) dνx(z) for a.e. x ∈ Ω.

—“ν = {νx}x∈Ω are the probability distributions of a sequence of
equi-integrable A -free functions if and only if (i) and (ii) are satisfied”
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Recent theory: Generalized Young measures

Definition 3

A parametrized triple ν = (νx, λ, νx)x∈Ω,

I νx ∈ Prob(RM )

I λ ∈M (Ω)

I ν∞x ∈ Prob(SM−1)

is called a generalized Young measure

We say that “uj generates ν if”

I νx is the oscillation probability distribution of uj about x

I λ(dx) is the quantity of mass carried by |uj | towards x

I ν∞x is the angular distribution of
uj

|uj |
about x

Decompose
λ = λaL d + λs, λs ⊥ L d,

then (formally)

I suppλa is the of points with diffuse concentrations (Farkir’s carpet)

I suppλs is the set of points with dirac mass-like pure concentrations
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Recent theory: Characterization of oscillations/concentrations

Theorem 4 (Arroyo-Rabasa, Kristensen–Raita*)

A family ν = (νx, λ, ν
∞
x )x∈Ω is generated by a sequence of A -free functions

(an A -free Young measure) if and only if

(i) there exists µ ∈M (Ω;RM ) such that A µ = 0 and

µ(dx) = E(νx) dx+ E(ν∞x )λ(dx),

(ii) for all linear growth A -qc f : RM → R integrands,

f(E(νx) + λa(x)E(ν∞x ) ) ≤ 〈f, νx〉+ λa(x)〈f∞, ν∞x 〉

for almost every x ∈ Ω,

(iii) the angular concentration part satisfies (often trivial)

supp(ν∞x ) ⊂ span{ΛA } λs-a.e., ΛA :=
⋃

ξ∈Rd\{0}

kerA(ξ).

* After my proof appeared, Kristensen and Raita have proposed an
interesting alternative proof for a slightly less general version of this
theorem.
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Comment: Similar proof gives a characterization of all Young measures
generated by B-gradients, i.e.,

uj = Bwj generates ν.

Previous work

I Kristensen and Rindler ’11 (u = Dw, A = curl)

I Báıa, Matias and Santos ’13 (A is 1st-order + extra ass.)

I Rindler and De Philippis ’17 (u = Ew, A = St. Venant)
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Applications: Counter-examples to L1-compensated compactness

Rigidity for elliptic systems (Müller ’95, Sverak ’91, ...). Let L ≤ RM
be space of with no ΛA -connections, i.e.,

L ∩ ΛA = {0}.

If {µj} ⊂ L1(Ω;RM ) is a sequence of A -free functions satisfying

µj L d ∗⇀ 0 in M (Ω),

dist(µj , L)→ 0 in measure,

then
µj → 0 in measure.

Essentially: L1
w-compactness due to the existence of (L1, L1

w)-multipliers.

Q: Can we expect more to prevent concentrations (equi-integrability)
provided that we require the stronger condition

dist(µj , L)→ 0 in L1(Ω) ?
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A: It fails... big time!

Lemma 5 (A-R)

Let
L ≤ span ΛA

be a non-trivial subspace and assume that L has no non-trivial
ΛA -connections, i.e.,

L ∩ ΛA = {0}.

Then, there exists a sequence {wj} ⊂ C∞(Ω;RM ) of A -free measures
satisfying

min{wj , R} → 0 in L1(Ω;RM ) ∀R > 0

wj L d ∗
⇀ 0 in M (Ω;RM ),

dist(wj , L) → 0 in L1(Ω),

but

wj 6⇀ 0 ∈ L1(Ω;RM ), and

{|wj |} is not locally equi-integrable on any sub-domain of Ω.



Applications: Non-rigidity for the two-state problem

Extending Ball–James rigidity: De Philippis, Palmieri and Rindler ’18
showed that if

A−B /∈ ΛA

and {vj} ⊂ L1(Ω;RM ) is a sequence of A -free functions satisfying

dist(vj , {A,B})→ 0 in L1(Ω),

then, up to extracting a subsequence,

vj → const. in L1(Ω).

Q: What happens if we allow for concentrations, i.e.,

dist(vj , {A,B})→ 0 in measure ?
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Lemma 6 (A-R)

Let A1, . . . , An ∈ (span{ΛA } ∩ SW ) be unit vectors satisfying

0 ∈ convex hull{A1, . . . , An}.

There exists a sequence of A -free functions {wj} ∈ C∞(Ω;RM ) generating
the triple

(δA1 ,L
dxΩ, p),

where
p = c1δA1 + · · ·+ cnδAn ,

c1, . . . , cn ∈ [0, 1] and c1A1 + . . . cnAn = 0.

Corollary 7

Let A /∈ ΛA . There exists a sequence of A -free measures
{vj} ⊂ C∞(Ω;RM ) satisfying (A and −A are not ΛA -connected)

dist(vj , {A,−A})→ 0 in measure,

but {|vj |} is not equi-integrable on any sub-domain of Ω.



Najlepša hvala!
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