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Classical Markov inequality

Markov's inequality

‖P ′‖[a,b] ≤
2

b − a
(degP)2‖P‖[a,b],

where ‖f ‖K := supx∈K |f (x)|.

Local form of the classical Markov inequality

|P ′(x)| ≤ 1

ε
(degP)2‖P‖[x−ε,x+ε], x ∈ R, ε > 0.
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A generalization to several variables of the classical Markov

inequality

Markov type inequality

We say that a compact set ∅ 6= E ⊂ Rm satis�es Markov type inequality
(or: is a Markov set) if there exist κ,C > 0 such that, for each polynomial
P ∈ P(Rm) and each α ∈ Zm

+,

‖DαP‖E ≤ (C (degP)κ)|α| ‖P‖E , (1)

where

DαP =
∂|α|P

∂xα11 . . . ∂xαm
m

and |α| = α1 + · · ·+ αm.

Clearly, by iteration, it is enough to consider in the above de�nition
multi-indices α with |α| = 1.

Z+ := {0, 1, 2, . . .}.
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A generalization to several variables of a local form of the

classical Markov inequality

Local Markov inequality of exponent σ

We say that a compact set ∅ 6= E ⊂ Rm admits a local Markov inequality
of exponent σ ≥ 1 if there are constants C , ρ > 0 such that for all
polynomials P , x ∈ E and 0 < ε ≤ 1,

|DαP(x)| ≤ (Cε−σ)|α|(degP)ρ|α|‖P‖E∩B(x ,ε) (2)

where B(x , ε) denotes the closed ball of radius ε centered at x .

For E ⊂ Rm, the choice ε = 1 in the above form of local Markov inequality
immediately yields

‖DαP‖E ≤ (C (degP)ρ)|α| ‖P‖E ,

i.e. Markov type inequality (1).
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Equivalence of Markov and local Markov inequalities

Theorem (L.P. Bos and P.D Milman, 1995)

Local Markov inequality (2) is equivalent to Markov inequality (1).

The above theorem is a consequence of Theorem E together with Theorem
B of the following paper

L.P. Bos, P.D. Milman, Sobolev-Gagliardo-Nirenberg and Markov type

inequalities on subanalytic domains, Geometric and Functional Analysis 5
(1995), 853�923.



Tangential Markov inequalities

L.P. Bos, N. Levenberg, P. Milman, B.A. Taylor

Tangential Markov inequalities characterize algebraic submanifolds of RN ,
Indiana Univ. Math. J. 44 (1995) 115�138.



Some notations

Certain subsets of P(RN)

Having �xed the dimension N, we de�ne for a natural number m < N and
d = (d1, . . . , dm) ∈ Zm

+

Pm,d(RN) =

{
P ∈ P(RN) : P(x) =

d1∑
α1=0

. . .

dm∑
αm=0

pα1,...,αm(πm(x))x
α1
1
· · · xαm

m

}
.

Here πm is the function on RN de�ned by

πm((x1, . . . , xN)) = (xm+1, . . . , xN).

Pm,d−determining set

We say that E ⊂ RN is a Pm,d−determining set if for each P ∈ Pm,d(RN),
P|E = 0 implies DαP|E = 0, for all α ∈ ZN

+.
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Certain algebraic varieties

We will consider algebraic sets V = Vm,d for which there exist a natural
number m < N and d = (d1, . . . , dm) ∈ Zm

+ such that

∀P∈P(RN) ∃P̂∈Pm,d(RN) P|Vm,d
= P̂|Vm,d

, (3)

and V is a Pm,d−determining set.

Example

V2,(1,1) = {(t, s, x , y) ∈ R4 : t2 = 1− x4, s2 = 1− y2}.
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Inspired by the considerations that have been made (see [BK] and [BCCK])
we deal with the following de�nition

Markov set and Markov inequality on Vm,d

Let Vm,d be given as before. Suppose that Vm,d is nonempty. A compact
set ∅ 6= E ⊂ Vm,d is said to be a Vm,d-Markov set if there exist M, r > 0
such that

‖DαP‖E ≤ M |α|(degP)r |α|‖P‖E , P ∈ Pm,d(RN), α ∈ ZN
+. (4)

This inequality is called a Vm,d-Markov inequality for E .

[BK] M. Baran, A. Kowalska, Sets with the Bernstein and generalized

Markov properties, Ann. Polon. Math. 111 (3) (2014) 259�270.

[BCCK] L. Biaªas-Cie», J.P. Calvi, A. Kowalska, Polynomial inequalities on

certain algebraic hypersurfaces, J. Math. Anal. Appl. 459 (2) (2018)
822�838.



Markov set on Vm,d: example

V2,(1,1) = {(t, s, x , y) ∈ R4 : t2 = 1− x4, s2 = 1− y 2}
The compact set E = {(t, s, x , y) ∈ V2,(1,1) : (x , y) ∈ [0, 1]2} is a
V2,(1,1)-Markov.

Further examples of Vm,d-Markov sets can be given using the following
lemma

Lemma

Let ∅ 6= E be a compact subset of Vm,d. If πm(E ) is a Markov set (with A
and η) and there exist B, λ > 0 (depending only on E ,m and d) such that
for every polynomial

P =
d1∑

α1=0

. . .
dm∑

αm=0

pα1,...,αm(πm(x))x
α1
1 · · · xαm

m ∈ Pm,d(RN)

‖pα1,...,αm‖πm(E) ≤ B(degP)λ‖P‖E , (α1, . . . , αm) ∈ Zm,d
+ ,

then E is a Vm,d-Markov set.
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Local Markov inequality on Vm,d

Let ∅ 6= E be a compact subset of Vm,d. For a �xed a ∈ E and ε > 0 let

Lm(a, ε) =
{
x ∈ Vm,d : πm(x) ∈ B(πm(a), ε)

}
,

where B(πm(a), ε) denotes the closed ball ((N −m)-dimensional) of radius
ε centered at πm(a).

Local Vm,d-Markov inequality

We say that E admits a local Vm,d-Markov inequality of exponent σ ≥ 1 if
there are constants C , ρ > 0 (depending only on E ) such that

|DαP(a)| ≤ (Cε−σ)|α|(degP)ρ|α| ‖P‖E∩Lm(a,ε) (5)

for every a ∈ E , 0 < ε ≤ 1, P ∈ Pm,d(RN) and α ∈ ZN
+.
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Equivalence of Vm,d-Markov and local Vm,d-Markov

inequalities

Theorem

Local Vm,d-Markov inequality (5) is equivalent to Vm,d-Markov inequality
(4).

The idea of a proof comes from the mentioned paper of Bos and Milman.

This work was supported by the Polish National Science Centre (NCN)
Opus grant no. 2017/25/B/ST1/00906.
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