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Definition 1.2 Let v = |H| = α0λ, Eq[Eqn] =

[n1]q∑
i=1

〈gi〉 and H =

H1 + · · · +Hv. A matrix A = (Aij)[n1]q×α0λ
, given by

Aij =

{
1, if Hj ∈ H〈gi〉
0, otherwise,

is an incidence matrix of a design Dmin.
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Definition 1.4 Let Eqn−1[Eqn] =

[n1]q∑
i=1

Mi, H = H1+· · ·+Hv. A matrix

B = (Bij)[n1]q×α0λ
given by

Bij =

{
1, if Hj ∈ HMi

0, otherwise,

is an incidence matrix of a design Dmax.
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Mi, H = H1+· · ·+Hv. A matrix

B = (Bij)[n1]q×α0λ
given by

Bij =

{
1, if Hj ∈ HMi

0, otherwise,

is an incidence matrix of a design Dmax.

Lemma 1.5 Let M ∈ Eqn−1[Eqn], then |HM | =
(α0 − α1)

qk
· λ.

Lemma 1.6 If M1 and M2 are two different maximal subgroups, then

|HM1
∩HM2

| =
[
n−2
k

]
q[

n−t
k−t

]
q

· λ.
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Theorem 1.7 The incidence matrix B satisfies the following:

BBt = λ(α0 − β)I + βλJ,

where β =

[
n−2
k

]
q[

n−t
k−t

]
q

.
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Also, a matrix B is an incidence matrix of a design with parametersλα0,
(α0 − α1)λ

qk
,

[
n− 2

k

]
q

/

[
n− t
k − t

]
q

λ

 .
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Also, a matrix B is an incidence matrix of a design with parametersλα0,
(α0 − α1)λ

qk
,

[
n− 2

k

]
q

/

[
n− t
k − t

]
q

λ

 .
The next result show how to get an incidence matric of Dmin in a case
when an incidence matrix of Dmax is known.

Theorem 1.8 Matrices A and B satisfy A = J − 1

qn−k−1
CB, where

C = (Cij)[n1]q×[
n
1]q

is given by

Cij =

{
1, if Mj ∩ 〈gi〉 = 1

0, otherwise.
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Theorem 1.9 Matrices A and B satisfy B = J − 1

qk−1
DA where

D = (Dij)[n1]q×[
n
1]q

is given by

Dij =

{
1, if 〈gj〉 ∩Mi = 1

0, otherwise.

From the definitions of C and D immediately follows C = Dt.

Corollary 1.10 For matrices A,B,C,D following holds:

1. A = J − 1

qn−k−1
CJ +

1

qn−2
CDA

2. B = J − 1

qk−1
DJ +

1

qn−2
DCB.
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Lemma 1.13 Matrices A and B satisfy the following:

1. JA =

[
k

1

]
q

J

2. JB =

[
n− k
1

]
q

J.
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