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Consider impliit ordinary di�erential equations (ODEs) of the

form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A,B : [t+,∞)→ L(Rn), f : [t+,∞)×Rn →Rn

.

The time-varying operators A(t), B(t) an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai

equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are ommonly referred to as semilinear.

We study the initial value problem (the Cauhy problem) for the DAEs (1), (2)

with the initial ondition

x(t
0

) = x

0

. (3)

It is assumed that the harateristi operator penil λA(t)+B(t) (λ ∈ C is a

parameter), assoiated with the linear part of the DAE (1) or (2), is a regular

penil of index not higher than 1.
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Semilinear DAEs of the type (1) inlude semi-expliit DAEs

ẏ= h(t,y,z),

0= g(t,y,z), h : [t+,∞)×R
k+m →R

k, g : [t+,∞)×R
k+m →R

m,

and Hessenberg DAE

ẏ= h(t,y,z),

0= g(t,y), h : [t+,∞)×R
k+m →R

k, g : [t+,∞)×R
k →R

m.

DAEs or degenerate DEs are also alled desriptor systems,

algebrai-di�erential equations and di�erential equations (or dynamial

systems) on manifolds.
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The development of the theory of

di�erential-algebrai equations

(degenerate di�erential equations, desriptor systems, algebrai-di�erential

systems, singular systems)

The solvability: K. Weierstrass (1867), L. Kroneker (1890), V.P. Skripnik

(1964), A.G. Rutkas (1975), R.E. Showalter (1975), S.L. Campbell (1976), Yu.E.

Boyarintsev (1977), A. Favini (1977), V.F. Chistyakov (1980), L.R. Petzold

(1982), L.A. Vlasenko (1987), E. Hairer (1988), P. Kunkel (1991), V. Mehrmann

(1991), V.P. Yakovez (1991), R. M�arz (1994), C. Tishendorf (1994), A.A.

Shheglova (1995), A.M. Samoilenko (2000), R. Riaza (2000),

Yu.E. Gliklikh (2014) and others.

The stability: L. Dai (1989), R. M�arz (1994), C. Tishendorf (1994), A.A.

Shheglova (2004), V.F. Chistyakov (2004), Yu.E. Boyarintsev (2006),

S.L. Campbell (2009), V.H. Linh (2009), Sh. Xu, J. Lam (2006), T. Berger,

A. Ilhmann (2010) and others.

Numerial methods: Gear C.W. (1971), L.R. Petzold (1983), E. Hairer, Ch.

Lubih, M. Rohe (1988), Yu.E. Boyarintsev, V.A. Danilov, V.F. Chistyakov

(1989), G. Wanner, U.M. Asher (1991), P.J. Rabier, W.C. Rheinboldt (1994),

G.Yu. Kulikov (1993), P. Benner, R. Byers, V. Mehrmann, D. Kressner and others.
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Fields of appliation of the theory of DAEs are radioeletronis, ontrol

theory, ybernetis, mehanis, robotis tehnology, eonomis, eology and

hemial kinetis.

In partiular, semilinear DAEs are used to desribe

transient proesses in eletrial iruits and

the dynamis of neural networks

(R. Riaza, A.G. Rutkas, L.A. Vlasenko, K.E. Brenan, S.L. Campbell, L.R.

Petzold, R. M�arz, C. Tishendorf and others),

the dynamis of omplex mehanial and tehnial systems (e.g., robots)

(P.J. Rabier, W.C. Rheinboldt, B. Fox, L.S. Jennings, A.Y. Zomaya, B.

Siiliano and others),

the dynamis of various desriptor systems

(R. Riaza, J. Zu�ria, P. Kunkel, V. Mehrmann, J.C. Engwerda, I.E. Wijayanti

and others),

multi-setoral eonomi models

(M. Morishima, S.R. Khahatryan and others),

kinetis of hemial reations

(L.V. Knaub, A.E. Novikov, E.A. Novikov).
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Let for eah t≥ t+ the penil λA(t)+B(t) be regular and let there exist

funtions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) suh that for every t ∈ [t+,∞)
the penil resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es the onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (4)

Then for eah t ∈ [t+,∞) there exist the two pairs of mutually omplementary

projetors

P

j

(t) : Rn → X

j

(t) and Q

j

(t) : Rn →Y

j

(t), j= 1,2,

(P

i

(t)P
j

(t) = δ
ij

P

i

(t), P
1

(t)+P

2

(t) = IRn

, Q

i

(t)Q
j

(t) = δ
ij

Q

i

(t),
Q

1

(t)+Q

2

(t) =), whih generate the diret deompositions of spaes

R
n =X

1

(t)+̇X
2

(t), Rn =Y

1

(t)+̇Y
2

(t), suh that (5)

A(t)=

(

A

1

(t) 0

0 0

)

,B(t)=

(

B

1

(t) 0

0 B

2

(t)

)

: X
1

(t)+̇X
2

(t)→Y

1

(t)+̇Y
2

(t), (6)

X

2

(t) =KerA(t), Y
1

(t) =A(t)Rn

,

and there exist A

−1
1

(t) (if X
1

(t) 6= {0}) and B−1
2

(t) (if X
2

(t) 6= {0}).

The auxiliary operator G(t) =A(t)+B(t)P
2

(t) ∈ L(Rn), G(t)X
j

(t) =Y

j

(t), has
the inverse G

−1(t) =A

−1
1

(t)Q
1

(t)+B

−1
2

(t)Q
2

(t) ∈ L(Rn).

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Osillations, 2001℄
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The ondition (4) (a regular penil λA(t)+B(t) has index not higher than 1)

means that either the point µ = 0 is a simple pole of the resolvent

(A(t)+µB(t))−1 (this is equivalent to the fat that λ = ∞ is a removable singular

point of the resolvent R(λ ,t) = (λA(t)+B(t))−1), or µ = 0 is a regular point of

the penil A(t)+ µB(t) (i.e., there exists the resolvent R(λ ,t) at the point µ = 0

and, hene, A(t) is nondegenerate).

For eah t ∈ [t+,∞) the projetors an be onstrutively determined by the

formulas

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = IRn −P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = IRn −Q

1

(t).
(7)
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For eah t any x ∈ Rn

an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redued to the equivalent system

[P
1

(t)x(t)]′=
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (8)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (9)

V

′
(8)

(t,x
p

1

(t)) = ∂V
∂t (t,xp1(t))+

(

∂V
∂z (t,xp1(t)),

[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)

is the derivative of the funtion

V(t,z) along the trajetories of the equation (8), where V(t,z) is a ontinuously

di�erentiable and positive de�nite salar funtion.

Introdue the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (10)

The onsisteny ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of
the neessary onditions for the existene of a solution of the initial value problem

(1), (3).

M. Filipkovska (B. Verkin ILTPE of NASU) 8 /37



The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

A solution x(t) of the initial value problem (IVP) (1), (3) is alled global or

de�ned in the future if it exists on [t
0

,∞).

A solution x(t) of the IVP (1), (3) is alled Lagrange stable if it is global and

bounded, i.e., sup
t∈[t

0

,∞)

‖x(t)‖< ∞.

A solution x(t) of the IVP (1), (3) has a �nite esape time (is blow-up in

�nite time) and is alled Lagrange unstable if it exists on some �nite interval

[t
0

,T) and is unbounded, i.e., lim
t→T−0

‖x(t)‖= ∞.

The equation (1) is alled Lagrange stable if every solution of the IVP (1), (3)

is Lagrange stable (the DAE is Lagrange stable for every onsistent initial point).

The equation (1) is alled Lagrange unstable if every solution of the IVP (1),

(3) is Lagrange unstable.

J. La Salle obtained the theorems on the global solvability, the Lagrange

stability and instability of the expliit ODE x

′ = f(t,x) [J. La Salle, S. Lefshetz,

Stability by Liapunov's Diret Method with Appliations, 1961℄.
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Solutions of the equation (1) are alled ultimately bounded, if there exists a

onstant K> 0 (K is independent of the hoie of t

0

, x

0

) and for eah solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

suh that

‖x(t)‖<K for all t ∈ [t
0

+ τ,∞).

The equation (1) is alled ultimately bounded or dissipative, if for any

onsistent initial point (t
0

,x
0

) there exists a global solution of the initial value

problem (1), (3) and all solutions are ultimately bounded.

If the number τ does not depend on the hoie of t

0

, then the solutions of (1)

are alled uniformly ultimately bounded and the equation (1) is alled uniformly

ultimately bounded or uniformly dissipative.

Ultimately bounded systems of expliit ODEs x

′ = f(t,x), whih are also alled

dissipative systems and D-systems, were studied in [Yoshizawa T., Stability theory

by Liapunov's seond method, 1966℄ and [La Salle J., Lefshetz S., 1961℄.
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The model of a radio engineering �lter

A voltage soure e(t),
nonlinear resistanes ϕ, ϕ

0

, ψ,

a nonlinear ondutane h,

a linear resistane r,

a linear ondutane g,

an indutane L and

a apaitane C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ

0

(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C> 0.

The model of the iruit Fig. 1 is desribed

by the system with the variables

x

1

= I

L

, x

2

=U

C

, x

3

= I:

L

d

dt

x

1

+x

2

+ rx

3

= e(t)−ϕ
0

(x
1

)−ϕ(x
3

), (11)

C

d

dt

x

2

+gx

2

−x

3

=−h(x
2

), (12)

x

2

+ rx

3

= ψ(x
1

−x

3

)−ϕ(x
3

). (13)

The vetor form of the system is the DAE

d

dt

[Ax]+Bx= f(t,x), (14)

where x= (x
1

,x
2

,x
3

)T ∈ R3

Fig. 1. The diagram of the eletri iruit

A=





L 0 0

0 C 0

0 0 0





B=





0 1 r

0 g −1
0 1 r





f(t,x) =





e(t)−ϕ
0

(x
1

)−ϕ(x
3

)
−h(x

2

)
ψ(x

1

−x

3

)−ϕ(x
3

)
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Lagrange stability of the model of a radio engineering �lter.

The partiular ases.

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

y

2l−1, ψ(y) = α
3

y

2j−1, h(y) = α
4

y

2s−1, (15)

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

siny, ψ(y) = α
3

siny, h(y) = α
4

siny, (16)

k, l, j,s ∈ N, α
i

> 0, i= 1,4, y ∈ R.

For eah initial point (t
0

,x0) satisfying x0
2

+ rx

0

3

= ψ(x0
1

−x

0

3

)−ϕ(x0
3

), there
exists a unique global solution of the IVP (14), x(t

0

) = x

0

(x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T) for the funtions of the form (15), if j≤ k, j≤ s

and α
3

is su�iently small, and for the funtions of the form (16), if α
2

+α
3

< r.

If, additionally, sup
t∈[0,∞)

|e(t)|<+∞ or

+∞
∫

t

0

|e(t)|dt<+∞, then for the initial points

(t
0

,x0) the DAE (14) is Lagrange stable (in both ases), i.e., every solution of the

DAE is bounded. In partiular, these requirements are ful�lled for voltages of the

form

e(t) = β (t+α)−n, e(t) = βe−αt, e(t) = βe−
(t−α)2

σ2 , e(t) = β sin(ωt+θ ), (17)

where α > 0, β ,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
[M.S. Filipkovska, Lagrange stability of semilinear di�erential-algebrai equations and

appliation to nonlinear eletrial iruits, Journal of Mathematial Physis, Analysis,

Geometry, 2018℄
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Lagrange stability. The numerial solution

L= 500 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2, t
0

= 0, x

0

= (10,−10,5)T

ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = (2t+10)−2

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

t

U
C
(t

)

Fig. 2. The urrent I

L

(t) Fig. 3. The voltage U

C

(t)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

t

I(
t)

Fig. 4. The urrent I(t)
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Lagrange stability. The numerial solution

L= 500 ·10−6 , C= 0.5 ·10−6 , r= 2, g= 0.2, t
0

= 0, x

0

= (0,0,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = y

3

, h(y) = y

3

, ψ(y) = y

3

, e(t) = 100e

−tsin(5t)

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

t

I L
(t

)

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

−5

t

U
C
(t

)

Fig. 5. The urrent I

L

(t) Fig. 6. The voltage U

C

(t)

−5 0 5 10 15 20 25 30
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0
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8

10
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−5

t

I(
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Fig. 7. The urrent I(t)
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Lagrange stability. The numerial solution

L= 300 ·10−6, C= 0.5 ·10−6, r= 2.6, g= 0.2, t
0

= 0, x

0

= (π/6,0.5,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = 200sin(0.5t)−0.2

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

t

U
C
(t

)

Fig. 8. The urrent I

L

(t) Fig. 9. The voltage U

C

(t)
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0.25

t
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Fig. 10. The urrent I(t)
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The global solution. The numerial solution

L= 1000 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.3, t
0

= 0, x

0 = (0,0,0)T

ϕ
0

(y) = y

3

, ϕ(y) = y

3

, ψ(y) = y

3

, h(y) = y

3

, e(t) =−t2

0 50 100 150 200 250 300 350 400 450 500

−60

−50

−40

−30

−20

−10

0

t

I L
(t

)

0 50 100 150 200 250 300 350 400 450 500
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−1.5
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−0.5

0

t

U
C
(t

)

Fig. 11. The urrent I

L

(t) Fig. 12. The voltage U

C

(t)
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Fig. 13. The urrent I(t)
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Lagrange instability. The numerial solution

L= 10 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2,
ϕ
0

(x
1

)=−x2
1

, ϕ(x
3

)=x

3

3

, h(x
2

)=x

2

2

, ψ(x
1

−x

3

)=(x
1

−x

3

)3, e(t)=2sint,
t

0

= 0, x

0

= (2.45,−20.625125,2.5)T
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L

(t) Fig. 15. The voltage U

C

(t) Fig. 16. The urrent I(t)
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Main results:

Theorems on the existene and uniqueness of global solutions

Some advantages: the restritions of the type of the global Lipshitz ondition

are not used, it is not require that the DAEs be regular DAEs of tratability

index 1, and the requirements for the smoothness of the nonlinear part of the

DAEs are weakened in omparison with most other similar theorems.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

esape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti stability and asymptoti stability in the large

of the equilibrium state (omplete stability of the DAE)

The appliation of the obtained theorems to the study of ertain mathematial

models of eletrial iruits with nonlinear and time-varying elements are shown.
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Theorem 1 (the global solvability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), the penil λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), and the following onditions be satis�ed:

1) for eah t ∈ [t+,∞) and eah x

p

1

(t) ∈X

1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
∗
p

2

(t∗) ∈X

2

(t∗) suh that

(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x
[

Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]

−B(t∗)
]

P

2

(t∗), is

invertible;

3) there exist a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×U



R

(0),R), where U

R

(0) = {z ∈R
n | ‖z‖ ≥ R}, and a funtion

χ ∈ C([t+,∞)× (0,∞),R) suh that:

3.1) V(t,z)→ ∞ uniformly in t on every �nite interval [a,b)⊂ [t+,∞) as ‖z‖→∞,
3.2) for all t, x

p

1

(t), x
p

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds,

3.3) the inequality v

′ ≤ χ(t,v), t≥ t+, has no positive solutions v(t) with �nite

esape time.

Then for eah initial point (t
0

,x
0

) ∈ L

t+ there exists a unique global solution of

the IVP (1), (3).
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Statement 1.

Theorem 1 remains valid if the onditions 1), 2) are replaed by the following:

there exists a onstant 0≤ α < 1 suh that

∥

∥

G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

1

p

2

(t)
)

−G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

2

p

2

(t)
)∥

∥≤

≤ α
∥

∥

x

1

p

2

(t)−x

2

p

2

(t)
∥

∥

(18)

for any t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) and xi
p

2

(t) ∈X

2

(t), i= 1,2.

Theorem 2 (the global solvability).

Theorem 1 remains valid if the onditions 1), 2) are replaed by the following:

1) for eah t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x
p

2

(t) ∈ X

2

(t) suh that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
i

p

2

(t∗) ∈X

2

(t∗) suh that

(t∗,x
∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator funtion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by

Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),

Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =

[

∂
∂x
[

Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]

−B(t∗)

]

P

2

(t∗), (19)

is basis invertible on [x1
p

2

(t∗),x
2

p

2

(t∗)].
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A system of one-dimensional projetors {Θ
k

}s
k=1, Θ

k

: Z→ Z, suh that

Θ
i

Θ
j

= δ
ij

Θ
i

(δ
ij

is the Kroneker delta), and E

Z

=
s

∑
k=1

Θ
k

is alled an additive

resolution of the identity in s-dimensional linear spae Z.

Let W, Z be s-dimensional linear spaes, D⊂W and ŵ, ˆ̂
w ∈D.

An operator funtion Φ : D→ L(W,Z) is alled basis invertible on the interval

[ŵ, ˆ̂
w], if for any set {wk}s

k=1, w
k ∈ [ŵ, ˆ̂

w], and some additive resolution of the

identity {Θ
k

}s
k=1 in the spae Z the operator Λ =

s

∑
k=1

Θ
k

Φ(wk) ∈ L(W,Z) has an

inverse Λ−1 ∈ L(Z,W).

If we represent Φ(w) ∈ L(W,Z) as a matrix relative to some bases in W, Z:

Φ(w) =





Φ
11

(w) · · · Φ
1s

(w)
· · · · · · · · ·

Φ
s1

(w) · · · Φ
ss

(w)



 , then the operator Λ takes the form

Λ =





Φ
11

(w1) · · · Φ
1s

(w1)
· · · · · · · · ·

Φ
s1

(ws) · · · Φ
ss

(ws)



 .

[A.G. Rutkas, M.S. Filipkovska, Extension of solutions of one lass of

di�erential-algebrai equations, Journal of Computational and Applied Mathematis,

2013℄ (Russian)
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Theorem 3 (Lagrange stability). Let f ∈C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the penil λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×U



R

(0),R) and a funtion χ ∈ C([t+,∞)× (0,∞),R) suh that:

3.1) V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;
3.2) for all t, x

p

1

(t), x
p

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds;

3.3) the di�erential inequality v

′ ≤ χ(t,v), t≥ t+, has no unbounded positive

solutions v(t) for t ∈ [t+,∞).

Let one of the following onditions be also satis�ed:

4.a) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞ (M is an arbitrary

onstant), the inequality

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤K

M

< ∞, where K
M

=K(M)

is some onstant, holds;

4.b) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞, the inequality
‖x

p

2

(t)‖ ≤K

M

< ∞, where K
M

=K(M) is some onstant, holds.

Then the equation (1) is Lagrange stable.
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Theorem 4 (Lagrange instability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×R
n,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the penil λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a region Ω ⊂ Rn

, 0 6∈ Ω, suh that the omponent P

1

(t)x(t) of

eah existing solution x(t) with the initial point (t
0

,x
0

) ∈ L

t+ , where

P

1

(t
0

)x
0

∈ Ω, remains all the time in Ω;

4) there exist a positive de�nite funtion V ∈ C

1([t+,∞)×Ω,R) and a funtion

χ ∈ C([t+,∞)× (0,∞),R) suh that:

4.1) for all t, x

p

1

(t), x
p

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) ∈ Ω, the

inequality V

′
(8)

(t,x
p

1

(t))≥ χ
(

t,V(t,x
p

1

(t))
)

holds,

4.2) the inequality v

′ ≥ χ(t,v), t≥ t+, has no positive solutions de�ned in the

future (i.e., de�ned for all t≥ t+).

Then for eah initial point (t
0

,x
0

) ∈ L

t+ suh that P

1

(t
0

)x
0

∈ Ω, there

exists a unique solution of the IVP (1), (3) and this solution is Lagrange

unstable.
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Remarks on the form of the funtions χ

It is usually onvenient to hoose χ ∈ C([t+,∞)× (0,∞),R) in the form

χ(t,v) = k(t)U(v), (20)

where U ∈ C(0,∞), k ∈C([t+,∞),R). Then the theorem onditions an be hanged

as follows:

in Theorems 1, 2 on the global solvability, it su�es to require that

∞
∫



dv

U(v)
= ∞ (> 0 is some onstant) instead of the ondition 3.3);

in Theorem 3 on the Lagrange stability, it su�es to require that

∞
∫



dv

U(v)
= ∞

and

∞
∫

t

0

k(t)dt< ∞ (t

0

≥ t+ is some number) instead of the ondition 3.3);

in Theorem 4 on the Lagrange instability, it su�es to require that

∞
∫



dv

U(v)
< ∞ and

∞
∫

t

0

k(t)dt= ∞ instead of the ondition 4.2).

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai

equations, boundedness and stability of their solutions. I, Di�erential Equations, 2021℄

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai

equations, boundedness and stability of their solutions. II, Di�erential Equations, 2021℄

M. Filipkovska (B. Verkin ILTPE of NASU) 24/37



Theorem 5 (uniform dissipativity (ultimate boundedness)). Let

f ∈ C([t+,∞)×Rn,Rn), ∂
∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)),

the penil λA(t)+B(t) satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the

requirements 1), 2) of Theorem 1 or 2 be ful�lled, and

3) there exist a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×U



R

(0),R) and funtions U

j

∈ C([0,∞)), j= 0,1,2, suh that

U

0

(r) is non-dereasing and U

0

(r)→+∞ as r→+∞, U
1

(r) is inreasing,

U

2

(r)> 0 for r> 0, and for all t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t), x
p

2

(t) ∈ X

2

(t) suh

that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R the ondition

U

0

(‖x
p

1

(t)‖)≤V(t,x
p

1

(t)) ≤U

1

(‖x
p

1

(t)‖) and one of the following inequalities

hold:

3.a) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

‖x
p

1

(t)‖
)

;

3.b) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

(H(t)x
p

1

(t),x
p

1

(t))
)

, where H ∈ C([t+,∞),L(Rn)) is

some self-adjoint positive de�nite operator funtion suh that sup
t∈[t+,∞)

‖H(t)‖< ∞;

3.ñ) V

′
(8)

(t,x
p

1

(t))≤−CV(t,x
p

1

(t)), where C> 0 is some onstant;

4) there exist a onstant > 0 and a number T> t+ suh that

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤ ‖x
p

1

(t)‖ for all

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

T

.

Then the DAE (1) is uniformly ultimately bounded (uniformly dissipative).
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Remarks on the form of the funtions V

It is often onvenient to hoose the positive de�nite salar funtion V(t,z) in
the form

V(t,z) = (H(t)z,z), (21)

where H ∈ C

1([t+,∞),L(Rn)) is a self-adjoint positive de�nite operator funtion.

The funtion V(t,z) (21) satis�es the onditions (exept for the onditions on the

derivative of the funtion along the trajetories of (8)) of Theorems 1�4 on the

global solvability, the Lagrange stability and the Lagrange instability, and if

additionally sup
t∈[t+,∞)

‖H(t)‖< ∞, then the funtion (21) also satis�es the onditions

of Theorem 5 on the dissipativity.

[Filipkovska (Filipkovskaya) M. S. Global boundedness and stability of solutions of

nonautonomous degenerate di�erential equations, Proeedings of the Institute of

Mathematis and Mehanis, National Aademy of Sienes of Azerbaijan, 2020℄
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It is known that the dynamis of eletrial iruits is modeled using systems of

di�erential and algebrai equations, whih in a vetor form have the form of

di�erential-algebrai equations. Generally, a DAE desribing the dynamis of an

eletrial iruit annot be redued to a purely di�erential equation, i.e., to an

expliit ODE.

A simple eletrial iruit with nonlinear and time-varying elements

Consider the eletrial iruit with a time-varying indutane L(t), time-varying

linear resistanes r(t), r
L

(t) and nonlinear resistanes ϕ
L

(I
L

), ϕ(Iϕ), whose
dynamis is desribed by the system of equations

d

dt

[L(t)x
1

(t)]+ r

L

(t)x
1

(t)−x

2

(t) =−ϕ
L

(x
1

(t)), (22)

x

1

(t)+x

3

(t) = I(t), (23)

x

2

(t)− r(t)x
3

(t) =U(t)+ϕ(x
3

(t)), (24)

where I(t) is a given (input) urrent, U(t) is a given (input) voltage, x

1

(t) = I

L

(t)
and x

3

(t) = Iϕ (t) are unknown urrents, and x

2

(t) =U

L

(t) is an unknown

voltage. The remaining urrents and voltages in the iruit are uniquely expressed

in terms of I(t), I
L

(t), Iϕ(t), U(t) and UL

(t).
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The vetor form of the system (22)�(24) is the time-varying semilinear DAE (1):

d

dt

[A(t)x]+B(t)x= f(t,x),

where x= (x
1

,x
2

,x
3

)T = (I
L

,U
L

, Iϕ)
T ∈R3

,

A(t)=





L(t) 0 0

0 0 0

0 0 0



,B(t)=





r

L

(t) −1 0

1 0 1

0 1 −r(t)



, f(t,x)=





−ϕ
L

(x
1

)
I(t)

U(t)+ϕ(x
3

)



. (25)

The initial ondition (3): x(t
0

) = x

0

, x

0

= (I
L

(t
0

),U
L

(t
0

),Iϕ(t0))
T

.

The projetion matries P

i

(t), Q
i

(t) have the form P

1

(t) =





1 0 0

−r(t) 0 0

−1 0 0





,

P

2

(t) =





0 0 0

r(t) 1 0

1 0 1





, Q

1

(t) =





1 r(t) 1

0 0 0

0 0 0





, Q

2

(t) =





0 −r(t) −1
0 1 0

0 0 1





.

The vetor x has the projetions x

p

1

(t) = P

1

(t)x= (x
1

,−r(t)x
1

,−x
1

)T,
x

p

2

(t) = P

2

(t)x= (0,r(t)x
1

+x

2

,x
1

+x

3

)T.
Denote a= x

1

, b(t) = r(t)x
1

+x

2

, = x

1

+x

3

, then x

p

1

(t) = a(1,− r(t),−1)T,
x

p

2

(t) = (0,b(t),)T.
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By Theorem 1 as well as by Theorem 2, for eah initial point

(t
0

,x
0

) ∈ [t+,∞)×R3

satisfying the algebrai equations (23), (24) (i.e.,

(t
0

,x
0

) ∈ L

t+), there exists a unique global solution x(t) of the equation (1)

satisfying the IVP (1), (3) if L,r,r
L

∈C

1([t+,∞),R), I,U ∈ C([t+,∞),R),
ϕ ,ϕ

L

∈ C

1(R) and the following requirements are ful�lled:

L(t)≥ L

0

> 0 and r(t) 6= 0 for all t ∈ [t+,∞);
λL(t)+ r

L

(t)+ r(t) 6= 0 for su�iently large |λ | suh that |λ | ≥ L

−1
0

and all

t ∈ [t+,∞);
there exists a number R> 0 suh that the inequality

[ϕ
L

(x
1

)−ϕ(I(t)−x

1

)− r(t)I(t)−U(t)]x
1

+[L′(t)/2+ r

L

(t)+ r(t)]x2
1

≥ 0

holds for all t ∈ [t+,∞), ‖x
p

1

(t)‖= |x
1

|‖(1,− r(t),−1)T‖ ≥ R.

If, additionally,

∞
∫

t

0

k(t)dt< ∞, where k(t) = |r′(t)/r(t)|, and the funtions I

2

(t),

U

1

(t), r(t) are bounded for all t ∈ [t+,∞), i.e., sup
t∈[t+,∞)

|I
2

(t)|< ∞,

sup
t∈[t+,∞)

|U
1

(t)|< ∞, sup
t∈[t+,∞)

|r(t)|< ∞, then the DAE (1) (with A(t), B(t), f(t,x)

of the form (25)) is Lagrange stable by Theorem 3.
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The mathematial model of a time-varying nonlinear eletrial iruit

Fig. 17. The diagram of the eletri iruit

A urrent I(t), a voltage U(t), resistanes R
1

(t), R
2

(t), ϕ
1

(I
1

), ϕ
2

(I
2

), ϕ
3

(I
31

),
a ondutane G

3

(t), an indutane L(t) and a apaitane C are given.

A transient proess in the eletrial iruit (Fig. 17) is desribed by the system

d

dt

[L(t)I
1

(t)]+R

1

(t)I
1

(t) =U(t)−ϕ
1

(I
1

(t))−ϕ
3

(I
31

(t)), (26)

I

1

(t)− I

31

(t)− I

2

(t) = I(t)+G

3

(t)ϕ
3

(I
31

(t)), (27)

R

2

(t)I
2

(t) = ϕ
3

(I
31

(t))−ϕ
2

(I
2

(t)), (28)
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Denote x

1

(t) = I

1

(t), x
2

(t) = I

31

(t) and x
3

(t) = I

2

(t).

The vetor form of the system (26)�(28) is the time-varying semilinear DAE (1):

d

dt

[A(t)x]+B(t)x= f(t,x),

where

x=





x

1

x

2

x

3



 ,A(t) =





L(t) 0 0

0 0 0

0 0 0



 ,B(t)=





R

1

(t) 0 0

1 −1 −1
0 0 R

2

(t)



 ,

f(t,x) =





U(t)−ϕ
1

(x
1

)−ϕ
3

(x
2

)
I(t)+G

3

(t)ϕ
3

(x
2

)
ϕ
3

(x
2

)−ϕ
2

(x
3

)



 .

The initial ondition (3): x(t
0

) = x

0

, x

0

= (I
1

(t
0

), I
31

(t
0

), I
2

(t
0

))T.

It is assumed that the funtions L(t), R
1

(t), R
2

(t) and G
3

(t) are positive for all
t ∈ [t+,∞).

The projetions x

p

j

(t) = P

j

(t)x ∈ X

j

(t) of a vetor x have the form

x

p

1

(t) = x

p

1

= (x
1

,x
1

,0)T, x
p

2

(t) = x

p

2

= (0,x
2

−x

1

,x
3

)T.

Denote z= x

1

, u= x

2

−x

1

, w= x

3

, then x

p

1

= (z,z,0)T, x

p

2

= (0,u,w)T.
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Using the introdued notation, the equations (27)�(28) an be rewritten as

w =−I(t)−u−G

3

(t)ϕ
3

(u+ z), (29)

u= ψ(t,z,u), where ψ(t,z,u)=−I(t)−
(

G

3

(t)+R

−1
2

(t)
)

ϕ
3

(u+ z)+

+R

−1
2

(t)ϕ
2

(

− I(t)−u−G

3

(t)ϕ
3

(u+ z)
)

. (30)

By Theorem 1 for eah initial point (t
0

,x
0

) ∈ [t+,∞)×R3

satisfying the

algebrai equations (i.e., (t
0

,x
0

) ∈ L

t+)

x

1

−x

2

−x

3

= I(t)+G

3

(t)ϕ
3

(x
2

), (31)

R

2

(t)x
3

= ϕ
3

(x
2

)−ϕ
2

(x
3

), (32)

there exists a unique global solution x(t) of the IVP (1), (3) if

L,R
1

,R
2

∈ C

1([t+,∞),R), I,U,G
3

∈C([t+,∞),R), ϕ
j

∈ C

1(R), j= 1,2,3;
L(t)> 0, R

1

(t)> 0, R

2

(t)> 0, G

3

(t)> 0 for all t ∈ [t+,∞);
1) for eah t ∈ [t+,∞) and eah z ∈R there exists a unique u ∈ R satisfying the

equality (30);

2) for eah t∗ ∈ [t+,∞), z∗ ∈ R and eah u∗,w∗ ∈ R satisfying the equalities

(29), (30), one has the relation

ϕ ′
3

(u∗+ z∗)+
[

ϕ ′
2

(w∗)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u∗+ z∗)
]

6= 0; (33)

3) there exists R> 0 suh that −
(

ϕ
1

(z)+ϕ
3

(u+ z)
)

z≤ R

1

(t)z2 for all

t ∈ [t+,∞), u,w ∈R, z ∈ R, |z| ≥ R, satisfying the equalities (29), (30).
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A similar assertion takes plae aording to Theorem 2, if the above onditions

are satis�ed with the following hanges: the ondition 1) does not ontain the

requirement that u be unique; the ondition 2) is replaed by the following:

2*) for eah t∗ ∈ [t+,∞), z∗ ∈R and eah u

j

∗,w
j

∗ ∈ R, j= 1,2, satisfying the

equalities (29), (30), the relation

ϕ ′
3

(u
2

+ z∗)+
[

ϕ ′
2

(w
2

)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u
1

+ z∗)
]

6= 0

holds for any u

k

∈ [u1∗ ,u
2

∗], wk

∈ [w1

∗ ,w
2

∗ ], k= 1,2.

If, additionally,

∞
∫

t

0

k(t)dt< ∞, where k(t) = 2L

−1(t)(|L′(t|+ |U(t)|), the

funtions I(t), R−1
2

(t), G
3

(t) are bounded for all t ∈ [t+,∞), and ϕ
3

(x
2

), ϕ
2

(x
3

)
are bounded for x

2

∈ R and x

3

∈R respetively, then the DAE (1) is Lagrange

stable by Theorem 3.
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The partiular ases.

The the onditions 1), 2) and 2*) are satis�ed for the funtions ϕ
2

, ϕ
3

whih

are inreasing (nondereasing) on R, for example,

ϕ
2

(y) = ay

2k−1, ϕ
3

(y) = by

2m−1, ϕ
1

(y) = y

2l−1, a,b,> 0, k,m, l ∈ N, (34)

and if b is su�iently small, m≤ l, sup
t∈[t+,∞)

|I(t)|< ∞ and R

2

(t)≥K

0

= onst> 0,

t ∈ [t+,∞), then the ondition 3) is also ful�lled.

Note that in this ase the mapping ψ(t,z,u) is not globally ontrative with
respet to u. Obviously, the ondition 1) is satis�ed, if ψ(t,z,u) is globally
ontrative with respet to u for any t, z, i.e., there exists a onstant α < 1 suh

that

∣

∣ψ(t,z,u
1

)−ψ(t,z,u
2

)
∣

∣≤ α|u
1

−u

2

| for any t ∈ [t+,∞), z ∈ R, u
1

,u
2

∈R.
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Thank you for your attention!
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