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The inverse Calderón problem

The inverse Calderón problem aims at determining the
conductivity of an inhomogeneous conductive medium from
non-invasive measurements.



The formulation

If f is an electric potential prescribed on ∂D, the electric potential u
inside of D satisfies �

∇ · (γ∇u) = 0 in D,

u|∂D = f .

� γ∂νu|∂D is the outgoing electric current density through ∂D.

� Measurements: the Dirichlet-to-Neumann map

Λγ : f �−→ γ∂νu|∂D

The inverse Calderón problem is

� to decide if γ is uniquely determined by Λγ ,

� and to calculate γ whenever there is unique determination.



Discussing the model

This problem originates as a theoretical model in electrical prospecting.

� The aim is to determine the conductivity conductivity by means of
steady state electrical measurements on ∂D.

Ideally, Λγ is determined through measurements effected on ∂D.
The model assumes to have access (to the graph of the DN map):

� to infinite many pieces of data

� and to infinite-precision measurements.

This is unjustified (data do not lie on the graph of the DN map):

� only a finite number of measurements are available

� the data is corrupted by measurement errors
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Boundary reconstruction (smooth setting)

In 1988 Sylvester–Uhlmann show that, whenever D and γ are smooth,
the DN map Λγ can be locally identified with a first order
pseudodifferential operator, and its symbol can be expanded as:

∞�

j=0

∂j
νγ.

Then, to reconstruct ∂j
νγ|∂D we only need to recover the symbol of a

pseudodifferential operator —this is well known.

P =
�

|α|≤m

aα(x)(−i)|α|∂α
x ⇒ e−ix·ξP(e ix·ξ) =

�

|α|≤m

aα(x)ξ
α

The plane waves e ix·ξ are the tools.



Boundary reconstruction (non-regular setting)
In 2001 Brown used solutions with highly oscillatory Dirichlet data
concentrating around a point P ∈ ∂D to recover

γ(P).

To visualize these solutions think of P = 0 ∈ ∂D and

D ⊂ {x ∈ Rd : xd > 0}.

Then, the Dirichlet data of the solutions looks like

M(d−1)/2N−1/2χ(Mx)eN(iξ−ed )·x |xd=0.

In 2006 Brown–Salo extended the method to recover:

∂νγ(P).

The tools are wave packets

ft,λ(x) = td/2χ(t(x − x0))e
itλ(x−x0)·ξ0 .
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The Calderón problem with noisy data

Recall that the goal is to reconstruct γ from the DN map

�

∂D

Λγ f g =

�

∂D

γ∂νu g

where �
∇ · (γ∇u) = 0 in D,

u|∂D = f .

In order to avoid the infinite-precision assumption of Calderón’s
formulation, we assume data to be the DN map plus a random error:

Nγ(f , g) =

�

∂D

Λγ f g + E(f , g),

where we want E(f , g) to denote a centred complex Gaussian whose
variance depends on f and g .



Comments on the expectation

Note that

ENγ(f , g) =

�

∂D

Λγ f g .

Therefore, the noise can be filtered having access to many independent
outcomes:

1

N

N�

n=1

Nγ(f , g)(ωn) −−−−→
N→∞

�

∂D

Λγ f g .

� A few repetitions of the same measurement do not oscillate enough
to filter out the noise by averaging.

� We want to avoid averaging and show that a single realization of Nγ

is enough to reconstruct γ.



Comments on the variance

The variance

E
���Nγ(f , g)−

�

∂D

Λγ f g
���
2

depends on f and g .

� The variable variance aims at modelling measurement devices which
decalibrates as the strength of the electric potential and the
outgoing current increases.



Different approaches

There seem to be two different approaches.

� Deterministic regularization [Tikhonov]: The noise is deterministic
and small.

� Statistical point of view: [Sudakov–Halfin, Franklin] No smallness
assumption for the noise. [Abraham–Nickl] The level of noise is
small.

Our approach is stochastic with no restriction on the size of the noise.
We do not know a similar approach for the Calderón problem.
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Reconstruction of γ|∂D

Theorem (C, Garcia)
For every P ∈ ∂D, there exists an explicit sequence {fN : N ∈ N} such
that

lim
N→∞

Nγ(fN , fN) = γ(P)

almost surely.



Reconstruction of ∂νγ|∂D

The DN map of the reference medium with conductivity identically one is
denoted by Λ.

Theorem (C, Garcia)
For every P ∈ ∂D, there exists an explicit family {ft : t ≥ 1} such that, if

YN =
1

N4

� 2N4

N4

�
Nγ(ft2 , ft2/γ)−

�

∂D

Λft2 ft2
�
dt,

one has that

lim
N→∞

YN =
∂νP

γ(P) + iτP ·∇γ(P)

γ(P)

almost surely. Here νP is the outward unit normal vector to ∂D at P and
τP denotes any unitary tangential vector at P.



Why the need of YN?

Recall that Λγ is a first order pseudodifferential operator with symbol

∞�

j=0

∂j
νγ.

Since Nγ(ft2 , ft2) → γ(P), then

Nγ(ft2 , ft2/γ) → 1.

Consequently,

Nγ(ft2 , ft2/γ)−
�

∂D

Λft2 ft2 →
∂νP

γ(P)

γ(P)
.



Comments on the results

� We also established a high probable rate of convergence.

� These results have been extended to Maxwell’s equations in
collaboration with Lai, Lin and Zhou.

� The main contributions are to filter the measurement errors. The
underlying idea is the strong law of large numbers.

� For the first theorem no average is needed because

�fN�L2(∂D) = O(N−1/2).

� For the second theorem we require an average in
√
N since

�fN�L2(∂D) = O(1).

� An natural question: Could we recover ∂j
νγ|∂D for all j ∈ N0?
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The problem of observability with noise

The problem of recovering an observable P from certain measurements
NP that contain some random errors.

� The observable P is a pseudodifferntial operator

Pf (x) =
1

(2π)d/2

�

Rd

e ix·ξa(x , ξ)�f (ξ) dξ,

with a classical symbol a of order m ∈ R.
� The measurements

NP(f , g) =

�

Rd

f Pg + E(f , g).



The observational limit of wave packets
Assume

a ∼
∞�

j=1

aj ,

with aj being a classical symbol of order mj ∈ R, for
mj < mj−1 < · · · < m1 = m, which is homogeneous in the variable ξ.
In collaboration with Meroño, we showed how to use wave packets to
reconstruct

a1, . . . , aj0 , aj0+1, . . . , ak0

when the observable P is so that

m = m1 > · · · > mj0 > 0 ≥ mj0 > · · · > mk0 > −1/2.

� For a1, . . . , aj0 no averaging is needed.

� For aj0+1, . . . , ak0 averaging is required.

Furthermore, it is not possible to use wave packets to reconstruct

ak0+1, ak0+2, . . .

in presence of the error. The signal is lost in the noise.



A particular case to keep in mind

� If the observable P is a differential operator of order m, we can
recover the full operator P from NP .

� Using wave packets, it is impossible to recover ∂j
νγ|∂D a.s. for j ≥ 2.



Outline

The inverse Calderón problem

Boundary reconstruction

The Calderón problem with noise

Boundary reconstruction with noisy data

Observability with noise

Conclusion



To sum up

� The Calderón problem is a theoretical model that arises in electrical
prospecting.

� Implementing the model presents non-trivial challenges since it
assumes infinite-precision measurements and infinite many pieces of
data.

� We consider the problem of data corruption in the boundary
reconstruction. Our approach is stochastic and provides
reconstruction almost surely.

� Wave packets are useful but have limitations in the problem of
observability with noise.
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