4-lateral matroids induced by 3-configurations (preprint)

Michael Raney

Georgetown University

June 22, 2021

Michael Raney (Georgetown University) 4-lateral matroids induced by 3-configurations

June 22, 2021 1 / 17

Let $C = (\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of *n* points and a set \mathcal{L} of *n* blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block.

Let $C = (\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of *n* points and a set \mathcal{L} of *n* blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block. We say that $\mathcal{M}_{tri}(C) = (E, \mathcal{B})$ is a *trilateral matroid*, or *triangular matroid*, or *3-matroid*, which is *induced* by C if the set of non-trilaterals in C forms a set of bases \mathcal{B} for a rank-3 matroid. Let $C = (\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of *n* points and a set \mathcal{L} of *n* blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block. We say that $\mathcal{M}_{tri}(C) = (E, \mathcal{B})$ is a *trilateral matroid*, or *triangular matroid*, or *3-matroid*, which is *induced* by C if the set of non-trilaterals in

 ${\mathcal C}$ forms a set of bases ${\mathcal B}$ for a rank-3 matroid.

This means that \mathcal{B} must satisfy the *basis extension property*: If $X, Y, \in \mathcal{B}$ and $x \in X \setminus Y$, then there exists $y \in Y \setminus X$ such that $X - x \cup y \in \mathcal{B}$.

Let $C = (\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of *n* points and a set \mathcal{L} of *n* blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block.

We say that $\mathcal{M}_{tri}(\mathcal{C}) = (E, \mathcal{B})$ is a *trilateral matroid*, or *triangular matroid*, or *3-matroid*, which is *induced* by \mathcal{C} if the set of non-trilaterals in \mathcal{C} forms a set of bases \mathcal{B} for a rank-3 matroid.

This means that \mathcal{B} must satisfy the *basis extension property*: If $X, Y, \in \mathcal{B}$ and $x \in X \setminus Y$, then there exists $y \in Y \setminus X$ such that $X - x \cup y \in \mathcal{B}$.

We may use either $E = \mathcal{P}$ or $E = \mathcal{L}$ as the ground set of the matroid, since there is a one-to-one correspondence between the set of point triples and the set of line triples. Later, when we enlarge our scope to consider 4-lateral matroids induced by 3-configurations, we will only use $E = \mathcal{L}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

The primary result (Raney, 18) is that C induces a 3-lateral matroid if and only if C doesn't contain either a near-complete quadrangle or a near-pencil.

The primary result (Raney, 18) is that C induces a 3-lateral matroid if and only if C doesn't contain either a near-complete quadrangle or a near-pencil.

The primary result (Raney, 18) is that C induces a 3-lateral matroid if and only if C doesn't contain either a near-complete quadrangle or a near-pencil.

The enumeration of the 3-configurations inducing 3-lateral matroids was conducted by Raney for $7 \le n \le 14$, and then extended by Al-Azemi and Raney (21) to $15 \le n \le 18$, while also correcting a computational error in the former paper.

In the Fano 7₃-configuration every point triple $\{p_1, p_2, p_3\}$ gives a trilateral, so $\mathcal{B} = \emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.

In the Fano 7₃-configuration every point triple $\{p_1, p_2, p_3\}$ gives a trilateral, so $\mathcal{B} = \emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.

Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10_3 -configuration.

In the Fano 7₃-configuration every point triple $\{p_1, p_2, p_3\}$ gives a trilateral, so $\mathcal{B} = \emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.

- Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10_3 -configuration.
- The configuration has 5 complete quadrangles, each of which contains four triangles, and so 20 trilaterals are present.

In the Fano 7₃-configuration every point triple $\{p_1, p_2, p_3\}$ gives a trilateral, so $\mathcal{B} = \emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.

Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10_3 -configuration.

The configuration has 5 complete quadrangles, each of which contains four triangles, and so 20 trilaterals are present.

Each complete quadrangle may be described using a line with four collinear points as we construct a geometric representation of the 3-lateral matroid. The end result is that $\mathcal{M}_{tri}(Desargues)$ may be viewed as a star.

In the Fano 7₃-configuration every point triple $\{p_1, p_2, p_3\}$ gives a trilateral, so $\mathcal{B} = \emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.

Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10_3 -configuration.

The configuration has 5 complete quadrangles, each of which contains four triangles, and so 20 trilaterals are present.

Each complete quadrangle may be described using a line with four collinear points as we construct a geometric representation of the 3-lateral matroid. The end result is that $\mathcal{M}_{tri}(Desargues)$ may be viewed as a star.

Another result is that if each point of C is involved in three triangles, with no pair of points sharing more than one triangle, then C induces a 3-lateral matroid $\mathcal{M}_{tri}(C)$ which is isomorphic to C.

- Another result is that if each point of C is involved in three triangles, with no pair of points sharing more than one triangle, then C induces a 3-lateral matroid $\mathcal{M}_{tri}(C)$ which is isomorphic to C.
- For instance, the Coxeter 12_3 -configuration satisfies this condition, as does the cyclic configuration Cyc(n, 4) for $n \ge 13$ having Golomb ruler 014.

- Another result is that if each point of C is involved in three triangles, with no pair of points sharing more than one triangle, then C induces a 3-lateral matroid $\mathcal{M}_{tri}(C)$ which is isomorphic to C.
- For instance, the Coxeter 12_3 -configuration satisfies this condition, as does the cyclic configuration Cyc(n, 4) for $n \ge 13$ having Golomb ruler 014.
- Finally, the Cremona-Richmond 15₃-configuration is the smallest 3-configuration which is trilateral-free. So the 3-lateral matroid it induces is the uniform matroid $U_{15,3}$.

We now turn our attention to 4-lateral matroids which are induced by n_3 -configurations.

We now turn our attention to 4-lateral matroids which are induced by n_3 -configurations.

Let $C = (\mathcal{P}, \mathcal{L})$ be a 3-configuration. We determine the conditions under which $\mathcal{M}_{quad} = (E, \mathcal{B})$ is a rank-4 matroid, where $E = \mathcal{L}$ and \mathcal{B} consists of the line quadruples $\{l_1, l_2, l_3, l_4\} \subseteq E$ which are not 4-laterals in C. We now turn our attention to 4-lateral matroids which are induced by n_3 -configurations.

Let $C = (\mathcal{P}, \mathcal{L})$ be a 3-configuration. We determine the conditions under which $\mathcal{M}_{quad} = (E, \mathcal{B})$ is a rank-4 matroid, where $E = \mathcal{L}$ and \mathcal{B} consists of the line quadruples $\{h_1, h_2, h_3, h_4\} \subseteq E$ which are not 4-laterals in C.

A fundamental obstruction is that no two 4-laterals may share exactly three lines. Why is this so?

Suppose $\{l_1, l_2, l_3, l_4\}$ and $\{l_1, l_2, l_4, l_5\}$ are 4-laterals which share the lines l_1, l_2 , and l_4 .

Suppose $\{l_1, l_2, l_3, l_4\}$ and $\{l_1, l_2, l_4, l_5\}$ are 4-laterals which share the lines l_1, l_2 , and l_4 .

Suppose $\{l_1, l_2, l_3, l_4\}$ and $\{l_1, l_2, l_4, l_5\}$ are 4-laterals which share the lines l_1, l_2 , and l_4 .

Let l_0 be any other line which does not form a 4-lateral with l_1, l_2 and l_4 . Set $X = \{l_0, l_1, l_2, l_4\}$ and $Y = \{l_1, l_2, l_3, l_5\}$ (Assume that Y is not a 4-lateral.)

Suppose $\{l_1, l_2, l_3, l_4\}$ and $\{l_1, l_2, l_4, l_5\}$ are 4-laterals which share the lines l_1, l_2 , and l_4 .

Let l_0 be any other line which does not form a 4-lateral with l_1 , l_2 and l_4 . Set $X = \{l_0, l_1, l_2, l_4\}$ and $Y = \{l_1, l_2, l_3, l_5\}$ (Assume that Y is not a 4-lateral.)

Then $X \setminus Y = \{l_0, l_4\}$. Take $l_0 \in X \setminus Y$. Then $X - l_0 = \{l_1, l_2, l_4\}$. Note $Y \setminus X = \{l_3, l_5\}$.

Suppose $\{l_1, l_2, l_3, l_4\}$ and $\{l_1, l_2, l_4, l_5\}$ are 4-laterals which share the lines l_1, l_2 , and l_4 .

Let l_0 be any other line which does not form a 4-lateral with l_1, l_2 and l_4 . Set $X = \{l_0, l_1, l_2, l_4\}$ and $Y = \{l_1, l_2, l_3, l_5\}$ (Assume that Y is not a 4-lateral.)

Then $X \setminus Y = \{l_0, l_4\}$. Take $l_0 \in X \setminus Y$. Then $X - l_0 = \{l_1, l_2, l_4\}$. Note $Y \setminus X = \{l_3, l_5\}$.

Both $X - I_0 \cup I_3 = \{I_1, I_2, I_3, I_4\}$ and $X - I_0 \cup I_5 = \{I_1, I_2, I_4, I_5\}$ are 4-laterals. Therefore the basis exchange property is violated.

Suppose $\{l_1, l_2, l_3, l_4\}$ and $\{l_1, l_2, l_4, l_5\}$ are 4-laterals which share the lines l_1, l_2 , and l_4 .

Let l_0 be any other line which does not form a 4-lateral with l_1 , l_2 and l_4 . Set $X = \{l_0, l_1, l_2, l_4\}$ and $Y = \{l_1, l_2, l_3, l_5\}$ (Assume that Y is not a 4-lateral.)

Then $X \setminus Y = \{l_0, l_4\}$. Take $l_0 \in X \setminus Y$. Then $X - l_0 = \{l_1, l_2, l_4\}$. Note $Y \setminus X = \{l_3, l_5\}$.

Both $X - I_0 \cup I_3 = \{I_1, I_2, I_3, I_4\}$ and $X - I_0 \cup I_5 = \{I_1, I_2, I_4, I_5\}$ are 4-laterals. Therefore the basis exchange property is violated.

So in a 3-configuration which induces a 4-lateral matroid, any two distinct 4-laterals may share at most two lines.

The Fano 7₃-configuration is the smallest 3-configuration which induces a 4-lateral matroid. We provide a realization of it with $\mathcal{P} = \{a, b, c, d, e, f, g\}$, as well as a combinatorial description.

The Fano 7₃-configuration is the smallest 3-configuration which induces a 4-lateral matroid. We provide a realization of it with $\mathcal{P} = \{a, b, c, d, e, f, g\}$, as well as a combinatorial description.

When one deletes any point and the three lines incident to it, one obtains a 4-lateral. It follows that the seven 4-laterals in the Fano configuration are of the form $\{k, k+1, k+2, k+4\}$, where $0 \le k \le 6$ and all of the numbers are given modulo 7. This 4-lateral shares two lines with the 4-lateral $\{k+1, k+2, k+3, k+5\}$ as well as two lines with the 4-lateral $\{k+3, k+4, k+5, k\}$.

When one deletes any point and the three lines incident to it, one obtains a 4-lateral. It follows that the seven 4-laterals in the Fano configuration are of the form $\{k, k + 1, k + 2, k + 4\}$, where $0 \le k \le 6$ and all of the numbers are given modulo 7. This 4-lateral shares two lines with the 4-lateral $\{k + 1, k + 2, k + 3, k + 5\}$ as well as two lines with the 4-lateral $\{k + 3, k + 4, k + 5, k\}$.

We provide a geometric representation of the rank-4 4-lateral matroid on the seven lines $\{1, 2, 3, 4, 5, 6, 7\}$. This representation has one 'twisted plane' $\{4, 5, 6, 1\}$. Another 'doily' representation follows using 'ovals.'

When one deletes any point and the three lines incident to it, one obtains a 4-lateral. It follows that the seven 4-laterals in the Fano configuration are of the form $\{k, k + 1, k + 2, k + 4\}$, where $0 \le k \le 6$ and all of the numbers are given modulo 7. This 4-lateral shares two lines with the 4-lateral $\{k + 1, k + 2, k + 3, k + 5\}$ as well as two lines with the 4-lateral $\{k + 3, k + 4, k + 5, k\}$.

We provide a geometric representation of the rank-4 4-lateral matroid on the seven lines $\{1, 2, 3, 4, 5, 6, 7\}$. This representation has one 'twisted plane' $\{4, 5, 6, 1\}$. Another 'doily' representation follows using 'ovals.'

Desargues 10₃-configuration

The next smallest 3-configuration to induce a 4-lateral matroid is the Desargues 10₃-configuration.

Desargues 10₃-configuration

The next smallest 3-configuration to induce a 4-lateral matroid is the Desargues 10₃-configuration.

Each of the six perspective points belongs to three 4-laterals with the original point. Each of the three axial points shares two 4-laterals with the original point.

Each of the six perspective points belongs to three 4-laterals with the original point. Each of the three axial points shares two 4-laterals with the original point.

The end result is each point belongs to eight 4-laterals in total. Hence there are $10 \cdot 8/4 = 20$ 4-laterals in all.

Each of the six perspective points belongs to three 4-laterals with the original point. Each of the three axial points shares two 4-laterals with the original point.

The end result is each point belongs to eight 4-laterals in total. Hence there are $10 \cdot 8/4 = 20$ 4-laterals in all.

So the associated 4-lateral matroid whose ground set consists of the ten lines of the configuration has $\binom{10}{4} - 20 = 190$ bases.

Let Cyc(n, 3) denote the cyclic n_3 -configuration having Golomb ruler 013. Assume $n \ge 12$.

- Let Cyc(n, 3) denote the cyclic n_3 -configuration having Golomb ruler 013. Assume $n \ge 12$.
- Then Cyc(n, 3) has the 4-laterals (using points of Cyc(n, 3) to label them, no ambiguity)

- Let Cyc(n, 3) denote the cyclic n_3 -configuration having Golomb ruler 013. Assume $n \ge 12$.
- Then Cyc(n, 3) has the 4-laterals (using points of Cyc(n, 3) to label them, no ambiguity)
- $\{k, k + 1, k + 2, k + 4\}$, where $0 \le k \le n 1$ and addition is performed modulo n.

- Let Cyc(n, 3) denote the cyclic n_3 -configuration having Golomb ruler 013. Assume $n \ge 12$.
- Then Cyc(n, 3) has the 4-laterals (using points of Cyc(n, 3) to label them, no ambiguity)
- $\{k, k + 1, k + 2, k + 4\}$, where $0 \le k \le n 1$ and addition is performed modulo n.
- Cyc(12,3) has three additional 4-laterals: $\{1,4,7,10\},\ \{2,5,8,11\},\ \text{and}\ \{3,6,9,12\}.$

Cyc(n,3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $M_{quad}(Cyc(12,3))$ and $M_{quad}(Cyc(13,3))$

э

A (1) > A (2) > A

June 22, 2021 14 / 17

Obtainable from two disjoint copies of Fano. Delete line from the first copy, delete point and lines incident to it from the second copy.

The 4-matroid of this configuration

June 22, 2021 15 / 17

3-configurations inducing matroids

n	$\mathcal{M}_{\mathit{tri}}$	\mathcal{M}_{quad}
7	0	1
8	0	0
9	0	0
10	1	1
11	0	0
12	1	1
13	1	2
14	4	13

< 4³ ► <

æ

3-configurations inducing matroids

n	$\mathcal{M}_{\mathit{tri}}$	\mathcal{M}_{quad}
7	0	1
8	0	0
9	0	0
10	1	1
11	0	0
12	1	1
13	1	2
14	4	13

Some of the 4-lateral matroids induced by the 13 14_3 -configurations are isomorphic.

