Eulerian and Even-Face Ribbon Graph Minors

M. Metsidik X. Jin

College of Mathematical Sciences Xinjiang Normal University School of Mathematical Sciences Xiamen University

June 22, 2021

Image: A matched block

M. Metsidik, X. Jin (XJNU, XMU) Eulerian and Even-Face Ribbon Graph Minors 1/40

Ribbon graphs

- Ribbon graph minors
- 3 Motivation
- Definitions
- Characterizing even-face and Eulerian ribbon graphs 5

Characterizing plane Eulerian and plane bipartite ribbon graphs 6

2/40

Outline

Ribbon graphs

- 2 Ribbon graph minors
- 3 Motivation
- 4 Definitions
- 5 Characterizing even-face and Eulerian ribbon graphs
- 6 Characterizing plane Eulerian and plane bipartite ribbon graphs

3/40

- - E

• Cellularly embedded graphs can be realized as ribbon graphs.

4/40

3 × 4 3 ×

Definition ([1])

A ribbon graph $\mathbf{G} = (V(\mathbf{G}), E(\mathbf{G}))$ is a surface with boundary represented as the union of two sets of topological discs: a set $V(\mathbf{G})$ of vertices, and a set $E(\mathbf{G})$ of edges such that

- the vertices and edges intersect in disjoint line segments (we call such line segments as *common-line-segments* since they belong to boundaries of both vertex discs and edge discs);
- each common-line-segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two common-line-segments.

5/40

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

Ribbon graphs have certain advantages over cellularly embedded graphs.

- The deletion of edges or vertices of a ribbon graph results in another ribbon graph, whereas deleting an edge or a vertex of a cellularly embedded graph in a surface Σ may not result in a cellularly embedded graph in the surface Σ .
- Geometric duals have a particularly neat description in the language of ribbon graphs.

We can regard a ribbon graph G = (V(G), E(G)) as a punctured surface. Filling in the punctures by a set of discs denoted V(G*), we obtain a surface without boundary. The geometric dual G* of G comes out as the ribbon graph (V(G*), E(G)) when all the original vertex open discs of G are removed.

Ribbon graphs

- 2 Ribbon graph minors
- 3 Motivation
- 4 Definitions
- 5 Characterizing even-face and Eulerian ribbon graphs
- 6 Characterizing plane Eulerian and plane bipartite ribbon graphs

8/40

- - E

- Ribbon graph minors is introduced by Moffatt recently in [2].
- Contracting loops is necessary.

Ribbon graphs

- 2 Ribbon graph minors
- 3 Motivation
 - 4 Definitions
 - **5** Characterizing even-face and Eulerian ribbon graphs
 - Characterizing plane Eulerian and plane bipartite ribbon graphs

3 N K 3 N

10/40

Conjecture (Moffatt JGT 2016)

Every ribbon graph minor-closed family of ribbon graphs can be characterized by a finite set of excluded ribbon graph minors.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Conjecture (Moffatt JGT 2016)

Every ribbon graph minor-closed family of ribbon graphs can be characterized by a finite set of excluded ribbon graph minors.

• An analogue of the graph minor theorem (Robertson-Seymour Theorem)

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

11/40

Graphs are well-quasi-ordered under the graph minor relation.

Graphs are well-quasi-ordered under the graph minor relation.

• A quasi-ordering is a reflexive and transitive relation.

Graphs are well-quasi-ordered under the graph minor relation.

- A quasi-ordering is a reflexive and transitive relation.
- A quasi-ordering on a set is a *well-quasi-ordering* if it contains neither an infinite antichain nor an infinite decreasing sequence.

Graphs are well-quasi-ordered under the graph minor relation.

- A quasi-ordering is a reflexive and transitive relation.
- A quasi-ordering on a set is a *well-quasi-ordering* if it contains neither an infinite antichain nor an infinite decreasing sequence.
- An *antichain* is a subset with the property that any two elements are incomparable.

Arrow-marked ribbon graphs

13/40

• • • • •

Image: A matrix

- Let $D \subset R_2$ be a link diagram. The *ribbon graph of D* (or the *All-A ribbon graph of D*), denoted $\mathbb{A}(D)$ is formed as follows.
 - Assign a unique label to each crossing of D:
 - Take an arrow marked A-smoothing for each crossing of *D*.

- Let $D \subset R_2$ be a link diagram. The *ribbon graph of D* (or the *All-A ribbon graph of D*), denoted $\mathbb{A}(D)$ is formed as follows.
 - Assign a unique label to each crossing of D:
 - Take an arrow marked A-smoothing for each crossing of *D*.
- We say that a ribbon graph **G** represents a link diagram, or is the ribbon graph of a link diagram, if $\mathbf{G} = \mathbb{A}(D)$ for some link diagram D.

Representing Link Diagrams by Ribbon Graph

A B > 4
 B > 4
 B

3 × 4 3 ×

M. Metsidik, X. Jin (XJNU, XMU) Eulerian and Even-Face Ribbon Graph Minors

15/40

Theorem (Moffatt JGT 2016)

A ribbon graph represents a link diagram if and only if it contains no ribbon graph minor equivalent to $B_{\overline{1}}$, B_{3} , or θ_{t} .

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 K K 3 K

3 = 990 C

A bipartite graph is planar if and only if it does not contain $K_{3,3}$ as a bipartite minor.

A bipartite graph is planar if and only if it does not contain $K_{3,3}$ as a bipartite minor.

• *Bipartite minors* is an operation that applies to bipartite graphs and outputs bipartite graphs

A bipartite graph is planar if and only if it does not contain $K_{3,3}$ as a bipartite minor.

- *Bipartite minors* is an operation that applies to bipartite graphs and outputs bipartite graphs
- A contraction of a vertex u with a vertex v is called admissible if u and v have a common neighbor, and at least one of these common neighbors, say w, is such that the path (u, w, v) is a part of a peripheral cycle.

A bipartite graph is planar if and only if it does not contain $K_{3,3}$ as a bipartite minor.

- *Bipartite minors* is an operation that applies to bipartite graphs and outputs bipartite graphs
- A contraction of a vertex u with a vertex v is called admissible if u and v have a common neighbor, and at least one of these common neighbors, say w, is such that the path (u, w, v) is a part of a peripheral cycle.
- A bipartite analog of Wagner's theorem

Is the bipartite minor relation a well-quasi-ordering on the set of bipartite graphs?

Is the bipartite minor relation a well-quasi-ordering on the set of bipartite graphs?

• We introduce two spacial kind of ribbon graph minor operations such that they keep Eulerian or even-face characteristics of ribbon graphs and characterize even-face and Eulerian ribbon graphs by means of excluded such ribbon graph minors.

Is the bipartite minor relation a well-quasi-ordering on the set of bipartite graphs?

- We introduce two spacial kind of ribbon graph minor operations such that they keep Eulerian or even-face characteristics of ribbon graphs and characterize even-face and Eulerian ribbon graphs by means of excluded such ribbon graph minors.
- An *even-face graph* is a cellularly embedded graph with no odd degree faces.

Is the bipartite minor relation a well-quasi-ordering on the set of bipartite graphs?

- We introduce two spacial kind of ribbon graph minor operations such that they keep Eulerian or even-face characteristics of ribbon graphs and characterize even-face and Eulerian ribbon graphs by means of excluded such ribbon graph minors.
- An *even-face graph* is a cellularly embedded graph with no odd degree faces.
- If a bipartite graph cellularly embed into a surface, then it is an even-face graph.

Is the bipartite minor relation a well-quasi-ordering on the set of bipartite graphs?

- We introduce two spacial kind of ribbon graph minor operations such that they keep Eulerian or even-face characteristics of ribbon graphs and characterize even-face and Eulerian ribbon graphs by means of excluded such ribbon graph minors.
- An even-face graph is a cellularly embedded graph with no odd degree faces.
- If a bipartite graph cellularly embed into a surface, then it is an even-face graph.
- The set of underlying graphs of all even-face graphs includes all bipartite graphs.

18/40

Ribbon graphs

- 2 Ribbon graph minors
- 3 Motivation
- 4 Definitions
- 5 Characterizing even-face and Eulerian ribbon graphs
- 6 Characterizing plane Eulerian and plane bipartite ribbon graphs

3 N K 3 N

19/40

Let **G** be a ribbon graph and $A \subseteq E(\mathbf{G})$. Then the *partial dual* of **G** with respect to A, denoted by \mathbf{G}^A , is given by

$$\mathbf{G}^{\mathcal{A}} \coloneqq \left(\mathbf{G} \overrightarrow{-} \mathcal{A}^{c}\right)^{*} \overrightarrow{+} \mathcal{A}^{c}.$$

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

20/40

Let **G** be a ribbon graph and $A \subseteq E(\mathbf{G})$. Then the *partial dual* of **G** with respect to A, denoted by \mathbf{G}^A , is given by

$$\mathbf{G}^{\mathcal{A}} \coloneqq \left(\mathbf{G} - \mathcal{A}^{c}\right)^{*} + \mathcal{A}^{c}.$$

Proposition (Chmutov, JCTB 2009)

Let **G** be a ribbon graph and $A, B \in E(\mathbf{G})$. Then

- $\mathbf{G}^{\varnothing} = \mathbf{G};$
- $G^{E(G)} = G^*;$
- $\mathbf{G}^{A\cup B} = \left(\mathbf{G}^{A}\right)^{B\smallsetminus A};$
- **G** is orientable if only if **G**^A is orientable;
- partial duality acts disjointly on components.

If u₁ and u₂ are the (not necessarily distinct) vertices incident to e, then G/e denotes the ribbon graph obtained as follows: consider the boundary component(s) of e ∪ u₁ ∪ u₂ as curves on G. For each resulting curve, attach a disc (which will form a vertex of G/e) by identifying its boundary component with the curve. Delete e, u₁ and u₂ from the resulting complex, to get the ribbon graph G/e. We say G/e is obtained from G by contracting e.

ヨト 4 ヨト 三日日 のへで

• Notice that each edge in a ribbon graph contains exactly two line segments not lying on the boundary of its end vertices (vertex), we call such line segments *edge-line-segments* of the edge.

▲ ■ ▶ ■ ■ ■ ● ● ● ●

Image: A matrix

- Notice that each edge in a ribbon graph contains exactly two line segments not lying on the boundary of its end vertices (vertex), we call such line segments *edge-line-segments* of the edge.
- *Vertex-line-segments* of a vertex if they only belonging to the vertex.

- Notice that each edge in a ribbon graph contains exactly two line segments not lying on the boundary of its end vertices (vertex), we call such line segments *edge-line-segments* of the edge.
- Vertex-line-segments of a vertex if they only belonging to the vertex.
- The number of vertex-line-segments of a vertex equals the degree of the vertex.

- Notice that each edge in a ribbon graph contains exactly two line segments not lying on the boundary of its end vertices (vertex), we call such line segments *edge-line-segments* of the edge.
- Vertex-line-segments of a vertex if they only belonging to the vertex.
- The number of vertex-line-segments of a vertex equals the degree of the vertex.
- The *degree* of a boundary component of a ribbon graph is the number of edge- (or equivalently vertex-) line-segments lying on the boundary component.

토▶ ▲토▶ 토|비 ���@

- Notice that each edge in a ribbon graph contains exactly two line segments not lying on the boundary of its end vertices (vertex), we call such line segments *edge-line-segments* of the edge.
- Vertex-line-segments of a vertex if they only belonging to the vertex.
- The number of vertex-line-segments of a vertex equals the degree of the vertex.
- The *degree* of a boundary component of a ribbon graph is the number of edge- (or equivalently vertex-) line-segments lying on the boundary component.
- A ribbon graph **G** is an *even-face ribbon graph* if the degree of its every boundary component is even.

22/40

■▶ ▲ ■▶ ■|■ • • • • ●

- Notice that each edge in a ribbon graph contains exactly two line segments not lying on the boundary of its end vertices (vertex), we call such line segments *edge-line-segments* of the edge.
- Vertex-line-segments of a vertex if they only belonging to the vertex.
- The number of vertex-line-segments of a vertex equals the degree of the vertex.
- The *degree* of a boundary component of a ribbon graph is the number of edge- (or equivalently vertex-) line-segments lying on the boundary component.
- A ribbon graph **G** is an *even-face ribbon graph* if the degree of its every boundary component is even.
- Any cellularly embedded bipartite graph is equivalent to an even-face ribbon graph, and if an even-face ribbon graph is plane then it is bipartite.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E = のへで 22/40</p>

• The *distance* of two vertex-line-segments (resp. two edge-line-segments) lying on a same boundary component is the minimum number of edge-line-segments lying between the two vertex-line-segments (resp. two edge-line-segments).

- The *distance* of two vertex-line-segments (resp. two edge-line-segments) lying on a same boundary component is the minimum number of edge-line-segments lying between the two vertex-line-segments (resp. two edge-line-segments).
- The *dual-distance* of two vertex-line-segments (resp. two line-segments) lying on the boundary of a vertex disc is the minimum number of line-segments lying between the two vertex-line-segments (resp. two line-segments).

evenly splitting a face:

- Choose two vertex-line-segments with even distance;
- separately place an *e* colored arrow on the two vertex-line-segments such that the directions of the two *e* colored arrows are coherent with a direction of traveling around the boundary component including the two vertex-line-segments;

$$3 G + {e};$$

$$(\mathbf{G} + \{e\})/e.$$

 $\mathbf{G}\vec{+}\{e\}$

3 1 4 3

Figure: Even splitting face.

Image: A math

M. Metsidik, X. Jin (XJNU, XMU) Eulerian and Even-Face Ribbon Graph Minors

25/40

evenly splitting a vertex:

- Choose two vertex-line-segments with even dual-distance;
- separately place an *e* colored arrow on the two vertex-line-segments such that the directions of the two *e* colored arrows are coherent with a direction of traveling around the boundary of the vertex disc including the two vertex-line-segments;

3
$$\mathbf{G} \neq \{e\};$$

$$(\mathbf{G} + \{e\})/e.$$

 $\mathbf{G}\vec{+}\{e\}$

 $(\mathbf{G}\vec{+}\{e\})/e$

물 🕨 🔺 물 🕨

Figure: Even splitting vertex.

A B > 4
 B > 4
 B

27/40

 We say that G/e is proper if and only if e is not an orientable loop with odd dual distance common-line-segments, and G – e is proper if and only if G*/e* is proper.

Definition

A ribbon graph **H** is an *even-face minor* of a ribbon graph **G** if there is a sequence of ribbon graphs $\mathbf{G} = \mathbf{G}_0, \mathbf{G}_1, \dots, \mathbf{G}_t = \mathbf{H}$ such that for each *i*, \mathbf{G}_{i+1} is obtained from \mathbf{G}_i by a proper edge deletion, component deletion, or evenly splitting a face.

Definition

A ribbon graph **H** is an *Eulerian minor* of a ribbon graph **G** if there is a sequence of ribbon graphs $\mathbf{G} = \mathbf{G}_0, \mathbf{G}_1, \dots, \mathbf{G}_s = \mathbf{H}$ such that for each *i*, \mathbf{G}_{i+1} is obtained from \mathbf{G}_i by a proper edge contraction, component deletion, or evenly splitting a vertex.

Lemma

A ribbon graph **H** is an Eulerian minor of a ribbon graph **G** if and only if \mathbf{H}^* is an even-face minor of \mathbf{G}^* .

Ribbon graphs

- 2 Ribbon graph minors
- 3 Motivation
- 4 Definitions

5 Characterizing even-face and Eulerian ribbon graphs

Characterizing plane Eulerian and plane bipartite ribbon graphs

315

Characterizing even-face and Eulerian ribbon graphs

Lemma

Let G be a cellularly embedded graph. Then G is Eulerian if and only if its geometric dual G^* is an even-face graph.

Lemma

The set of even-face ribbon graphs is even-face minor closed.

Theorem (Metsidik and Jin DM 2020)

A ribbon graph is an even-face ribbon graph if and only if it contains no even-face minor equivalent to B_1, C_3, Q, B_3 or R.

32 / 40

Characterizing Eulerian ribbon graphs

Lemma

The set of Eulerian ribbon graphs is Eulerian-minor closed.

Theorem

A ribbon graph is Eulerian if and only if it contains no Eulerian-minor equivalent to B_1^*, C_3^*, Q^*, B_3^* or R^* .

Ribbon graphs

- 2 Ribbon graph minors
- 3 Motivation
- 4 Definitions
- 5 Characterizing even-face and Eulerian ribbon graphs

6 Characterizing plane Eulerian and plane bipartite ribbon graphs

3 N K 3 N

34/40

The *genus* of a ribbon graph **G**, denoted by $g(\mathbf{G})$, is calculated by Euler's formula as in the following.

$$g(\mathbf{G}) = \begin{cases} k(\mathbf{G}) - \frac{1}{2} (v(\mathbf{G}) - e(\mathbf{G}) + p(\mathbf{G})), & \text{if } \mathbf{G} \text{ is orientable;} \\ 2k(\mathbf{G}) - (v(\mathbf{G}) - e(\mathbf{G}) + p(\mathbf{G})), & \text{if } \mathbf{G} \text{ is non-orientable,} \end{cases}$$

where $v(\mathbf{G}) = |V(\mathbf{G})|$, $e(\mathbf{G}) = |E(\mathbf{G})|$, $k(\mathbf{G})$ and $p(\mathbf{G})$ are the numbers of the connected components and boundary components of \mathbf{G} , respectively. In particular, \mathbf{G} is *plane* if $g(\mathbf{G}) = 0$.

Characterizing plane Eulerian and plane bipartite ribbon graphs

Lemma

Let **H** be an even-face minor of a ribbon graph **G**. Then $g(\mathbf{H}) \leq g(\mathbf{G})$.

Lemma

Let **H** be an Eulerian-minor of a ribbon graph **G**. Then $g(\mathbf{H}) \leq g(\mathbf{G})$.

M. Metsidik, X. Jin (XJNU, XMU) Eulerian and Even-Face Ribbon Graph Minors 36/40

Characterizing plane Eulerian and plane bipartite ribbon graphs

Theorem (Metsidik and Jin DM 2020)

An Eulerian ribbon graph is plane if and only if it contains no Eulerian minor equivalent to $\mathbf{B}_{\bar{1}}, \mathbf{B}_3 - e, \mathbf{B}_{\bar{3}} - e$ or \mathbf{B}_3 .

EL OQA

37 / 40

Characterizing plane Eulerian and plane bipartite ribbon graphs

Theorem

An even-face ribbon graph is plane if and only if it contains no even-face minor equivalent to $\mathbf{B}_{\bar{1}}, \mathbf{B}_3 - e, (\mathbf{B}_3 - e)^*$ or \mathbf{B}_3^* .

- B. Bollobás and O. Riordan: A polynomial of graphs on surfaces, *Math. Ann.* **323** (2002) 81-96.
- I. Moffatt: Excluded Minors and the Ribbon Graphs of Knots, J. Graph Theory 81 (2016) 329-341.
- M. Chudnovsky, G. Kalai, E. Nevo, I. Novik and P. Seymour: Bipartite minors, *J. Comb. Theory, Ser. B* **116** (2016) 219-228.
- J. A. Ellis-Monaghan and I. Moffatt: *Graphs on Surfaces: Dualities, Polynomials, and Knots*, Springer, 2013.
- M. Metsidik and X. Jin: Eulerian and even-face ribbon graph minors, *Discrete Math.* **343** (2020) 111953.

Thank you for listening!

M. Metsidik, X. Jin (XJNU, XMU) Eulerian and Even-Face Ribbon Graph Minors 40/40