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Consider implicit ordinary differential equations (ODEs) of the
form

SIAOXO]HBOSO =T(1x(0),  teftee), (1)
: (1) = £(6x(1), @)

X+

A(t) B(
where t4 >0, A,B: [t1,0) = L(R"), f: [t1,00) x R* —» R".
)

The time-varying operators A(t), B(t) can be degenerate.

The differential equations (DEs) (1) and (2) with a degenerate (for
some t) operator A(t) are called time-varying (nonautonomous)
degenerate DEs or time-varying differential-algebraic
equations (DAES). In the terminology of DAEs, equations of the form (1),
(2) are commonly referred to as semilinear.

We study the initial value problem (the Cauchy problem) for the DAEs (1), (2)
with the initial condition

x(tg) = Xo. (3)
It is assumed that the characteristic operator pencil AA(t) +B(t) (A €Cis a

parameter), associated with the linear part of the DAE (1) or (2), is a regular

pencil of index not higher than 1.
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Semilinear DAEs of the type (1) include semi-explicit DAEs
y =h(t,y.z),
0=g(t,y,z),  h:[ty,0) xR 5 RE g:[t, 00) x RE™ 5 R™,
and Hessenberg DAE
y = h(taYaZ)a
0=g(t,y),  h:[ty,00) x REM™M 5 RE g [t, o) x R¥ - R™,

DAEs or degenerate DEs are also called descriptor systems,
algebraic-differential equations and differential equations (or dynamical
systems) on manifolds.
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The development of the theory of

differential-algebraic equations
(degenerate differential equations, descriptor systems, algebraic-differential
systems, singular systems)

The solvability: K. Weierstrass (1867), L. Kronecker (1890), V.P. Skripnik
(1964), A.G. Rutkas (1975), R.E. Showalter (1975), S.L. Campbell (1976), Yu.E.
Boyarintsev (1977), A. Favini (1977), V.F. Chistyakov (1980), L.R. Petzold
(1982), L.A. Vlasenko (1987), E. Hairer (1988), P. Kunkel (1991), V. Mehrmann
(1991), V.P. Yakovecz (1991), R. Marz (1994), C. Tischendorf (1994), A.A.
Shcheglova (1995), A.M. Samoilenko (2000), R. Riaza (2000),

Yu.E. Gliklikh (2014) and others.

The stability: L. Dai (1989), R. Marz (1994), C. Tischendorf (1994), A.A.
Shcheglova (2004), V.F. Chistyakov (2004), Yu.E. Boyarintsev (2006),

S.L. Campbell (2009), V.H. Linh (2009), Sh. Xu, J. Lam (2006), T. Berger,
A. lichmann (2010) and others.

Numerical methods: Gear C.W. (1971), L.R. Petzold (1983), E. Hairer, Ch.
Lubich, M. Roche (1988), Yu.E. Boyarintsev, V.A. Danilov, V.F. Chistyakov
(1989), G. Wanner, U.M. Ascher (1991), P.J. Rabier, W.C. Rheinboldt (1994),
G.Yu. Kulikov (1993), P. Benner, R. Byers, V. Mehrmann, D. Kressner and others.
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Fields of application of the theory of DAEs are radioelectronics, control
theory, cybernetics, mechanics, robotics technology, economics, ecology and
chemical kinetics.

In particular, semilinear DAEs are used to describe

@ transient processes in electrical circuits and
the dynamics of neural networks
(R. Riaza, A.G. Rutkas, L.A. Vlasenko, K.E. Brenan, S.L. Campbell, L.R.
Petzold, R. Méarz, C. Tischendorf and others),

@ the dynamics of complex mechanical and technical systems (e.g., robots)
(P.J. Rabier, W.C. Rheinboldt, B. Fox, L.S. Jennings, A.Y. Zomaya, B.
Siciliano and others),

@ the dynamics of various descriptor systems
(R. Riaza, J. Zufiria, P. Kunkel, V. Mehrmann, J.C. Engwerda, |.E. Wijayanti
and others),

@ multi-sectoral economic models
(M. Morishima, S.R. Khachatryan and others),

@ kinetics of chemical reactions
(L.V. Knaub, A.E. Novikov, E.A. Novikov).
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Let for each t >t the pencil AA(t) +B(t) be regular and let there exist
functions Cy : [t4,%) — (0,0), Cy: [t4,00) — (0,00) such that for every t € [t ,0)
the pencil resolvent R(A,t) = (AA(t)+ B(t)) ! satisfies the constraint

IR0 < Cu(t), [A]=Ca(t). (4)

Then for each t € [t,) there exist the two pairs of mutually complementary
projectors
P;(t): R — Xj(t) and Q;(t): R* = Y;j(t), j=1,2,
(Pi(t)Pj(t) = &;Pi(t), P1(t) +Pa(t) =Irn, Qi(t)Q;(t) = &;Qi(t),
Q1(t)+Q2(t) =), which generate the direct decompositions of spaces
RrR™ ZXl( )+X2( ), R® :Yl( )+Y2( ), such that (5)

A<t>=<A10“) 8),13@):(310“) Bf(t)> X 0T (0) 5 Y (070, 6)

Xa(t) =KerA(t), Yi(t) = A(t)R?,

and there exist A; ' (t) (if Xy (t) # {0}) and By *(t) (if Xa(t) # {0}).

The auxiliary operator G( ) =A(t)+B(t)P2(t) € L(R"), G(t)X;(t) =Y;(t), has
the inverse G71(t) = A7 (t)Qq (t) + By 1 (t)Qa(t) € L(R™).

[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear differential
operator equations, Nonlinear Oscillations, 2001]



The condition (4) (a regular pencil AA(t) 4+ B(t) has index not higher than 1)
means that either the point 4 =0 is a simple pole of the resolvent
(A(t)+uB(t))"! (this is equivalent to the fact that A = o is a removable singular
point of the resolvent R(A,t) = (AA(t)+B(t))!), or 4 =0 is a regular point of
the pencil A(t)+ uB(t) (i.e., there exists the resolvent R(A,t) at the point 4 =0
and, hence, A(t) is nondegenerate).

For each t € [t,) the projectors can be constructively determined by the
formulas

P, (t) = Qim yf ROLOA() A, Pa(t) = Ten — Py (0),
A=Ca (1)
1 (7)
Qut) = — AMRA )N, Qat) = Tan — Qu (t).
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For each t any x € R™ can be uniquely represented in the form
X =Xp, (t) +Xpy(t),  xp;(t) =Pi(t)x € Xi(t).
The DAE (1) [A(t ) ( )+ B(t)x(t) = f(t,x(t)) is reduced to the equivalent system

[P () = G H(6)Qu(6)[A'(6) + B(6)]]P1(t)x(t) + G (6) Qu (6)E(6.x(t)),
() ([( ()) Al(6)P1 (t)x(t)] —P2(t)x(t) =0 or

xp, () = [PL(6) = G (£)Qu(6)[A'(6) + B(t)]]xp, (1) + G (O Qu(D)E(6,x),  (8)
THOQ2()[E(t,xp, (8) +xp, (£)) — A" ()3, (¢ )] Xpy (8) = 0. (9)

Viay (65, (6) = G (655, (6) + (B (6359, (1)), [P (1) = G (6)Qu (DA’ () +

B(t)]]xp, (£) + G L(£)Q ()@&A—Hm)»wﬂmmmﬂmoﬁmmmMn
).

V(t,z) along the trajectories of the equation (8
differentiable and positive definite scalar function.

where V(t,z) is a continuously

Introduce the manifold

Le, = {(t:x) € [t+,0) x R" [ Q2(t)[B(t)x +A'(t)P1 (t)x — £(t,x)] =0}.  (10)
The consistency condition (to,xg) € L, for the initial point (to,x¢) is one of
the necessary conditions for the existence of a solution of the initial value problem

(1), (3)-



The IVP (1), (3): ~—[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(to) = Xo.

d
dt
Definitions

A solution x(t) of the initial value problem (IVP) (1), (3) is called global or
defined in the future if it exists on [tg,).

A solution x(t) of the IVP (1), (3) is called Lagrange stable if it is global and

bounded, i.e., sup ||x(t)| < .
tE[t07°0)

A solution x(t) of the IVP (1), (3) has a finite escape time (is blow-up in
finite time) and is called Lagrange unstable if it exists on some finite interval
[to,T) and is unbounded, i.e., . Ii¥1 0||x(t)|| = 0.

Gl

The equation (1) is called Lagrange stable if every solution of the IVP (1), (3)
is Lagrange stable (the DAE is Lagrange stable for every consistent initial point).

The equation (1) is called Lagrange unstable if every solution of the IVP (1),
(3) is Lagrange unstable.

J. La Salle obtained the theorems on the global solvability, the Lagrange
stability and instability of the explicit ODE x’ ={(t,x) [J. La Salle, S. Lefschetz,
Stability by Liapunov's Direct Method with Applications, 1961].



Solutions of the equation (1) are called ultimately bounded, if there exists a
constant K > 0 (K is independent of the choice of tg, x¢) and for each solution
x(t) with an initial point (to,Xo) there exists a number T = T(t9,Xg) > to such that
[lx(t)|| < K for all t € [t + T,00).

The equation (1) is called ultimately bounded or dissipative, if for any
consistent initial point (tp,xo) there exists a global solution of the initial value
problem (1), (3) and all solutions are ultimately bounded.

If the number T does not depend on the choice of tg, then the solutions of (1)
are called uniformly ultimately bounded and the equation (1) is called uniformly
ultimately bounded or uniformly dissipative.

Ultimately bounded systems of explicit ODEs x’ = f(t,x), which are also called
dissipative systems and D-systems, were studied in [Yoshizawa T., Stability theory
by Liapunov's second method, 1966] and [La Salle J., Lefschetz S., 1961].
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The model of a radio engineering filter

A voltage source e(t),
nonlinear resistances ¢, ¢g, Y,
a nonlinear conductance h,
a linear resistance r,
a linear conductance g,
an inductance L and
a capacitance C are given.
Let e(t) € C([0,0),R),
$(v): $o(y), ¥(y),h(y)€C' (R,R),
r,g, L, C>0.

The model of the circuit Fig. 1 is described
by the system with the variables

Fig. 1. The diagram of the electric circuit

x1=I,x2=Ug, x3=0L L 0 0
d
LEX1+X2+rX3:e(t)—¢0(xl)—¢(x3)7 (11) A= ( g g 8 )
d
CE)Q +gX2 —X3 :—h(XQ), (12) 0 1 r
xo+rxg = Y(x1 —x3) — P(x3). (13) B=| 0 g -1
0 1 r

The vector form of the system is the DAE

d e(t) —do(x1) — d(x3)
T [Ax] +Bx =f{(t,x), (14) f(t,x) = —h(x2)
Ylx1 —x3) — P(x3)

where x = (Xl,XQ,Xg)T eR3
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Lagrange stability of the model of a radio engineering filter.
The particular cases.

$o(y) = ayy> ! ¢( )= aay” T (y) = asy¥ T h(y) = auy® (15)
$o(y) =ary™ ", d(y )—stmy tll(y)=0!3$my, h(y) = ay siny, (16)
kljseN, a>0i=14, ycR.

For each initial point (to,x°) satisfying x5 +rxJ = (x? — x3) — $(x3), there
exists a unique global solution of the IVP (14), x(tg) = x°
(x(to) = (IL(to), Uc(to),I(to))*) for the functions of the form (15), if j <k, j<s
and a3 is sufficiently small, and for the functions of the form (16), if oz + a3 <r.

400

If, additionally, sup |e(t)| <+ or [ |e(t)|dt <o, then for the initial points
t€[0,00) to

(to,x°) the DAE (14) is Lagrange stable (in both cases), i.e., every solution of the

DAE is bounded. In particular, these requirements are fulfilled for voltages of the

form
)2

e(t)=Bt+a) ™ e(t)=PBe % e(t) =PBe 02 ,e(t)=Bsin(wt+0), (17)

where a >0, 3,0,weR, neN, 0 €0,2m].

[M.S. Filipkovska, Lagrange stability of semilinear differential-algebraic equations and
application to nonlinear electrical circuits, Journal of Mathematical Physics, Analysis,
Geometry, 2018]



Lagrange stability. The numerical solution
L=500-10% C=05-10"%r=2, g=0.2, to =0, xo = (10,— 10,5)"
$o(y) =", ¢(y) =siny, Y(y) =siny, h(y) =siny, e(t) = (2t +10)"?

700 800 900 1000

100 200 300 400 500 600

100 200 300 400 500 600 700 80 900 1000 o
t

Fig. 2. The current Iy, (t) Fig. 3. The voltage Uc(t)

o

I(t)

00 700 80 s0 1000

Fig. 4. The current I(t)
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Lagrange stability. The numerical solution

L=500-10°,C=05-10"°,1=2, g=0.2, to =0, xo = (0,0,0)T,
do(y) =vy> &(y) =y> h(y)=y* @(y)=y> e(t) = 100e *sin(5t)

006

I(t)

Uc(t)

Fig. 5. The current I, (t) Fig. 6. The voltage Uc(t)

8

Fig. 7. The current I(t)
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Lagrange stability. The numerical solution

L=300-105 C=05-105 r=2.6, g = 0.2, to = 0, xo = (77/6,0.5,0)7,
do(y) =y3, ¢(y) =siny, ¢(y) =siny, h(y) = siny, e(t) = 200sin(0.5t) — 0.2

250 04
i
= I | 5o
| I .
| |
I |
= o 100 200 300 400 500 600 700 800 900 1000 ot 0 100 200 300 400 ?DQ 600 700 800 900 1000
t
Fig. 8. The current I, (t) Fig. 9. The voltage Uc(t)
.
o
o |
/
s . I
g |
o |
”
00 |

-0,

0 100 200 300 400 500 600 700 800 900 1000
t

Fig. 10. The current I(t)
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The global solution. The numerical solution

L=1000-10"% C=0.5-10"5 r=2,g=0.3, to =0, x° = (0,0,0)*
do(y) =v°, ¢(y) =y° w(y) =y> h(y) =y> e(t) = —t

o 50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 500
t

Fig. 11. The current Iy, (t) Fig. 12. The voltage Uc(t)

I(t)

0 50 100 150 200 250 300 350 400 450 500
t

Fig. 13. The current I(t)
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Lagrange instability. The numerical solution

L=10-10% C=0.5-10%r=2,g=0.2,
Po(x1)=—xi, p(x3)=x3, h(x2) =x3, Y(x1 —x3)=(x1 —x3)°, e(t)=2sint,
to =0, xo = (2.45, — 20.625125,2.5)

x10° x10*
45
5000 4
4500 -
4000 2 35
3500 -4 3
3000 . 25
= = -6 =
£ 2500 S P
- =)
2000 -8 15
1500
1000 10 N
500 12 05
o 0.0058 0.01 0.015 0.02 0.025 71/‘0 0.005 0.01 0.015 0.02 0.025 o 0.005 0.01 0.015 0.02 0.025
t t t
Fig. 14. The current I,(t) Fig. 15. The voltage Uc(t) Fig. 16. The current I(t)
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Main results:
@ Theorems on the existence and uniqueness of global solutions

Some advantages: the restrictions of the type of the global Lipschitz condition
are not used, it is not require that the DAEs be regular DAEs of tractability
index 1, and the requirements for the smoothness of the nonlinear part of the
DAEs are weakened in comparison with most other similar theorems.

@ Theorem on the Lagrange stability of the DAE (the boundedness of
solutions)

@ Theorem on the Lagrange instability of the DAE (solutions have finite
escape time)

@ Theorem on the ultimate boundedness (dissipativity) of the DAE (the
ultimate boundedness of solutions)

@ Theorems on the Lyapunov stability and instability of the equilibrium
state of the DAE

@ Theorems on asymptotic stability and asymptotic stability in the large
of the equilibrium state (complete stability of the DAE)

The application of the obtained theorems to the study of certain mathematical
models of electrical circuits with nonlinear and time-varying elements are shown.
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Theorem 1 (the global solvability). Let f € C([t4,0) x R*,R™),
2 f € C([t4,%) x R®, L(R")), A,B € C!([t+,%),L(R™)), the pencil AA(t)+B(t)
satisfy (4), where Cy € C!([t,%),(0,0)), and the following conditions be satisfied:
1) for each t € [t4,) and each x,, (t) € X; (t) there exists a unique
Xps (t) € X2(t) such that (t,xp, (t) +xp, (t)) € Ly ;
2) for each t. € [t4,0), x; (t.) € Xy (ts), x5, (b )EX2(t*) such that
(b, (t) +35, (t4)) € L, the operator CIJt x5 (t*) () Xo(ts) = Ya(ts),

*p

Py 1)y (1) = | 2 [Q Bt ) (6)] = B(8)] Pa(t.), is
invertible;

3) there exist a number R > 0, a positive definite function
V € CH([t4,0) x U4 (0),R), where U§ (0) = {z € R" | ||z|| > R}, and a function
X € C([t+,%) x (0,00),R) such that:

3.1) V(t,2) — oo uniformly in t on every finite interval [a,b) C [t,0) as ||z|| — oo,

3.2) for all t, xp,, (t), xp, (t) such that (t,xp, (t) +xp,(t)) € L¢., [|xp, (t)]] >R,
the inequality Vig) (t.xp, (t)) < X (t,V(t.xp, (t))) holds,

3.3) the inequality v/ < x(t,v), t > t, has no positive solutions v(t) with finite
escape time.

Then for each initial point (to,xo) € Ly, there exists a unique global solution of
the IVP (1), (3).



Statement 1.
Theorem 1 remains valid if the conditions 1), 2) are replaced by the following:
there exists a constant 0 < a < 1 such that

6710 Qa0 (x5, (6) +3x), (1)) = G~ (1) Q) E (b0, (1) 33, (1) | <
< al[xp, (6) —xp, (0[] (18)

~ Xpy

for any t € [t1,0), xp, (t) € X1 (t) and xI,, (t) € Xa(t), i=1,2.

Theorem 2 (the global solvability).

Theorem 1 remains valid if the conditions 1), 2) are replaced by the following:

1) for each t € [t4,%), xp, (t) € X1 (t) there exists x,,, (t) € Xa(t) such that
(t7xp1 (t) + Xpy (t)) € Lt+;

2) for each t. € [t4,%), x5 (t) € Xy (t+), x},, (t+) € Xa(t.) such that
(te, X}, (t) +x1,(ts)) € L, , i = 1,2, the operator function th*,X;l(t*)(pr (t4))
defined by

e, (6 Xa(te) = L(Xa (), Yo (b)),

P xp, (6) (Xpa (1)) = %[Qa(t*)f(t*,X£1(t*)+Xp2(t*))]—B(t*) Py(t), (19)

P1

is basis invertible on [x} (t.),x3 (t.)].
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A system of one-dimensional projectors {Ox};_;, Ok: Z — Z, such that
S
©;0; = §;0; (§; is the Kronecker delta), and Ez = 5 O is called an additive
k=1
resolution of the identity in s-dimensional linear space Z.

Let W, Z be s-dimensional linear spaces, D C W and W, w € D.
An operator function ®: D — L(W,Z) is called basis invertible on the interval
[W,w], if for any set {wk}$_,, w* € [W,w], and some additive resolution of the

identity {Ox}_; in the space Z the operator A= % Ok ®(w*) € L(W,Z) has an
K=1
inverse A~! € L(Z,W).

If we represent ®(w) € L(W,Z) as a matrix relative to some bases in W, Z:

¢11(W) s ¢1s (W)
P(w) = , then the operator A takes the form
P (w) -0 Dgg(w)
qJII(Wl) qDls(Wl)
A=
P (wh) -0 Dgg(wh)

[A.G. Rutkas, M.S. Filipkovska, Extension of solutions of one class of

differential-algebraic equations, Journal of Computational and Applied Mathematics,
2013] (Russian)
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Theorem 3 (Lagrange stability). Let f € C([t4+,%) x R",R"),
2 f € C([t4,%) x R®L(R)), A,B€C!([t1,00),L(R")), the pencil AA(t)+B(t)
satisfy (4), where Cy € C([t4,%),(0,00)), the requirements 1), 2) of Theorem 1
or 2 be fulfilled, and

3) there exists a number R > 0, a positive definite function
V € C!([t4,0) x U, (0),R) and a function x € C([t+,%) x (0,00),R) such that:

3.1) V(t,z) — oo uniformly in t on [t4,) as ||z| — ;

3.2) for all t, x;,, (t), xp, (t) such that (t,xp, (t)+xp,(t)) € L, |
the inequality V(g (t.xp, (t)) < X (t,V(t.xp, (t))) holds;

3.3) the differential inequality v/ < x(t,v), t > t, has no unbounded positive
solutions v(t) for t € [t,00).

Let one of the following conditions be also satisfied:

4.a) for all (t,xp, (t) +xp,(t)) € Le,, ||xp, (8)|| <M < oo (M is an arbitrary
constant), the inequality
1G1(£)Qa (8)[E(630p, (£) 4 3p5 (1)) — A (t)55p, (6)]]| < K < o0, where Ky = K(M)
is some constant, holds;

4.b) for all (t,xp, (t) +xpy(t)) € L, [|xp, (t)|] <M < oo, the inequality
lIxp, (8)]| < Ky < o0, where Ky = K(M) is some constant, holds.

Then the equation (1) is Lagrange stable.

Xp, (8[| = R,
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Theorem 4 (Lagrange instability). Let f € C([t4,0) x R*,R™),
2 f € C([t4,%) x R:L(RY)), A, B CL([t1,00),L(R")), the pencil AA(t) +B(t)
satisfy (4), where Cy € C([t4,%),(0,00)), the requirements 1), 2) of Theorem 1
or 2 be fulfilled, and

3) there exists a region Q CR", 0 € Q, such that the component Py (t)x(t) of
each existing solution x(t) with the initial point (to,xo) € Lg,, where
Py (to)xo € Q, remains all the time in Q;

4) there exist a positive definite function V € C!([t;,0) x Q,R) and a function
X € C([t+,%°) x (0,),R) such that:

4.1) for all t, xp, (t), xp,(t) such that (t,xp, (t) +Xp, (t)) € Ly, , xp, (t) € Q, the
inequality V{g (t,xp, (t)) > X (£,V(t,xp, (t))) holds,

4.2) the inequality v/ > x(t,v), t > t, has no positive solutions defined in the
future (i.e., defined for all t > t.).

Then for each initial point (to,x0) € L¢, such that Py (ty)xo € Q, there
exists a unique solution of the IVP (1), (3) and this solution is Lagrange
unstable.

M. Filipkovska (B. Verkin ILTPE of NASU) 23/37



Remarks on the form of the functions x

It is usually convenient to choose X € C([t4,%) x (0,00),R) in the form
X(,v) =k(t)U(v), (20)
where U € C(0,0), k € C([t4+,),R). Then the theorem conditions can be changed
as follows:

@ in Theorems 1, 2 on the global solvability, it suffices to require that
© dy

o)

=0 (¢ >0 is some constant) instead of the condition 3.3);

@ in Theorem 3 on the Lagrange stability, it suffices to require that fwv) =00
c U(v

and [k(t)dt < oo (to >t is some number) instead of the condition 3.3);
to

@ in Theorem 4 on the Lagrange instability, it suffices to require that

fd—v < o and fk( )dt = oo instead of the condition 4.2).

U(v)

[Filipkovskaya M. S. Global solvability of time-varying semilinear differential-algebraic
equations, boundedness and stability of their solutions. I, Differential Equations, 2021]
[Filipkovskaya M. S. Global solvability of time-varying semilinear differential-algebraic

equations, boundedness and stability of their solutions. Il, Differential Equations, 2021
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Theorem 5 (uniform dissipativity (ultimate boundedness)). Let
f € C([t4,0) x R*,R"), %f € C([t4,0) x R L(R®)), A,B € C}([t,»),L(R®)),
the pencil AA(t) + B(t) satisfy (4), where C2 € C!([t4,),(0,0)), the
requirements 1), 2) of Theorem 1 or 2 be fulfilled, and

3) there exist a number R > 0, a positive definite function
V € C([t4,0) x U (0),R) and functions U; € C([0,)), j = 0,1,2, such that
Up(r) is non-decreasing and Uy(r) — 4+ as r — 400, Uy (r) is increasing,
Usy(r) > 0 for r > 0, and for all t € [t+,0), xp, (t) € X1 (t), xp, (t) € Xa(t) such
that (t,xp, (t) +Xp,(t)) € Lt . ||xp, (t)]| > R the condition
Uo(J|xp, (6)]]) < V(t,xp, (t)) < Ui(]|xp, (t)]|) and one of the following inequalities
hold:

3.3) Vig) (655, (1) < ~Us (x5, (1))

3.b) &;)(t,xp1 (t)) < =Us ((H(t)xp, (t),xp, (£))), where H € C([t4,0),L(R")) is
some self-adjoint positive definite operator function such that sup ||H(t)|| < oo;

t€[t4,00)

3.0) Vés)(t,xp1 (t)) < —=CV(t,xp, (t)), where C > 0 is some constant;

4) there exist a constant ¢ > 0 and a number T >t such that
G L (O)Qa (Ot (6) 5 (1)) = A" (65, (D] < cxpy (8)] for al
(tvxpl (t) + Xpy (t)) €Lr.

Then the DAE (1) is uniformly ultimately bounded (uniformly dissipative).



Remarks on the form of the functions V

It is often convenient to choose the positive definite scalar function V (t,z) in
the form

V(t,z) = (H(t)z,2), (21)

where H € C!([t4,),L(R")) is a self-adjoint positive definite operator function.
The function V(t,z) (21) satisfies the conditions (except for the conditions on the
derivative of the function along the trajectories of (8)) of Theorems 1-4 on the
global solvability, the Lagrange stability and the Lagrange instability, and if

additionally sup ||H(t)|| < o, then the function (21) also satisfies the conditions
t€[t4,00)
of Theorem 5 on the dissipativity.

[Filipkovska (Filipkovskaya) M. S. Global boundedness and stability of solutions of
nonautonomous degenerate differential equations, Proceedings of the Institute of
Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 2020]
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It is known that the dynamics of electrical circuits is modeled using systems of
differential and algebraic equations, which in a vector form have the form of
differential-algebraic equations. Generally, a DAE describing the dynamics of an
electrical circuit cannot be reduced to a purely differential equation, i.e., to an
explicit ODE.

A simple electrical circuit with nonlinear and time-varying elements
Consider the electrical circuit with a time-varying inductance L(t), time-varying

linear resistances r(t), rp,(t) and nonlinear resistances ¢r,(I..), ¢ (Iy), whose
dynamics is described by the system of equations

1L (0] + 1105 (6) = x2(6) = (31 (1))

< ) (22)
x1(t) +x3(t) =I(t), (23)

xz(t) —r(t)xs(t) = U(t) + ¢ (xs(t)), (24)

where I(t) is a given (input) current, U(t) is a given (input) voltage, x; (t) = I, (t)

and x3(t) =1Iy(t) are unknown currents, and x5(t) = Uy, (t) is an unknown
voltage. The remaining currents and voltages in the circuit are uniquely expressed
in terms of I(t), I.(t), Iy (t), U(t) and Uy (t).
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The vector form of the system (22)—(24) is the time-varying semilinear DAE (1):
%[A(t)x] + B(t)x = f(t,x),
where x = (x1,%2,x3)T = (I, Up,, I) T € R?,

(L(t) 0 0) (rL(t) -1 0 ) ( —¢L(x1) )
At)=[ o o o|lBe)=[ 1 0o 1 |ftx= 1(t) . (25)
0 00 0 1 —r(t) U(t)+¢(x3)

The initial condition (3) X(tg) =Xp, Xo= (IL (to),UL (to),I¢ (tg))T.

0
The projection matrices P;(t), Q;(t) have the form Py (t) = [ —r(t) 0
0

0
0
0
0 00 1 r(t) 1 0 —r(t) -1
P2(t):<r(t) 1 0),Ql(t)=(0 0 0),Q2(t)= 0 1 0).
1 01 0 0 0 0o 0 1
T

The vector x has the projections xp, (t) =
Xp, (8) = P (t)x = (0,0(t)x1 +x2,x1 +x3) ™.
Denote a =x1, b(t) =r(t)x; +x2, ¢ = X1 +x3, then x,, (t) = a(1, —1(t),— 1)7,

Xpo (t) = (O,b(t),C)T.



By Theorem 1 as well as by Theorem 2, for each initial point
(to,x0) € [t+,%) x R3 satisfying the algebraic equations (23), (24) (i.e.,
(to,x0) € L, ), there exists a unique global solution x(t) of the equation (1)
satisfying the IVP (1), (3) if L,r,r;, € C*([t4,»),R), I,U € C([t+,o),R),
¢, ¢, € C1(R) and the following requirements are fulfilled:

L(t) > Lo > 0 and r(t) # 0 for all t € [t,00);

AL(t) +rr(t) +1(t) # 0 for sufficiently large |A| such that [A| > Ly* and all
te [t+v°°);

there exists a number R > 0 such that the inequality

(b (x1) — ¢ (I(t) —x1) — r(t)I(t) — U(t)]xy + [L(t) /2 +rr.(t) +r(t)]x2 >0
holds for all t € [t4,»), |Ixp, (t)|| = [x1][|(1, —(t),— 1)T|| > R.

If, additionally, fk( )dt < oo, where k(t) = |r/(t)/r(t)|, and the functions I(t),

Uy (t), r(t) are bounded for all t € [t1,0), i.e., sup [Iz(t)] < oo,
tE[t+,°°)
sup |Uy(t)] <o, sup |r(t)| < oo, then the DAE (1) (with A(t), B(t), f(t,x)
t€[t+,00) tE[t4,)
of the form (25)) is Lagrange stable by Theorem 3.
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The mathematical model of a time-varying nonlinear electrical circuit

N {7 3~
1 I3 I, L 0 R L
131 I 32
P2
P3 G; U

Ry

Fig. 17. The diagram of the electric circuit

A current I(t), a voltage U(t), resistances Ry (t), Ra(t), ¢1(I1), ¢2(I2), ¢5(Is1),
a conductance Gs3(t), an inductance L(t) and a capacitance C are given.

A transient process in the electrical circuit (Fig. 17) is described by the system

%[L(t)ll ()] +Re(t)I1 (t) = U(t) — @1 (Lo (t)) — pa(Iz1(t)), (26)
L (t) = Is1(t) — Ia(t) = I(t) + Ga(t) 3 (I31(t)), (27)
Ra(t)L2(t) = ¢3(I31(t)) — ¢2(I2(t)), (28)
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Denote x; (t) =1 (t), XQ(t) =13 (t) and X3(t) =1 (t)
The vector form of the system (26)—(28) is the time-varying semilinear DAE (1):

d
AW+ B(0)x = £(6.%),

X1 L(t) 0 0 Ri(t) 0 0
x= (X2),A(t)= 00 0 0)B)=| 1 -1 -1 )
0 0 0

where

X3 0 0 R2 (t)

U(t)—¢1(x1)—P3(x2)
ft,x) = I(t)+Gs(t)Ps(x2) |-
¢3 (Xz)—¢2 (X3)

The initial condition (3): x(tg) =x0, x0 = (I1(to),I31(to),I2(to))?-

It is assumed that the functions L(t), Ry (t), R2(t) and Gs(t) are positive for all
t € [t4,).

The projections xp, (t) = Pj(t)x € X;(t) of a vector x have the form
Xp, (t) = Xp; = (x1,%1,0) T, Xp, (t) = Xp, = (0,32 —x1,%3)

Denote z = x1, U =Xz — X1, W = X3, then x,, = (2,2,0)%, xp, = (0,u,w)".
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Using the introduced notation, the equations (27)—(28) can be rewritten as

w=—1(t) —u—Gs(t) ¢3(u+2), (29)
u=(t,zu), where @(t,zu)=-I(t)— (Gs(t)+R;"(t))Ps(u+z)+
+Ry ' (t) 2 (—I(t) —u—Gs(t)ps(u+2)). (30)

By Theorem 1 for each initial point (to,xp) € [t+,%0) X R? satisfying the
algebraic equations (i.e., (to,xo) € Ly, )

X1 — X9 —X3 :I(t)+G3(t) ¢3(X2), (31)
Ra(t) x5 = ¢3(x2) — Pa(x3), (32)

there exists a unique global solution x(t) of the IVP (1), (3) if
L. R{,Ry € Cl([t+,°°),]R), ILU,Gs € C([t+,°°),R), ¢j € CI(R), j=1.2.3;
L(t) > 0, Ry (t) > 0, Ra(t) >0, Gs(t) > 0 for all t € [t4,00);

1) for each t € [t4,) and each z € R there exists a unique u € R satisfying the
equality (30);

2) for each t. € [t4,%), z, € R and each u.,w, € R satisfying the equalities
(29), (30), one has the relation

05 (ue +2.) + (@5 (Wi ) + Ra(t.)] [14 Gs(ts) 3 (ws +2.)] #0; (33)

3) there exists R > 0 such that —(¢y(z) + ¢3(u+2))z < Ry (t)z? for all
t € [t4,%), u,w €R, z € R, |z] > R, satisfying the equalities (29), (30).
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A similar assertion takes place according to Theorem 2, if the above conditions
are satisfied with the following changes: the condition 1) does not contain the
requirement that u be unique; the condition 2) is replaced by the following:

2*) for each t, € [t4+,), z, € R and each ul,wk € R, j = 1,2, satisfying the
equalities (29), (30), the relation

3 (uz +2) + [95(W2) + Ra(t:)] [1+ Ga(ts) ¢35 (0 +24)] #0
holds for any uy € [ul,u?], wy € [wl,w?], k=1,2.

If, additionally, [k(t)dt < e, where k(t) = 2L1(t) (|L'(t| + [U(t)]), the

to

functions I(t), Ry (t), Gs(t) are bounded for all t € [t ,), and @3(x2), P2(x3)
are bounded for x; € R and x3 € R respectively, then the DAE (1) is Lagrange
stable by Theorem 3.
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The particular cases.

The the conditions 1), 2) and 2*) are satisfied for the functions ¢, ¢3 which
are increasing (nondecreasing) on R, for example,

¢2 (Y) = ay2k71a ¢3 (Y) = by2m71a ¢1 (Y) = Cy2171a a,b,c > Oa kvmal S Na (34)

and if b is sufficiently small, m <1, sup |I(t)| <o and Ry(t) > Ko = const > 0,
t€[t4-,)
t € [t4,0), then the condition 3) is also fulfilled.

Note that in this case the mapping ((t,z,u) is not globally contractive with
respect to u. Obviously, the condition 1) is satisfied, if (t,z,u) is globally
contractive with respect to u for any t, z, i.e., there exists a constant a < 1 such
that [((t,z,u1) — P(t,2,u2)| < afuy —us for any t € [t4,0), z € R, uy,uz €R.
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