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Consider impli
it ordinary di�erential equations (ODEs) of the

form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A,B : [t+,∞)→ L(Rn), f : [t+,∞)×Rn →Rn

.

The time-varying operators A(t), B(t) 
an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are 
alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai


equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are 
ommonly referred to as semilinear.

We study the initial value problem (the Cau
hy problem) for the DAEs (1), (2)

with the initial 
ondition

x(t
0

) = x

0

. (3)

It is assumed that the 
hara
teristi
 operator pen
il λA(t)+B(t) (λ ∈ C is a

parameter), asso
iated with the linear part of the DAE (1) or (2), is a regular

pen
il of index not higher than 1.
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Semilinear DAEs of the type (1) in
lude semi-expli
it DAEs

ẏ= h(t,y,z),

0= g(t,y,z), h : [t+,∞)×R
k+m →R

k, g : [t+,∞)×R
k+m →R

m,

and Hessenberg DAE

ẏ= h(t,y,z),

0= g(t,y), h : [t+,∞)×R
k+m →R

k, g : [t+,∞)×R
k →R

m.

DAEs or degenerate DEs are also 
alled des
riptor systems,

algebrai
-di�erential equations and di�erential equations (or dynami
al

systems) on manifolds.
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The development of the theory of

di�erential-algebrai
 equations

(degenerate di�erential equations, des
riptor systems, algebrai
-di�erential

systems, singular systems)

The solvability: K. Weierstrass (1867), L. Krone
ker (1890), V.P. Skripnik

(1964), A.G. Rutkas (1975), R.E. Showalter (1975), S.L. Campbell (1976), Yu.E.

Boyarintsev (1977), A. Favini (1977), V.F. Chistyakov (1980), L.R. Petzold

(1982), L.A. Vlasenko (1987), E. Hairer (1988), P. Kunkel (1991), V. Mehrmann

(1991), V.P. Yakove
z (1991), R. M�arz (1994), C. Tis
hendorf (1994), A.A.

Sh
heglova (1995), A.M. Samoilenko (2000), R. Riaza (2000),

Yu.E. Gliklikh (2014) and others.

The stability: L. Dai (1989), R. M�arz (1994), C. Tis
hendorf (1994), A.A.

Sh
heglova (2004), V.F. Chistyakov (2004), Yu.E. Boyarintsev (2006),

S.L. Campbell (2009), V.H. Linh (2009), Sh. Xu, J. Lam (2006), T. Berger,

A. Il
hmann (2010) and others.

Numeri
al methods: Gear C.W. (1971), L.R. Petzold (1983), E. Hairer, Ch.

Lubi
h, M. Ro
he (1988), Yu.E. Boyarintsev, V.A. Danilov, V.F. Chistyakov

(1989), G. Wanner, U.M. As
her (1991), P.J. Rabier, W.C. Rheinboldt (1994),

G.Yu. Kulikov (1993), P. Benner, R. Byers, V. Mehrmann, D. Kressner and others.
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Fields of appli
ation of the theory of DAEs are radioele
troni
s, 
ontrol

theory, 
yberneti
s, me
hani
s, roboti
s te
hnology, e
onomi
s, e
ology and


hemi
al kineti
s.

In parti
ular, semilinear DAEs are used to des
ribe

transient pro
esses in ele
tri
al 
ir
uits and

the dynami
s of neural networks

(R. Riaza, A.G. Rutkas, L.A. Vlasenko, K.E. Brenan, S.L. Campbell, L.R.

Petzold, R. M�arz, C. Tis
hendorf and others),

the dynami
s of 
omplex me
hani
al and te
hni
al systems (e.g., robots)

(P.J. Rabier, W.C. Rheinboldt, B. Fox, L.S. Jennings, A.Y. Zomaya, B.

Si
iliano and others),

the dynami
s of various des
riptor systems

(R. Riaza, J. Zu�ria, P. Kunkel, V. Mehrmann, J.C. Engwerda, I.E. Wijayanti

and others),

multi-se
toral e
onomi
 models

(M. Morishima, S.R. Kha
hatryan and others),

kineti
s of 
hemi
al rea
tions

(L.V. Knaub, A.E. Novikov, E.A. Novikov).
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Let for ea
h t≥ t+ the pen
il λA(t)+B(t) be regular and let there exist

fun
tions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) su
h that for every t ∈ [t+,∞)
the pen
il resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es the 
onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (4)

Then for ea
h t ∈ [t+,∞) there exist the two pairs of mutually 
omplementary

proje
tors

P

j

(t) : Rn → X

j

(t) and Q

j

(t) : Rn →Y

j

(t), j= 1,2,

(P

i

(t)P
j

(t) = δ
ij

P

i

(t), P
1

(t)+P

2

(t) = IRn

, Q

i

(t)Q
j

(t) = δ
ij

Q

i

(t),
Q

1

(t)+Q

2

(t) =), whi
h generate the dire
t de
ompositions of spa
es

R
n =X

1

(t)+̇X
2

(t), Rn =Y

1

(t)+̇Y
2

(t), su
h that (5)

A(t)=

(

A

1

(t) 0

0 0

)

,B(t)=

(

B

1

(t) 0

0 B

2

(t)

)

: X
1

(t)+̇X
2

(t)→Y

1

(t)+̇Y
2

(t), (6)

X

2

(t) =KerA(t), Y
1

(t) =A(t)Rn

,

and there exist A

−1
1

(t) (if X
1

(t) 6= {0}) and B−1
2

(t) (if X
2

(t) 6= {0}).

The auxiliary operator G(t) =A(t)+B(t)P
2

(t) ∈ L(Rn), G(t)X
j

(t) =Y

j

(t), has
the inverse G

−1(t) =A

−1
1

(t)Q
1

(t)+B

−1
2

(t)Q
2

(t) ∈ L(Rn).

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Os
illations, 2001℄
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The 
ondition (4) (a regular pen
il λA(t)+B(t) has index not higher than 1)

means that either the point µ = 0 is a simple pole of the resolvent

(A(t)+µB(t))−1 (this is equivalent to the fa
t that λ = ∞ is a removable singular

point of the resolvent R(λ ,t) = (λA(t)+B(t))−1), or µ = 0 is a regular point of

the pen
il A(t)+ µB(t) (i.e., there exists the resolvent R(λ ,t) at the point µ = 0

and, hen
e, A(t) is nondegenerate).

For ea
h t ∈ [t+,∞) the proje
tors 
an be 
onstru
tively determined by the

formulas

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = IRn −P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = IRn −Q

1

(t).
(7)
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For ea
h t any x ∈ Rn


an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redu
ed to the equivalent system

[P
1

(t)x(t)]′=
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (8)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (9)

V

′
(8)

(t,x
p

1

(t)) = ∂V
∂t (t,xp1(t))+

(

∂V
∂z (t,xp1(t)),

[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)

is the derivative of the fun
tion

V(t,z) along the traje
tories of the equation (8), where V(t,z) is a 
ontinuously

di�erentiable and positive de�nite s
alar fun
tion.

Introdu
e the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (10)

The 
onsisten
y 
ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of
the ne
essary 
onditions for the existen
e of a solution of the initial value problem

(1), (3).
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

A solution x(t) of the initial value problem (IVP) (1), (3) is 
alled global or

de�ned in the future if it exists on [t
0

,∞).

A solution x(t) of the IVP (1), (3) is 
alled Lagrange stable if it is global and

bounded, i.e., sup
t∈[t

0

,∞)

‖x(t)‖< ∞.

A solution x(t) of the IVP (1), (3) has a �nite es
ape time (is blow-up in

�nite time) and is 
alled Lagrange unstable if it exists on some �nite interval

[t
0

,T) and is unbounded, i.e., lim
t→T−0

‖x(t)‖= ∞.

The equation (1) is 
alled Lagrange stable if every solution of the IVP (1), (3)

is Lagrange stable (the DAE is Lagrange stable for every 
onsistent initial point).

The equation (1) is 
alled Lagrange unstable if every solution of the IVP (1),

(3) is Lagrange unstable.

J. La Salle obtained the theorems on the global solvability, the Lagrange

stability and instability of the expli
it ODE x

′ = f(t,x) [J. La Salle, S. Lefs
hetz,

Stability by Liapunov's Dire
t Method with Appli
ations, 1961℄.
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Solutions of the equation (1) are 
alled ultimately bounded, if there exists a


onstant K> 0 (K is independent of the 
hoi
e of t

0

, x

0

) and for ea
h solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

su
h that

‖x(t)‖<K for all t ∈ [t
0

+ τ,∞).

The equation (1) is 
alled ultimately bounded or dissipative, if for any


onsistent initial point (t
0

,x
0

) there exists a global solution of the initial value

problem (1), (3) and all solutions are ultimately bounded.

If the number τ does not depend on the 
hoi
e of t

0

, then the solutions of (1)

are 
alled uniformly ultimately bounded and the equation (1) is 
alled uniformly

ultimately bounded or uniformly dissipative.

Ultimately bounded systems of expli
it ODEs x

′ = f(t,x), whi
h are also 
alled

dissipative systems and D-systems, were studied in [Yoshizawa T., Stability theory

by Liapunov's se
ond method, 1966℄ and [La Salle J., Lefs
hetz S., 1961℄.
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The model of a radio engineering �lter

A voltage sour
e e(t),
nonlinear resistan
es ϕ, ϕ

0

, ψ,

a nonlinear 
ondu
tan
e h,

a linear resistan
e r,

a linear 
ondu
tan
e g,

an indu
tan
e L and

a 
apa
itan
e C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ

0

(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C> 0.

The model of the 
ir
uit Fig. 1 is des
ribed

by the system with the variables

x

1

= I

L

, x

2

=U

C

, x

3

= I:

L

d

dt

x

1

+x

2

+ rx

3

= e(t)−ϕ
0

(x
1

)−ϕ(x
3

), (11)

C

d

dt

x

2

+gx

2

−x

3

=−h(x
2

), (12)

x

2

+ rx

3

= ψ(x
1

−x

3

)−ϕ(x
3

). (13)

The ve
tor form of the system is the DAE

d

dt

[Ax]+Bx= f(t,x), (14)

where x= (x
1

,x
2

,x
3

)T ∈ R3

Fig. 1. The diagram of the ele
tri
 
ir
uit

A=





L 0 0

0 C 0

0 0 0





B=





0 1 r

0 g −1
0 1 r





f(t,x) =





e(t)−ϕ
0

(x
1

)−ϕ(x
3

)
−h(x

2

)
ψ(x

1

−x

3

)−ϕ(x
3

)




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Lagrange stability of the model of a radio engineering �lter.

The parti
ular 
ases.

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

y

2l−1, ψ(y) = α
3

y

2j−1, h(y) = α
4

y

2s−1, (15)

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

siny, ψ(y) = α
3

siny, h(y) = α
4

siny, (16)

k, l, j,s ∈ N, α
i

> 0, i= 1,4, y ∈ R.

For ea
h initial point (t
0

,x0) satisfying x0
2

+ rx

0

3

= ψ(x0
1

−x

0

3

)−ϕ(x0
3

), there
exists a unique global solution of the IVP (14), x(t

0

) = x

0

(x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T) for the fun
tions of the form (15), if j≤ k, j≤ s

and α
3

is su�
iently small, and for the fun
tions of the form (16), if α
2

+α
3

< r.

If, additionally, sup
t∈[0,∞)

|e(t)|<+∞ or

+∞
∫

t

0

|e(t)|dt<+∞, then for the initial points

(t
0

,x0) the DAE (14) is Lagrange stable (in both 
ases), i.e., every solution of the

DAE is bounded. In parti
ular, these requirements are ful�lled for voltages of the

form

e(t) = β (t+α)−n, e(t) = βe−αt, e(t) = βe−
(t−α)2

σ2 , e(t) = β sin(ωt+θ ), (17)

where α > 0, β ,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
[M.S. Filipkovska, Lagrange stability of semilinear di�erential-algebrai
 equations and

appli
ation to nonlinear ele
tri
al 
ir
uits, Journal of Mathemati
al Physi
s, Analysis,

Geometry, 2018℄
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Lagrange stability. The numeri
al solution

L= 500 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2, t
0

= 0, x

0

= (10,−10,5)T

ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = (2t+10)−2

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

t

U
C
(t

)

Fig. 2. The 
urrent I

L

(t) Fig. 3. The voltage U

C

(t)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

t

I(
t)

Fig. 4. The 
urrent I(t)
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Lagrange stability. The numeri
al solution

L= 500 ·10−6 , C= 0.5 ·10−6 , r= 2, g= 0.2, t
0

= 0, x

0

= (0,0,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = y

3

, h(y) = y

3

, ψ(y) = y

3

, e(t) = 100e

−tsin(5t)

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

t

I L
(t

)

−5 0 5 10 15 20 25 30
0

1

2
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4

5

6

7
x 10

−5

t

U
C
(t

)

Fig. 5. The 
urrent I

L

(t) Fig. 6. The voltage U

C

(t)

−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10
x 10

−5

t

I(
t)

Fig. 7. The 
urrent I(t)
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Lagrange stability. The numeri
al solution

L= 300 ·10−6, C= 0.5 ·10−6, r= 2.6, g= 0.2, t
0

= 0, x

0

= (π/6,0.5,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = 200sin(0.5t)−0.2

0 100 200 300 400 500 600 700 800 900 1000
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t
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)
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)

Fig. 8. The 
urrent I

L

(t) Fig. 9. The voltage U

C

(t)
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Fig. 10. The 
urrent I(t)
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The global solution. The numeri
al solution

L= 1000 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.3, t
0

= 0, x

0 = (0,0,0)T

ϕ
0

(y) = y

3

, ϕ(y) = y

3

, ψ(y) = y

3

, h(y) = y

3

, e(t) =−t2
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Fig. 11. The 
urrent I

L

(t) Fig. 12. The voltage U

C

(t)
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Fig. 13. The 
urrent I(t)
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Lagrange instability. The numeri
al solution

L= 10 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2,
ϕ
0

(x
1

)=−x2
1

, ϕ(x
3

)=x

3

3

, h(x
2

)=x

2

2

, ψ(x
1

−x

3

)=(x
1

−x

3

)3, e(t)=2sint,
t

0

= 0, x

0

= (2.45,−20.625125,2.5)T
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Fig. 14. The 
urrent I

L

(t) Fig. 15. The voltage U

C

(t) Fig. 16. The 
urrent I(t)
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Main results:

Theorems on the existen
e and uniqueness of global solutions

Some advantages: the restri
tions of the type of the global Lips
hitz 
ondition

are not used, it is not require that the DAEs be regular DAEs of tra
tability

index 1, and the requirements for the smoothness of the nonlinear part of the

DAEs are weakened in 
omparison with most other similar theorems.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

es
ape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti
 stability and asymptoti
 stability in the large

of the equilibrium state (
omplete stability of the DAE)

The appli
ation of the obtained theorems to the study of 
ertain mathemati
al

models of ele
tri
al 
ir
uits with nonlinear and time-varying elements are shown.
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Theorem 1 (the global solvability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), the pen
il λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), and the following 
onditions be satis�ed:

1) for ea
h t ∈ [t+,∞) and ea
h x

p

1

(t) ∈X

1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
∗
p

2

(t∗) ∈X

2

(t∗) su
h that

(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x
[

Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]

−B(t∗)
]

P

2

(t∗), is

invertible;

3) there exist a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×U




R

(0),R), where U


R

(0) = {z ∈R
n | ‖z‖ ≥ R}, and a fun
tion

χ ∈ C([t+,∞)× (0,∞),R) su
h that:

3.1) V(t,z)→ ∞ uniformly in t on every �nite interval [a,b)⊂ [t+,∞) as ‖z‖→∞,
3.2) for all t, x

p

1

(t), x
p

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds,

3.3) the inequality v

′ ≤ χ(t,v), t≥ t+, has no positive solutions v(t) with �nite

es
ape time.

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ there exists a unique global solution of

the IVP (1), (3).
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Statement 1.

Theorem 1 remains valid if the 
onditions 1), 2) are repla
ed by the following:

there exists a 
onstant 0≤ α < 1 su
h that

∥

∥

G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

1

p

2

(t)
)

−G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

2

p

2

(t)
)∥

∥≤

≤ α
∥

∥

x

1

p

2

(t)−x

2

p

2

(t)
∥

∥

(18)

for any t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) and xi
p

2

(t) ∈X

2

(t), i= 1,2.

Theorem 2 (the global solvability).

Theorem 1 remains valid if the 
onditions 1), 2) are repla
ed by the following:

1) for ea
h t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x
p

2

(t) ∈ X

2

(t) su
h that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
i

p

2

(t∗) ∈X

2

(t∗) su
h that

(t∗,x
∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator fun
tion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by

Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),

Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =

[

∂
∂x
[

Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]

−B(t∗)

]

P

2

(t∗), (19)

is basis invertible on [x1
p

2

(t∗),x
2

p

2

(t∗)].
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A system of one-dimensional proje
tors {Θ
k

}s
k=1, Θ

k

: Z→ Z, su
h that

Θ
i

Θ
j

= δ
ij

Θ
i

(δ
ij

is the Krone
ker delta), and E

Z

=
s

∑
k=1

Θ
k

is 
alled an additive

resolution of the identity in s-dimensional linear spa
e Z.

Let W, Z be s-dimensional linear spa
es, D⊂W and ŵ, ˆ̂
w ∈D.

An operator fun
tion Φ : D→ L(W,Z) is 
alled basis invertible on the interval

[ŵ, ˆ̂
w], if for any set {wk}s

k=1, w
k ∈ [ŵ, ˆ̂

w], and some additive resolution of the

identity {Θ
k

}s
k=1 in the spa
e Z the operator Λ =

s

∑
k=1

Θ
k

Φ(wk) ∈ L(W,Z) has an

inverse Λ−1 ∈ L(Z,W).

If we represent Φ(w) ∈ L(W,Z) as a matrix relative to some bases in W, Z:

Φ(w) =





Φ
11

(w) · · · Φ
1s

(w)
· · · · · · · · ·

Φ
s1

(w) · · · Φ
ss

(w)



 , then the operator Λ takes the form

Λ =





Φ
11

(w1) · · · Φ
1s

(w1)
· · · · · · · · ·

Φ
s1

(ws) · · · Φ
ss

(ws)



 .

[A.G. Rutkas, M.S. Filipkovska, Extension of solutions of one 
lass of

di�erential-algebrai
 equations, Journal of Computational and Applied Mathemati
s,

2013℄ (Russian)
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Theorem 3 (Lagrange stability). Let f ∈C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the pen
il λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×U




R

(0),R) and a fun
tion χ ∈ C([t+,∞)× (0,∞),R) su
h that:

3.1) V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;
3.2) for all t, x

p

1

(t), x
p

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds;

3.3) the di�erential inequality v

′ ≤ χ(t,v), t≥ t+, has no unbounded positive

solutions v(t) for t ∈ [t+,∞).

Let one of the following 
onditions be also satis�ed:

4.a) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞ (M is an arbitrary


onstant), the inequality

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤K

M

< ∞, where K
M

=K(M)

is some 
onstant, holds;

4.b) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞, the inequality
‖x

p

2

(t)‖ ≤K

M

< ∞, where K
M

=K(M) is some 
onstant, holds.

Then the equation (1) is Lagrange stable.
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Theorem 4 (Lagrange instability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×R
n,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the pen
il λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a region Ω ⊂ Rn

, 0 6∈ Ω, su
h that the 
omponent P

1

(t)x(t) of

ea
h existing solution x(t) with the initial point (t
0

,x
0

) ∈ L

t+ , where

P

1

(t
0

)x
0

∈ Ω, remains all the time in Ω;

4) there exist a positive de�nite fun
tion V ∈ C

1([t+,∞)×Ω,R) and a fun
tion

χ ∈ C([t+,∞)× (0,∞),R) su
h that:

4.1) for all t, x

p

1

(t), x
p

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) ∈ Ω, the

inequality V

′
(8)

(t,x
p

1

(t))≥ χ
(

t,V(t,x
p

1

(t))
)

holds,

4.2) the inequality v

′ ≥ χ(t,v), t≥ t+, has no positive solutions de�ned in the

future (i.e., de�ned for all t≥ t+).

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ su
h that P

1

(t
0

)x
0

∈ Ω, there

exists a unique solution of the IVP (1), (3) and this solution is Lagrange

unstable.
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Remarks on the form of the fun
tions χ

It is usually 
onvenient to 
hoose χ ∈ C([t+,∞)× (0,∞),R) in the form

χ(t,v) = k(t)U(v), (20)

where U ∈ C(0,∞), k ∈C([t+,∞),R). Then the theorem 
onditions 
an be 
hanged

as follows:

in Theorems 1, 2 on the global solvability, it su�
es to require that

∞
∫




dv

U(v)
= ∞ (
> 0 is some 
onstant) instead of the 
ondition 3.3);

in Theorem 3 on the Lagrange stability, it su�
es to require that

∞
∫




dv

U(v)
= ∞

and

∞
∫

t

0

k(t)dt< ∞ (t

0

≥ t+ is some number) instead of the 
ondition 3.3);

in Theorem 4 on the Lagrange instability, it su�
es to require that

∞
∫




dv

U(v)
< ∞ and

∞
∫

t

0

k(t)dt= ∞ instead of the 
ondition 4.2).

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai


equations, boundedness and stability of their solutions. I, Di�erential Equations, 2021℄

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai


equations, boundedness and stability of their solutions. II, Di�erential Equations, 2021℄
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Theorem 5 (uniform dissipativity (ultimate boundedness)). Let

f ∈ C([t+,∞)×Rn,Rn), ∂
∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)),

the pen
il λA(t)+B(t) satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the

requirements 1), 2) of Theorem 1 or 2 be ful�lled, and

3) there exist a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×U




R

(0),R) and fun
tions U

j

∈ C([0,∞)), j= 0,1,2, su
h that

U

0

(r) is non-de
reasing and U

0

(r)→+∞ as r→+∞, U
1

(r) is in
reasing,

U

2

(r)> 0 for r> 0, and for all t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t), x
p

2

(t) ∈ X

2

(t) su
h

that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R the 
ondition

U

0

(‖x
p

1

(t)‖)≤V(t,x
p

1

(t)) ≤U

1

(‖x
p

1

(t)‖) and one of the following inequalities

hold:

3.a) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

‖x
p

1

(t)‖
)

;

3.b) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

(H(t)x
p

1

(t),x
p

1

(t))
)

, where H ∈ C([t+,∞),L(Rn)) is

some self-adjoint positive de�nite operator fun
tion su
h that sup
t∈[t+,∞)

‖H(t)‖< ∞;

3.ñ) V

′
(8)

(t,x
p

1

(t))≤−CV(t,x
p

1

(t)), where C> 0 is some 
onstant;

4) there exist a 
onstant 
> 0 and a number T> t+ su
h that

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤ 
‖x
p

1

(t)‖ for all

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

T

.

Then the DAE (1) is uniformly ultimately bounded (uniformly dissipative).
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Remarks on the form of the fun
tions V

It is often 
onvenient to 
hoose the positive de�nite s
alar fun
tion V(t,z) in
the form

V(t,z) = (H(t)z,z), (21)

where H ∈ C

1([t+,∞),L(Rn)) is a self-adjoint positive de�nite operator fun
tion.

The fun
tion V(t,z) (21) satis�es the 
onditions (ex
ept for the 
onditions on the

derivative of the fun
tion along the traje
tories of (8)) of Theorems 1�4 on the

global solvability, the Lagrange stability and the Lagrange instability, and if

additionally sup
t∈[t+,∞)

‖H(t)‖< ∞, then the fun
tion (21) also satis�es the 
onditions

of Theorem 5 on the dissipativity.

[Filipkovska (Filipkovskaya) M. S. Global boundedness and stability of solutions of

nonautonomous degenerate di�erential equations, Pro
eedings of the Institute of

Mathemati
s and Me
hani
s, National A
ademy of S
ien
es of Azerbaijan, 2020℄
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It is known that the dynami
s of ele
tri
al 
ir
uits is modeled using systems of

di�erential and algebrai
 equations, whi
h in a ve
tor form have the form of

di�erential-algebrai
 equations. Generally, a DAE des
ribing the dynami
s of an

ele
tri
al 
ir
uit 
annot be redu
ed to a purely di�erential equation, i.e., to an

expli
it ODE.

A simple ele
tri
al 
ir
uit with nonlinear and time-varying elements

Consider the ele
tri
al 
ir
uit with a time-varying indu
tan
e L(t), time-varying

linear resistan
es r(t), r
L

(t) and nonlinear resistan
es ϕ
L

(I
L

), ϕ(Iϕ), whose
dynami
s is des
ribed by the system of equations

d

dt

[L(t)x
1

(t)]+ r

L

(t)x
1

(t)−x

2

(t) =−ϕ
L

(x
1

(t)), (22)

x

1

(t)+x

3

(t) = I(t), (23)

x

2

(t)− r(t)x
3

(t) =U(t)+ϕ(x
3

(t)), (24)

where I(t) is a given (input) 
urrent, U(t) is a given (input) voltage, x

1

(t) = I

L

(t)
and x

3

(t) = Iϕ (t) are unknown 
urrents, and x

2

(t) =U

L

(t) is an unknown

voltage. The remaining 
urrents and voltages in the 
ir
uit are uniquely expressed

in terms of I(t), I
L

(t), Iϕ(t), U(t) and UL

(t).
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The ve
tor form of the system (22)�(24) is the time-varying semilinear DAE (1):

d

dt

[A(t)x]+B(t)x= f(t,x),

where x= (x
1

,x
2

,x
3

)T = (I
L

,U
L

, Iϕ)
T ∈R3

,

A(t)=





L(t) 0 0

0 0 0

0 0 0



,B(t)=





r

L

(t) −1 0

1 0 1

0 1 −r(t)



, f(t,x)=





−ϕ
L

(x
1

)
I(t)

U(t)+ϕ(x
3

)



. (25)

The initial 
ondition (3): x(t
0

) = x

0

, x

0

= (I
L

(t
0

),U
L

(t
0

),Iϕ(t0))
T

.

The proje
tion matri
es P

i

(t), Q
i

(t) have the form P

1

(t) =





1 0 0

−r(t) 0 0

−1 0 0





,

P

2

(t) =





0 0 0

r(t) 1 0

1 0 1





, Q

1

(t) =





1 r(t) 1

0 0 0

0 0 0





, Q

2

(t) =





0 −r(t) −1
0 1 0

0 0 1





.

The ve
tor x has the proje
tions x

p

1

(t) = P

1

(t)x= (x
1

,−r(t)x
1

,−x
1

)T,
x

p

2

(t) = P

2

(t)x= (0,r(t)x
1

+x

2

,x
1

+x

3

)T.
Denote a= x

1

, b(t) = r(t)x
1

+x

2

, 
= x

1

+x

3

, then x

p

1

(t) = a(1,− r(t),−1)T,
x

p

2

(t) = (0,b(t),
)T.
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By Theorem 1 as well as by Theorem 2, for ea
h initial point

(t
0

,x
0

) ∈ [t+,∞)×R3

satisfying the algebrai
 equations (23), (24) (i.e.,

(t
0

,x
0

) ∈ L

t+), there exists a unique global solution x(t) of the equation (1)

satisfying the IVP (1), (3) if L,r,r
L

∈C

1([t+,∞),R), I,U ∈ C([t+,∞),R),
ϕ ,ϕ

L

∈ C

1(R) and the following requirements are ful�lled:

L(t)≥ L

0

> 0 and r(t) 6= 0 for all t ∈ [t+,∞);
λL(t)+ r

L

(t)+ r(t) 6= 0 for su�
iently large |λ | su
h that |λ | ≥ L

−1
0

and all

t ∈ [t+,∞);
there exists a number R> 0 su
h that the inequality

[ϕ
L

(x
1

)−ϕ(I(t)−x

1

)− r(t)I(t)−U(t)]x
1

+[L′(t)/2+ r

L

(t)+ r(t)]x2
1

≥ 0

holds for all t ∈ [t+,∞), ‖x
p

1

(t)‖= |x
1

|‖(1,− r(t),−1)T‖ ≥ R.

If, additionally,

∞
∫

t

0

k(t)dt< ∞, where k(t) = |r′(t)/r(t)|, and the fun
tions I

2

(t),

U

1

(t), r(t) are bounded for all t ∈ [t+,∞), i.e., sup
t∈[t+,∞)

|I
2

(t)|< ∞,

sup
t∈[t+,∞)

|U
1

(t)|< ∞, sup
t∈[t+,∞)

|r(t)|< ∞, then the DAE (1) (with A(t), B(t), f(t,x)

of the form (25)) is Lagrange stable by Theorem 3.
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The mathemati
al model of a time-varying nonlinear ele
tri
al 
ir
uit

Fig. 17. The diagram of the ele
tri
 
ir
uit

A 
urrent I(t), a voltage U(t), resistan
es R
1

(t), R
2

(t), ϕ
1

(I
1

), ϕ
2

(I
2

), ϕ
3

(I
31

),
a 
ondu
tan
e G

3

(t), an indu
tan
e L(t) and a 
apa
itan
e C are given.

A transient pro
ess in the ele
tri
al 
ir
uit (Fig. 17) is des
ribed by the system

d

dt

[L(t)I
1

(t)]+R

1

(t)I
1

(t) =U(t)−ϕ
1

(I
1

(t))−ϕ
3

(I
31

(t)), (26)

I

1

(t)− I

31

(t)− I

2

(t) = I(t)+G

3

(t)ϕ
3

(I
31

(t)), (27)

R

2

(t)I
2

(t) = ϕ
3

(I
31

(t))−ϕ
2

(I
2

(t)), (28)
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Denote x

1

(t) = I

1

(t), x
2

(t) = I

31

(t) and x
3

(t) = I

2

(t).

The ve
tor form of the system (26)�(28) is the time-varying semilinear DAE (1):

d

dt

[A(t)x]+B(t)x= f(t,x),

where

x=





x

1

x

2

x

3



 ,A(t) =





L(t) 0 0

0 0 0

0 0 0



 ,B(t)=





R

1

(t) 0 0

1 −1 −1
0 0 R

2

(t)



 ,

f(t,x) =





U(t)−ϕ
1

(x
1

)−ϕ
3

(x
2

)
I(t)+G

3

(t)ϕ
3

(x
2

)
ϕ
3

(x
2

)−ϕ
2

(x
3

)



 .

The initial 
ondition (3): x(t
0

) = x

0

, x

0

= (I
1

(t
0

), I
31

(t
0

), I
2

(t
0

))T.

It is assumed that the fun
tions L(t), R
1

(t), R
2

(t) and G
3

(t) are positive for all
t ∈ [t+,∞).

The proje
tions x

p

j

(t) = P

j

(t)x ∈ X

j

(t) of a ve
tor x have the form

x

p

1

(t) = x

p

1

= (x
1

,x
1

,0)T, x
p

2

(t) = x

p

2

= (0,x
2

−x

1

,x
3

)T.

Denote z= x

1

, u= x

2

−x

1

, w= x

3

, then x

p

1

= (z,z,0)T, x

p

2

= (0,u,w)T.
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Using the introdu
ed notation, the equations (27)�(28) 
an be rewritten as

w =−I(t)−u−G

3

(t)ϕ
3

(u+ z), (29)

u= ψ(t,z,u), where ψ(t,z,u)=−I(t)−
(

G

3

(t)+R

−1
2

(t)
)

ϕ
3

(u+ z)+

+R

−1
2

(t)ϕ
2

(

− I(t)−u−G

3

(t)ϕ
3

(u+ z)
)

. (30)

By Theorem 1 for ea
h initial point (t
0

,x
0

) ∈ [t+,∞)×R3

satisfying the

algebrai
 equations (i.e., (t
0

,x
0

) ∈ L

t+)

x

1

−x

2

−x

3

= I(t)+G

3

(t)ϕ
3

(x
2

), (31)

R

2

(t)x
3

= ϕ
3

(x
2

)−ϕ
2

(x
3

), (32)

there exists a unique global solution x(t) of the IVP (1), (3) if

L,R
1

,R
2

∈ C

1([t+,∞),R), I,U,G
3

∈C([t+,∞),R), ϕ
j

∈ C

1(R), j= 1,2,3;
L(t)> 0, R

1

(t)> 0, R

2

(t)> 0, G

3

(t)> 0 for all t ∈ [t+,∞);
1) for ea
h t ∈ [t+,∞) and ea
h z ∈R there exists a unique u ∈ R satisfying the

equality (30);

2) for ea
h t∗ ∈ [t+,∞), z∗ ∈ R and ea
h u∗,w∗ ∈ R satisfying the equalities

(29), (30), one has the relation

ϕ ′
3

(u∗+ z∗)+
[

ϕ ′
2

(w∗)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u∗+ z∗)
]

6= 0; (33)

3) there exists R> 0 su
h that −
(

ϕ
1

(z)+ϕ
3

(u+ z)
)

z≤ R

1

(t)z2 for all

t ∈ [t+,∞), u,w ∈R, z ∈ R, |z| ≥ R, satisfying the equalities (29), (30).
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A similar assertion takes pla
e a

ording to Theorem 2, if the above 
onditions

are satis�ed with the following 
hanges: the 
ondition 1) does not 
ontain the

requirement that u be unique; the 
ondition 2) is repla
ed by the following:

2*) for ea
h t∗ ∈ [t+,∞), z∗ ∈R and ea
h u

j

∗,w
j

∗ ∈ R, j= 1,2, satisfying the

equalities (29), (30), the relation

ϕ ′
3

(u
2

+ z∗)+
[

ϕ ′
2

(w
2

)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u
1

+ z∗)
]

6= 0

holds for any u

k

∈ [u1∗ ,u
2

∗], wk

∈ [w1

∗ ,w
2

∗ ], k= 1,2.

If, additionally,

∞
∫

t

0

k(t)dt< ∞, where k(t) = 2L

−1(t)(|L′(t|+ |U(t)|), the

fun
tions I(t), R−1
2

(t), G
3

(t) are bounded for all t ∈ [t+,∞), and ϕ
3

(x
2

), ϕ
2

(x
3

)
are bounded for x

2

∈ R and x

3

∈R respe
tively, then the DAE (1) is Lagrange

stable by Theorem 3.
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The parti
ular 
ases.

The the 
onditions 1), 2) and 2*) are satis�ed for the fun
tions ϕ
2

, ϕ
3

whi
h

are in
reasing (nonde
reasing) on R, for example,

ϕ
2

(y) = ay

2k−1, ϕ
3

(y) = by

2m−1, ϕ
1

(y) = 
y

2l−1, a,b,
> 0, k,m, l ∈ N, (34)

and if b is su�
iently small, m≤ l, sup
t∈[t+,∞)

|I(t)|< ∞ and R

2

(t)≥K

0

= 
onst> 0,

t ∈ [t+,∞), then the 
ondition 3) is also ful�lled.

Note that in this 
ase the mapping ψ(t,z,u) is not globally 
ontra
tive with
respe
t to u. Obviously, the 
ondition 1) is satis�ed, if ψ(t,z,u) is globally

ontra
tive with respe
t to u for any t, z, i.e., there exists a 
onstant α < 1 su
h

that

∣

∣ψ(t,z,u
1

)−ψ(t,z,u
2

)
∣

∣≤ α|u
1

−u

2

| for any t ∈ [t+,∞), z ∈ R, u
1

,u
2

∈R.
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Thank you for your attention!
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