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Abstract

• We consider the Cauchy problem in the Euclidean space RN 3 x for the
parabolic equation ∂tu(x , t) = Au(x , t), where the operator A (e.g. the
Laplacian) is assumed, among other things, to be a generator of a C0

semigroup in a weighted Lp-space Lpw (RN) with 1 ≤ p <∞ and a fast
growing weight w .

• We show: there is a Schauder basis (en)∞n=1 in Lpw (RN) with the
following property: given an arbitrary positive integer m there exists
nm > 0 such that, if the initial data f belongs to the closed linear span of
en with n ≥ nm, then the decay rate of the solution of the problem is at
least t−m for large times t. — In other words, the Banach space of the
initial data can be split into two components, where the data in the
infinite-dimensional component leads to decay with any pre-determined
speed t−m, and the exceptional component is finite dimensional.

• Three different proofs I–III with somewhat different assumptions on A.
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Main Problem under consideration

Given an integrable function f ∈ L1(RN) in the Euclidean space RN ,
N ∈ N = {1, 2, . . .}, we study the following parabolic Cauchy problem
(”Main Problem”) for an unknown function u on RN × [0,∞) 3 (x , t),

∂tu(x , t) = Au(x , t) for x ∈ RN , t > 0

u(x , 0) = f (x) for x ∈ RN ,

where for example −A can be a strongly elliptic partial differential
operator of nth order with even n ∈ N: −Ag(x) =

∑
|α|≤n aα(x)Dαg(x),

where aα ∈ L∞(RN).
We assume that A is a generator of a C0-semigroup eAt in L1(RN), with
an integral kernel K : RN × RN × [0,∞)→ C,

eAt f (x) =

∫
RN

K (x , y , t)f (y)dy , x ∈ RN , (1)

and that the Main Problem has a unique classical solution which
coincides with (1). More assumptions on K will be posed soon.
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Some more notions.

Given M ∈ N, we denote by BM(RN) the space of functions h : RN → R
such that all partial derivatives up to order M exist and are continuous
and bounded. Same for M =∞.

Let X denote a Banach space over the scalar field K (either R or C). If
X is separable, we recall that a sequence (en)∞n=1 ⊂ X is a Schauder basis
(briefly: basis), if every element f ∈ X can be presented as a convergent
sum f =

∑∞
n=1 fnen where the numbers fn ∈ K are unique for f . An

orthonormal basis of a separable Hilbert space is an example.

Recall: if N = 1, A = ∂2x and f ∈ L1(R) with
∫∞
−∞ f (y)dy = 0, then we

have

‖et∂
2
x f ‖∞ ≤

C

t
instead of the typical ‖et∂

2
x g‖∞ ≤

C√
t
, g ∈ L1(R).
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I. Approach via Taylor expansion of the kernel K .

We fix M ∈ N or M =∞, and assume that the semigroup generated by
the operator A has an M times continuously differentiable kernel of the
form

K (x , y , t) =
d

tb
h
(
(x − y)t−a

)
for some h ∈ BM(RN), constants a, d > 0, b ≥ 0, x , y ∈ RN , t > 0.
Clearly, the Gaussian heat kernel of the Laplacian A = ∆ corresponds to
the case a = 1/2, b = N/2, M =∞. More generally, we also consider
kernels

K (x , y , t) =
J∑

j=1

Uj(x , t)vj(y)hj
(
(x − y)t−aj

)
, x ∈ RN , t > 0,

where J ∈ N and, for all j , the numbers aj > 0 are constants, and vj is a
bounded and continuous function on RN , and hj ∈ BM(RN); finally, the
measurable functions Uj are assumed to satisfy for some constants
Cj > 0, bj ≥ 0,

U(·, t) ∈ L∞(RN) for t > 0, |Uj(x , t)| ≤ Cj

tbj
for x ∈ RN , t ≥ 1.
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I: Taylor expansion of K : weighted Lp-space for initial data

Let 1 ≤ p <∞. We need to fix a parameter L ∈ (0,∞] such that

L > Mp + N(p − 1), if M <∞

and L =∞, if M =∞. Then, let wL : RN → R+ be a continuous weight
function satisfying the growth condition

sup
x∈RN

1

wL(x)
(1 + |x |)m <∞ ∀m ∈ {1, . . . , L}

( ∀m ∈ N, if L =∞).

We will use the Banach space LpwL
(RN) with norm

‖f ‖pp,wL
:=

∫
RN

|f (x)|pwL(x)dx .

In particular, the initial data and the solution of the parabolic problem
will be in this space for all times t > 0, and the Schauder basis will be
constructed in this space.
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I: Taylor expansion of K : result

Theorem

1◦. M =∞. There exists a basis (en)∞n=1 of LpwL
(RN) and an increasing

sequence (nm)∞m=1 ⊂ N as follows: given m ∈ N and initial data

f =
∞∑
n=1

fnen ∈ LpwL
(RN) with fn = 0 for all n = 1, . . . , nm,

the solution of the Main Problem has the fast decay property

‖etAf ‖∞ ≤
Cm,p

tm
‖f ‖p,wL

for all t ≥ 1.

2◦. M <∞. There exists a basis (en)∞n=1 of LpwL
(RN) and a number

nM ∈ N such that

‖etAf ‖∞ ≤
CM,p

ta
‖f ‖p,wL

for all t ≥ 1,

where a = min{Maj + bj : j = 1, . . . , J} for all f ∈ sp{en : n ≥ nM}.
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I: Taylor expansion of K : on the proof

The proof uses the following abstract result of [1].

Theorem

Let X be a separable Banach space, let x∗m ∈ X ∗ for all m ∈ N. Then,
there exists an increasing sequence (nm)∞m=1 ⊂ N and a basis (en)∞n=1 of
X such that

x∗m(en) = 0 for all n ≥ nm.

(The basis can actually be found as a small ”perturbation” of any given

”shrinking” basis of X (any basis, if X is reflexive). )

Consider M =∞. We take X = LpwL
(RN) and for x∗m ∈ X ∗ the

functionals (which are bounded due to assumptions)

Φkm(f ) :=

∫
RN

km(y)f (y)dy , m ∈ N, f ∈ X ,

where we define the functions km(y) = km(α)(y) := yα, and m(α) ∈ N is
a numbering of the multi-indices α such that m(α) ≤ m(β), if α ≤ β.
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I: Taylor expansion of K : on the proof

Recall that the semigroup kernel is (in the simple case)

K (x , y , t) =
d

tb
h
(
(x − y)t−a

)
=:

d

tb
hx,t(y)

where h ∈ BM(RN), a, d > 0, b ≥ 0.
Given arbitrary m ∈ N we make the Taylor expansion of the kernel

hx,t(y) =
∑
|α|<m

1

α!
Dαhx,t(0)yα + R(x , y , t),

where |R(x , y , t)| ≤ Ct−ma. If f =
∑

n>nm
fnen ∈ X ∈ LpwL

(RN), then in
the expression

eAt f (x) =

∫
RN

K (x , y , t)f (y)dy

=
∑

|α|<m,n≥nm

d

α!tb
fnD

αhx,t(0)Φkm(α)
(en) +

d

tb

∫
RN

R(x , y , t)f (y)dy

all but the last term vanish. The result follows from the estimate for R.
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II. Approach using Fourier-analysis: assumptions

Another approach using the Fourier-transform yields a slightly different
result. We fix an even M ∈ N such that M − N ≥ 2, or M =∞
We assume that the semigroup kernel is of convolution type, K (x , y , t) =

K̃ (x − y , t), and that in addition the function x 7→ Dα
x K̃ (x , t) belongs to

L2(RN) for every α ∈ NN
0 with |α| ≤ M/2 and t > 0, and that there

holds for all t ≥ 1 the estimate

‖DαK̃ (·, t)‖2 ≤
C

ta|α|+b

for some constants a > 0 and b ∈ R and for all multi-indices α with
|α| ≤ M/2− N/2. Also, the map t 7→ K̃ (·, t) should be continuous as a
map from (0,∞) to L2(RN).

We again consider the continuous weight function wM : RN → R+ with

sup
x∈RN

1

wM(x)
(1 + |x |)m <∞ ∀m ∈ {1, . . . ,M}

( ∀m ∈ N, if M =∞) and the corresponding Hilbert space L2wM
(RN).
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II. Approach using Fourier-analysis: the result

Theorem

Let the weight wM and the kernel K̃ be as described above.
1◦. M =∞. There exists a basis (en)∞n=1 of L2wM

(RN) and an increasing
sequence (nm)∞m=1 as follows: given m ∈ N, then for any initial data

f =
∞∑

n=nm

fnen ∈ L2wM
(RN),

the solution of the Main Problem has the bound

‖etAf ‖∞ ≤
Cm

tm
‖f ‖2,wM

for all t ≥ 1.

2◦. M <∞. There exists a basis (en)∞n=1 of L2wM
(RN) and nM ∈ N with

‖etAf ‖∞ ≤
CM

tµa+b
‖f ‖2,wM

for all t ≥ 1,

for all f ∈ sp{en : n ≥ nM}. Here µ = [M/2− N/2].
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II. Approach using Fourier-analysis: on the proof

We again use the same linear functionals on the space L2wM
(RN),

f 7→
∫
RN

f (y)yαdy .

Vanishing of these implies properties for the Fourier-transform of f ,
which together with the properties of the Fourier transform of the kernel
allows us derive the needed estimates for the theorem.
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III. Approach using repeated integration functionals.

Yet another approach allows us to relax the specific assumptions on the
form of the x- and y -dependence of the semigroup kernel K , however, the
proof only works in dimension N = 1 for this section. We assume that
there exist constants a > 0 and b ∈ R such that, for some M ∈ R∪ {∞},

|∂my K (x , y , t)| ≤ C

(t + 1)am+b

for all m ≤ M (for all m ∈ N, if M =∞) and all x , y ∈ R, t > 0.
The space of initial is LpwQ

(R), where 1 ≤ p <∞ and Q is fixed such that

Q > p(M + 1) + 1,

if M <∞, and Q =∞, if M =∞. The weight wQ : RN → R+ is as
before.
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III. Approach using repeated integration functionals.

Theorem

1◦. M =∞. There exists a basis (en)∞n=1 of LpwQ
(R) and an increasing

sequence (nm)∞m=1 as follows: given m ∈ N, then for any initial data

f =
∞∑

n=nm

fnen ∈ LpwQ
(R),

the solution of the Main Problem has the estimate

‖etAf ‖∞ ≤
Cm

tm
‖f ‖p,wQ

for all t ≥ 1.

2◦. M <∞. There exists a basis (en)∞n=1 of LpwQ
(R) and a number

nM ∈ N such that

‖etAf ‖∞ ≤
CM

tMa+b
‖f ‖p,wQ

for all t ≥ 1,

for all f ∈ sp{en : n ≥ nM}.
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FINALE:

Thank you for your attention!
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