4-lateral matroids induced by 3-configurations (preprint)

Michael Raney

Georgetown University
June 22, 2021

3-lateral matroids

Let $\mathcal{C}=(\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of n points and a set \mathcal{L} of n blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block.

3-lateral matroids

Let $\mathcal{C}=(\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of n points and a set \mathcal{L} of n blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block.
We say that $\mathcal{M}_{\text {tri }}(\mathcal{C})=(E, \mathcal{B})$ is a trilateral matroid, or triangular matroid, or 3-matroid, which is induced by \mathcal{C} if the set of non-trilaterals in \mathcal{C} forms a set of bases \mathcal{B} for a rank- 3 matroid.

3-lateral matroids

Let $\mathcal{C}=(\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of n points and a set \mathcal{L} of n blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block.
We say that $\mathcal{M}_{\text {tri }}(\mathcal{C})=(E, \mathcal{B})$ is a trilateral matroid, or triangular matroid, or 3-matroid, which is induced by \mathcal{C} if the set of non-trilaterals in \mathcal{C} forms a set of bases \mathcal{B} for a rank-3 matroid.

This means that \mathcal{B} must satisfy the basis extension property: If $X, Y, \in \mathcal{B}$ and $x \in X \backslash Y$, then there exists $y \in Y \backslash X$ such that $X-x \cup y \in \mathcal{B}$.

3-lateral matroids

Let $\mathcal{C}=(\mathcal{P}, \mathcal{L})$ be a 3-configuration having a set \mathcal{P} of n points and a set \mathcal{L} of n blocks, where each point is incident to 3 blocks, each block is incident to 3 points, and no pair of points is incident to more than one block.
We say that $\mathcal{M}_{\text {tri }}(\mathcal{C})=(E, \mathcal{B})$ is a trilateral matroid, or triangular matroid, or 3-matroid, which is induced by \mathcal{C} if the set of non-trilaterals in \mathcal{C} forms a set of bases \mathcal{B} for a rank-3 matroid.
This means that \mathcal{B} must satisfy the basis extension property: If $X, Y, \in \mathcal{B}$ and $x \in X \backslash Y$, then there exists $y \in Y \backslash X$ such that $X-x \cup y \in \mathcal{B}$. We may use either $E=\mathcal{P}$ or $E=\mathcal{L}$ as the ground set of the matroid, since there is a one-to-one correspondence between the set of point triples and the set of line triples. Later, when we enlarge our scope to consider 4-lateral matroids induced by 3 -configurations, we will only use $E=\mathcal{L}$.

3-lateral matroids

For now, the results we state concerning 3-lateral matroids induced by 3-configurations depend on $E=\mathcal{P}$.

3-lateral matroids

For now, the results we state concerning 3-lateral matroids induced by 3-configurations depend on $E=\mathcal{P}$.
The primary result (Raney, 18) is that \mathcal{C} induces a 3-lateral matroid if and only if \mathcal{C} doesn't contain either a near-complete quadrangle or a near-pencil.

3-lateral matroids

For now, the results we state concerning 3-lateral matroids induced by 3-configurations depend on $E=\mathcal{P}$.
The primary result (Raney, 18) is that \mathcal{C} induces a 3-lateral matroid if and only if \mathcal{C} doesn't contain either a near-complete quadrangle or a near-pencil.

3-lateral matroids

For now, the results we state concerning 3-lateral matroids induced by 3-configurations depend on $E=\mathcal{P}$.
The primary result (Raney, 18) is that \mathcal{C} induces a 3-lateral matroid if and only if \mathcal{C} doesn't contain either a near-complete quadrangle or a near-pencil.

The enumeration of the 3-configurations inducing 3-lateral matroids was conducted by Raney for $7 \leq n \leq 14$, and then extended by Al-Azemi and Raney (21) to $15 \leq n \leq 18$, while also correcting a computational error in the former paper.

Examples of 3-lateral matroids

In the Fano 7_{3}-configuration every point triple $\left\{p_{1}, p_{2}, p_{3}\right\}$ gives a trilateral, so $\mathcal{B}=\emptyset$. So we could deem its 3 -lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.

Examples of 3-lateral matroids

In the Fano 7_{3}-configuration every point triple $\left\{p_{1}, p_{2}, p_{3}\right\}$ gives a trilateral, so $\mathcal{B}=\emptyset$. So we could deem its 3 -lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.
Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 103 -configuration.

Examples of 3-lateral matroids

In the Fano 7_{3}-configuration every point triple $\left\{p_{1}, p_{2}, p_{3}\right\}$ gives a trilateral, so $\mathcal{B}=\emptyset$. So we could deem its 3 -lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.
Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10 -configuration.
The configuration has 5 complete quadrangles, each of which contains four triangles, and so 20 trilaterals are present.

Examples of 3-lateral matroids

In the Fano 7_{3}-configuration every point triple $\left\{p_{1}, p_{2}, p_{3}\right\}$ gives a trilateral, so $\mathcal{B}=\emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.
Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10 -configuration.
The configuration has 5 complete quadrangles, each of which contains four triangles, and so 20 trilaterals are present.
Each complete quadrangle may be described using a line with four collinear points as we construct a geometric representation of the 3-lateral matroid. The end result is that $\mathcal{M}_{\text {tri }}$ (Desargues) may be viewed as a star.

Examples of 3-lateral matroids

In the Fano 7_{3}-configuration every point triple $\left\{p_{1}, p_{2}, p_{3}\right\}$ gives a trilateral, so $\mathcal{B}=\emptyset$. So we could deem its 3-lateral matroid to be the uniform matroid $U_{7,2}$. As this is a rank-2 matroid, we say that this is an exceptional case.
Thus the smallest 3-configuration which induces a 3-matroid on its points is the Desargues 10 -configuration.
The configuration has 5 complete quadrangles, each of which contains four triangles, and so 20 trilaterals are present.
Each complete quadrangle may be described using a line with four collinear points as we construct a geometric representation of the 3-lateral matroid. The end result is that $\mathcal{M}_{\text {tri }}$ (Desargues) may be viewed as a star.

Examples of 3-lateral matroids

Another result is that if each point of \mathcal{C} is involved in three triangles, with no pair of points sharing more than one triangle, then \mathcal{C} induces a 3-lateral matroid $\mathcal{M}_{\text {tri }}(\mathcal{C})$ which is isomorphic to \mathcal{C}.

Examples of 3-lateral matroids

Another result is that if each point of \mathcal{C} is involved in three triangles, with no pair of points sharing more than one triangle, then \mathcal{C} induces a 3-lateral matroid $\mathcal{M}_{\text {tri }}(\mathcal{C})$ which is isomorphic to \mathcal{C}.

For instance, the Coxeter 12_{3}-configuration satisfies this condition, as does the cyclic configuration $\operatorname{Cyc}(n, 4)$ for $n \geq 13$ having Golomb ruler 014 .

Examples of 3-lateral matroids

Another result is that if each point of \mathcal{C} is involved in three triangles, with no pair of points sharing more than one triangle, then \mathcal{C} induces a 3-lateral matroid $\mathcal{M}_{\text {tri }}(\mathcal{C})$ which is isomorphic to \mathcal{C}.
For instance, the Coxeter 12_{3}-configuration satisfies this condition, as does the cyclic configuration $\operatorname{Cyc}(n, 4)$ for $n \geq 13$ having Golomb ruler 014 . Finally, the Cremona-Richmond 153 -configuration is the smallest 3-configuration which is trilateral-free. So the 3-lateral matroid it induces is the uniform matroid $U_{15,3}$.

4-lateral matroids

We now turn our attention to 4-lateral matroids which are induced by n_{3}-configurations.

4-lateral matroids

We now turn our attention to 4-lateral matroids which are induced by n_{3}-configurations.

Let $\mathcal{C}=(\mathcal{P}, \mathcal{L})$ be a 3-configuration. We determine the conditions under which $\mathcal{M}_{\text {quad }}=(E, \mathcal{B})$ is a rank-4 matroid, where $E=\mathcal{L}$ and \mathcal{B} consists of the line quadruples $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\} \subseteq E$ which are not 4-laterals in \mathcal{C}.

4-lateral matroids

We now turn our attention to 4-lateral matroids which are induced by n_{3}-configurations.

Let $\mathcal{C}=(\mathcal{P}, \mathcal{L})$ be a 3-configuration. We determine the conditions under which $\mathcal{M}_{\text {quad }}=(E, \mathcal{B})$ is a rank-4 matroid, where $E=\mathcal{L}$ and \mathcal{B} consists of the line quadruples $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\} \subseteq E$ which are not 4-laterals in \mathcal{C}.
A fundamental obstruction is that no two 4-laterals may share exactly three lines. Why is this so?

4-lateral matroids

Suppose $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ and $\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4 -laterals which share the lines I_{1}, I_{2}, and I_{4}.

4-lateral matroids

Suppose $\left\{I_{1}, l_{2}, I_{3}, I_{4}\right\}$ and $\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals which share the lines I_{1}, I_{2}, and I_{4}.

4-lateral matroids

Suppose $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ and $\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals which share the lines I_{1}, I_{2}, and I_{4}.

Let I_{0} be any other line which does not form a 4 -lateral with I_{1}, I_{2} and I_{4}. Set $X=\left\{I_{0}, I_{1}, I_{2}, I_{4}\right\}$ and $Y=\left\{I_{1}, I_{2}, I_{3}, I_{5}\right\}$ (Assume that Y is not a 4-lateral.)

4-lateral matroids

Suppose $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ and $\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals which share the lines I_{1}, I_{2}, and I_{4}.

Let I_{0} be any other line which does not form a 4 -lateral with I_{1}, I_{2} and I_{4}. Set $X=\left\{I_{0}, I_{1}, I_{2}, I_{4}\right\}$ and $Y=\left\{I_{1}, I_{2}, I_{3}, I_{5}\right\}$ (Assume that Y is not a 4-lateral.)
Then $X \backslash Y=\left\{I_{0}, I_{4}\right\}$. Take $I_{0} \in X \backslash Y$. Then $X-I_{0}=\left\{I_{1}, I_{2}, I_{4}\right\}$. Note $Y \backslash X=\left\{l_{3}, I_{5}\right\}$.

4-lateral matroids

Suppose $\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ and $\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals which share the lines I_{1}, I_{2}, and I_{4}.

Let I_{0} be any other line which does not form a 4 -lateral with I_{1}, I_{2} and I_{4}. Set $X=\left\{I_{0}, I_{1}, I_{2}, I_{4}\right\}$ and $Y=\left\{I_{1}, I_{2}, I_{3}, I_{5}\right\}$ (Assume that Y is not a 4-lateral.)
Then $X \backslash Y=\left\{I_{0}, I_{4}\right\}$. Take $I_{0} \in X \backslash Y$. Then $X-I_{0}=\left\{I_{1}, I_{2}, I_{4}\right\}$. Note $Y \backslash X=\left\{l_{3}, l_{5}\right\}$.
Both $X-I_{0} \cup I_{3}=\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ and $X-I_{0} \cup I_{5}=\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals. Therefore the basis exchange property is violated.

4-lateral matroids

Suppose $\left\{I_{1}, I_{2}, l_{3}, l_{4}\right\}$ and $\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals which share the lines I_{1}, I_{2}, and I_{4}.

Let I_{0} be any other line which does not form a 4 -lateral with I_{1}, I_{2} and I_{4}. Set $X=\left\{I_{0}, I_{1}, I_{2}, I_{4}\right\}$ and $Y=\left\{I_{1}, I_{2}, I_{3}, I_{5}\right\}$ (Assume that Y is not a 4-lateral.)
Then $X \backslash Y=\left\{I_{0}, I_{4}\right\}$. Take $I_{0} \in X \backslash Y$. Then $X-I_{0}=\left\{I_{1}, I_{2}, I_{4}\right\}$. Note $Y \backslash X=\left\{l_{3}, l_{5}\right\}$.
Both $X-I_{0} \cup I_{3}=\left\{I_{1}, I_{2}, I_{3}, I_{4}\right\}$ and $X-I_{0} \cup I_{5}=\left\{I_{1}, I_{2}, I_{4}, I_{5}\right\}$ are 4-laterals. Therefore the basis exchange property is violated.
So in a 3-configuration which induces a 4-lateral matroid, any two distinct 4-laterals may share at most two lines.

The Fano 7_{3}-configuration is the smallest 3-configuration which induces a 4-lateral matroid. We provide a realization of it with $\mathcal{P}=\{a, b, c, d, e, f, g\}$, as well as a combinatorial description.

The Fano 7_{3}-configuration is the smallest 3-configuration which induces a 4-lateral matroid. We provide a realization of it with $\mathcal{P}=\{a, b, c, d, e, f, g\}$, as well as a combinatorial description.

When one deletes any point and the three lines incident to it, one obtains a 4-lateral. It follows that the seven 4-laterals in the Fano configuration are of the form $\{k, k+1, k+2, k+4\}$, where $0 \leq k \leq 6$ and all of the numbers are given modulo 7 . This 4-lateral shares two lines with the 4-lateral $\{k+1, k+2, k+3, k+5\}$ as well as two lines with the 4-lateral $\{k+3, k+4, k+5, k\}$.

When one deletes any point and the three lines incident to it, one obtains a 4-lateral. It follows that the seven 4-laterals in the Fano configuration are of the form $\{k, k+1, k+2, k+4\}$, where $0 \leq k \leq 6$ and all of the numbers are given modulo 7 . This 4-lateral shares two lines with the 4-lateral $\{k+1, k+2, k+3, k+5\}$ as well as two lines with the 4-lateral $\{k+3, k+4, k+5, k\}$.
We provide a geometric representation of the rank-4 4-lateral matroid on the seven lines $\{1,2,3,4,5,6,7\}$. This representation has one 'twisted plane' $\{4,5,6,1\}$. Another 'doily' representation follows using 'ovals.'

When one deletes any point and the three lines incident to it, one obtains a 4-lateral. It follows that the seven 4-laterals in the Fano configuration are of the form $\{k, k+1, k+2, k+4\}$, where $0 \leq k \leq 6$ and all of the numbers are given modulo 7 . This 4-lateral shares two lines with the 4-lateral $\{k+1, k+2, k+3, k+5\}$ as well as two lines with the 4-lateral $\{k+3, k+4, k+5, k\}$.
We provide a geometric representation of the rank-4 4-lateral matroid on the seven lines $\{1,2,3,4,5,6,7\}$. This representation has one 'twisted plane' $\{4,5,6,1\}$. Another 'doily' representation follows using 'ovals.'

Desargues 10_{3}-configuration

The next smallest 3-configuration to induce a 4-lateral matroid is the Desargues 10_{3}-configuration.

Desargues 10_{3}-configuration

The next smallest 3-configuration to induce a 4-lateral matroid is the Desargues 10_{3}-configuration.

1	2	3	4	5	6	7	8	9	0
a	a	a	b	b	c	c	d	e	h
b	d	f	d	f	e	g	f	g	i
c	e	g	h	i	h	i	j	j	j

Desargues 10_{3}-configuration

Each point is in perspective to two triangles. For instance, regard point a. It is in perspective to triangles $b d f$ and $c e g$. These lead to two 4 -laterals $\{1,3,4,8\}$ and $\{1,3,6,9\}$.

Desargues 10_{3}-configuration

Each point is in perspective to two triangles. For instance, regard point a. It is in perspective to triangles $b d f$ and $c e g$. These lead to two 4 -laterals $\{1,3,4,8\}$ and $\{1,3,6,9\}$.
Each of the six perspective points belongs to three 4-laterals with the original point. Each of the three axial points shares two 4-laterals with the original point.

Desargues 10_{3}-configuration

Each point is in perspective to two triangles. For instance, regard point a. It is in perspective to triangles $b d f$ and $c e g$. These lead to two 4-laterals $\{1,3,4,8\}$ and $\{1,3,6,9\}$.
Each of the six perspective points belongs to three 4-laterals with the original point. Each of the three axial points shares two 4-laterals with the original point.
The end result is each point belongs to eight 4-laterals in total. Hence there are $10 \cdot 8 / 4=204$-laterals in all.

Desargues 10_{3}-configuration

Each point is in perspective to two triangles. For instance, regard point a. It is in perspective to triangles $b d f$ and $c e g$. These lead to two 4-laterals $\{1,3,4,8\}$ and $\{1,3,6,9\}$.
Each of the six perspective points belongs to three 4-laterals with the original point. Each of the three axial points shares two 4-laterals with the original point.
The end result is each point belongs to eight 4-laterals in total. Hence there are $10 \cdot 8 / 4=204$-laterals in all.
So the associated 4-lateral matroid whose ground set consists of the ten lines of the configuration has $\binom{10}{4}-20=190$ bases.

Cyc $(n, 3)$

Let $\operatorname{Cyc}(n, 3)$ denote the cyclic n_{3}-configuration having Golomb ruler 013 . Assume $n \geq 12$.

Cyc $(n, 3)$

Let $\operatorname{Cyc}(n, 3)$ denote the cyclic n_{3}-configuration having Golomb ruler 013 . Assume $n \geq 12$.

Then $\operatorname{Cyc}(n, 3)$ has the 4-laterals (using points of $\operatorname{Cyc}(n, 3)$ to label them, no ambiguity)

Cyc $(n, 3)$

Let $\operatorname{Cyc}(n, 3)$ denote the cyclic n_{3}-configuration having Golomb ruler 013 . Assume $n \geq 12$.
Then $\operatorname{Cyc}(n, 3)$ has the 4-laterals (using points of $\operatorname{Cyc}(n, 3)$ to label them, no ambiguity)
$\{k, k+1, k+2, k+4\}$, where $0 \leq k \leq n-1$ and addition is performed modulo n.

Cyc $(n, 3)$

Let $\operatorname{Cyc}(n, 3)$ denote the cyclic n_{3}-configuration having Golomb ruler 013 . Assume $n \geq 12$.
Then $\operatorname{Cyc}(n, 3)$ has the 4-laterals (using points of $\operatorname{Cyc}(n, 3)$ to label them, no ambiguity)
$\{k, k+1, k+2, k+4\}$, where $0 \leq k \leq n-1$ and addition is performed modulo n.
$\operatorname{Cyc}(12,3)$ has three additional 4-laterals: $\{1,4,7,10\},\{2,5,8,11\}$, and $\{3,6,9,12\}$.

Cyc $(n, 3)$

Cyc $(n, 3)$

Another $13_{3}{ }_{3}$-configuration

Another 13_{3}-configuration

Obtainable from two disjoint copies of Fano. Delete line from the first copy, delete point and lines incident to it from the second copy.

Another 13_{3}-configuration

Another $13_{3}{ }_{3}$-configuration

The 4-matroid of this configuration

3-configurations inducing matroids

n	$\mathcal{M}_{\text {tri }}$	$\mathcal{M}_{\text {quad }}$
7	0	1
8	0	0
9	0	0
10	1	1
11	0	0
12	1	1
13	1	2
14	4	13

3-configurations inducing matroids

n	$\mathcal{M}_{\text {tri }}$	$\mathcal{M}_{\text {quad }}$
7	0	1
8	0	0
9	0	0
10	1	1
11	0	0
12	1	1
13	1	2
14	4	13

Some of the 4-lateral matroids induced by the 13 143-configurations are isomorphic.

