Dual incidences and t-designs in elementary abelian groups

Kristijan Tabak

Rochester Institute of Technology, Croatia Campus

8th European Congress of Mathematics , 20-26 June 2021,
Portorož, Slovenia

This work has been fully supported by Croatian Science Foundation under the projects 6732

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design
could be done by replacing sets with a vector spaces over a finite field,

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design
could be done by replacing sets with a vector spaces over a finite field, where a cardinality of a set or a block is replaced by the dimensions of a vector spaces and subspaces.

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design
could be done by replacing sets with a vector spaces over a finite field, where a cardinality of a set or a block is replaced by the dimensions of a vector spaces and subspaces.

One possible context for a definition of a q-analog design is an elementary abelian group $E_{q^{n}}$, where q is a prime.

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design
could be done by replacing sets with a vector spaces over a finite field, where a cardinality of a set or a block is replaced by the dimensions of a vector spaces and subspaces.

One possible context for a definition of a q-analog design is an elementary abelian group $E_{q^{n}}$, where q is a prime.

The group $E_{q^{n}}$ is abelian group of order q^{n} and exponent q.

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design
could be done by replacing sets with a vector spaces over a finite field, where a cardinality of a set or a block is replaced by the dimensions of a vector spaces and subspaces.

One possible context for a definition of a q-analog design is an elementary abelian group $E_{q^{n}}$, where q is a prime.

The group $E_{q^{n}}$ is abelian group of order q^{n} and exponent q.
Formally, $E_{q^{n}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots\left\langle x_{n}\right\rangle$ where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{q}$ for $i=$ $1,2, \ldots, n$.

A $t-(v, k, \lambda)$ design is a collection \mathcal{B} of a k-element subsets (blocks) of a v-element set \mathcal{P},
each t-element subset of \mathcal{P} is contained in exactly λ blocks from \mathcal{B}.
A natural generalization of a t-design
could be done by replacing sets with a vector spaces over a finite field, where a cardinality of a set or a block is replaced by the dimensions of a vector spaces and subspaces.

One possible context for a definition of a q-analog design is an elementary abelian group $E_{q^{n}}$, where q is a prime.

The group $E_{q^{n}}$ is abelian group of order q^{n} and exponent q.
Formally, $E_{q^{n}}=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots\left\langle x_{n}\right\rangle$ where $\left\langle x_{i}\right\rangle \cong \mathbb{Z}_{q}$ for $i=$ $1,2, \ldots, n$.

Some notation...

Some notation...
let X be any set and R is a ring

Some notation...
let X be any set and R is a ring
A group ring $R[X]$ is a collection of formal sums $\sum r x$, where $r \in$ $R, x \in X$.

Some notation...
let X be any set and R is a ring
A group ring $R[X]$ is a collection of formal sums $\sum r x$, where $r \in$ $R, x \in X$.

A collection of all groups of order q^{k} is denoted by $E_{q^{k}}\left[E_{q^{n}}\right]$.

Some notation...
let X be any set and R is a ring
A group ring $R[X]$ is a collection of formal sums $\sum r x$, where $r \in$ $R, x \in X$.

A collection of all groups of order q^{k} is denoted by $E_{q^{k}}\left[E_{q^{n}}\right]$.
A collection of all groups of order q^{k} than contain $T \leq E_{q^{n}}$ as a subgroup is denoted by $E_{q^{k}}[T]^{-1}$.

Some notation...
let X be any set and R is a ring
A group ring $R[X]$ is a collection of formal sums $\sum r x$, where $r \in$ $R, x \in X$.

A collection of all groups of order q^{k} is denoted by $E_{q^{k}}\left[E_{q^{n}}\right]$.
A collection of all groups of order q^{k} than contain $T \leq E_{q^{n}}$ as a subgroup is denoted by $E_{q^{k}}[T]^{-1}$.

Let $X, Y \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$, then $|X \cap Y|$ is a number of groups of order q^{k} that belong to X and to Y.

Some notation...
let X be any set and R is a ring
A group ring $R[X]$ is a collection of formal sums $\sum r x$, where $r \in$ $R, x \in X$.

A collection of all groups of order q^{k} is denoted by $E_{q^{k}}\left[E_{q^{n}}\right]$.
A collection of all groups of order q^{k} than contain $T \leq E_{q^{n}}$ as a subgroup is denoted by $E_{q^{k}}[T]^{-1}$.

Let $X, Y \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$, then $|X \cap Y|$ is a number of groups of order q^{k} that belong to X and to Y.

Definition 0.1 An ordered pair $\left(E_{q^{n}}, \mathcal{H}\right)$, where $\mathcal{H} \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$, is a q-analog design with parameters $t-(n, k, \lambda)_{q}$ if $\left|E_{q^{k}}[T]^{-1} \cap \mathcal{H}\right|=\lambda$ for all $T \in E_{q^{t}}\left[E_{q^{n}}\right]$.

Some notation...
let X be any set and R is a ring
A group ring $R[X]$ is a collection of formal sums $\sum r x$, where $r \in$ $R, x \in X$.

A collection of all groups of order q^{k} is denoted by $E_{q^{k}}\left[E_{q^{n}}\right]$.
A collection of all groups of order q^{k} than contain $T \leq E_{q^{n}}$ as a subgroup is denoted by $E_{q^{k}}[T]^{-1}$.

Let $X, Y \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$, then $|X \cap Y|$ is a number of groups of order q^{k} that belong to X and to Y.

Definition 0.1 An ordered pair $\left(E_{q^{n}}, \mathcal{H}\right)$, where $\mathcal{H} \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$, is a q-analog design with parameters $t-(n, k, \lambda)_{q}$ if $\left|E_{q^{k}}[T]^{-1} \cap \mathcal{H}\right|=\lambda$ for all $T \in E_{q^{t}}\left[E_{q^{n}}\right]$.

This definition is equivalent with a classical definition of a q-analog design.

This definition is equivalent with a classical definition of a q-analog design.

Any $X \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$ can be viewed as $X \in \mathbb{Z}\left[E_{q^{k}}\left[E_{q^{n}}\right]\right]$ where $X=$ $\sum_{A \in X} A$.

This definition is equivalent with a classical definition of a q-analog design.

Any $X \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$ can be viewed as $X \in \mathbb{Z}\left[E_{q^{k}}\left[E_{q^{n}}\right]\right]$ where $X=$ $\sum_{A \in X} A$.

Definition 0.2 Let $\left(E_{q^{n}}, \mathcal{H}\right)$ be a $t-(n, k, \lambda)_{q}$ design, where $k<n-1$. An incidence structure $\mathcal{D}_{\text {max }}$ is an ordered pair $\left(\mathcal{H},\left\{\mathcal{H}_{M}\right\}_{\left.M \in E_{q^{n-1}\left[E_{q^{n}}\right]}\right)}\right.$, where $\mathcal{H}_{M}=\sum_{H \in \mathcal{H}, H \leq M} H$. The blocks of $\mathcal{D}_{\text {max }}$ are $\mathcal{B}_{\text {max }}=\left\{\mathcal{H}_{M} \mid\right.$ $\left.M \in E_{q^{n-1}}\left[E_{q^{n}}\right]\right\}$.

An incidence structure $\mathcal{D}_{\text {min }}$ is an ordered pair $\left(\mathcal{H},\left\{\mathcal{H}_{\langle g\rangle}\right\}_{\langle g\rangle \neq 1}\right)$, where $\mathcal{H}_{\langle g\rangle}=\sum_{\langle g\rangle \leq H \in \mathcal{H}} H$. The blocks of $\mathcal{D}_{\text {min }}$ are $\mathcal{B}_{\text {min }}=\left\{\mathcal{H}_{\langle g\rangle} \mid 1<\langle g\rangle<\right.$ $\left.E_{q^{n}}\right\}$.

This definition is equivalent with a classical definition of a q-analog design.

Any $X \subseteq E_{q^{k}}\left[E_{q^{n}}\right]$ can be viewed as $X \in \mathbb{Z}\left[E_{q^{k}}\left[E_{q^{n}}\right]\right]$ where $X=$ $\sum_{A \in X} A$.

Definition 0.2 Let $\left(E_{q^{n}}, \mathcal{H}\right)$ be a $t-(n, k, \lambda)_{q}$ design, where $k<n-1$. An incidence structure $\mathcal{D}_{\text {max }}$ is an ordered pair $\left(\mathcal{H},\left\{\mathcal{H}_{M}\right\}_{\left.M \in E_{q^{n-1}\left[E_{q^{n}}\right]}\right)}\right.$, where $\mathcal{H}_{M}=\sum_{H \in \mathcal{H}, H \leq M} H$. The blocks of $\mathcal{D}_{\text {max }}$ are $\mathcal{B}_{\text {max }}=\left\{\mathcal{H}_{M} \mid\right.$ $\left.M \in E_{q^{n-1}}\left[E_{q^{n}}\right]\right\}$.

An incidence structure $\mathcal{D}_{\text {min }}$ is an ordered pair $\left(\mathcal{H},\left\{\mathcal{H}_{\langle g\rangle}\right\}_{\langle g\rangle \neq 1}\right)$, where $\mathcal{H}_{\langle g\rangle}=\sum_{\langle g\rangle \leq H \in \mathcal{H}} H$. The blocks of $\mathcal{D}_{\text {min }}$ are $\mathcal{B}_{\text {min }}=\left\{\mathcal{H}_{\langle g\rangle} \mid 1<\langle g\rangle<\right.$ $\left.E_{q^{n}}\right\}$.

Theorem 0.3 Every block $\mathcal{H}_{M} \in \mathcal{B}_{\text {max }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {min }}$ as follows: $\mathcal{H}_{M}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$. Furthermore, every block $\mathcal{H}_{\langle g\rangle} \in \mathcal{B}_{\text {min }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {max }}$ as follows: $\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{M}$.

Theorem 0.3 Every block $\mathcal{H}_{M} \in \mathcal{B}_{\text {max }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {min }}$ as follows: $\mathcal{H}_{M}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$. Furthermore, every block $\mathcal{H}_{\langle g\rangle} \in \mathcal{B}_{\text {min }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {max }}$ as follows: $\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{M}$.

Sketch of a proof:

Theorem 0.3 Every block $\mathcal{H}_{M} \in \mathcal{B}_{\text {max }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {min }}$ as follows: $\mathcal{H}_{M}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$. Furthermore, every block $\mathcal{H}_{\langle g\rangle} \in \mathcal{B}_{\text {min }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {max }}$ as follows: $\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{M}$.

Sketch of a proof:
We start with $\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H$, where $M \in E_{q^{n-1}}\left[E_{q^{n}}\right]$.

Theorem 0.3 Every block $\mathcal{H}_{M} \in \mathcal{B}_{\text {max }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {min }}$ as follows: $\mathcal{H}_{M}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$. Furthermore, every block $\mathcal{H}_{\langle g\rangle} \in \mathcal{B}_{\text {min }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {max }}$ as follows: $\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{M}$.

Sketch of a proof:
We start with $\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H$, where $M \in E_{q^{n-1}}\left[E_{q^{n}}\right]$.
also, we need $\bigcup_{H \nsubseteq M} H=\bigcup_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$,

Theorem 0.3 Every block $\mathcal{H}_{M} \in \mathcal{B}_{\text {max }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {min }}$ as follows: $\mathcal{H}_{M}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$. Furthermore, every block $\mathcal{H}_{\langle g\rangle} \in \mathcal{B}_{\text {min }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {max }}$ as follows: $\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{M}$.

Sketch of a proof:
We start with $\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H$, where $M \in E_{q^{n-1}}\left[E_{q^{n}}\right]$.
also, we need $\bigcup_{H \npreceq M} H=\bigcup_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$,
where both sides of an equation are considered to be a subsets of $E_{q^{n}}$ and M is a maximal subgroup of $E_{q^{n}}$.

Theorem 0.3 Every block $\mathcal{H}_{M} \in \mathcal{B}_{\text {max }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {min }}$ as follows: $\mathcal{H}_{M}=\mathcal{H}-\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$. Furthermore, every block $\mathcal{H}_{\langle g\rangle} \in \mathcal{B}_{\text {min }}$ can be expressed as a sum of blocks from $\mathcal{B}_{\text {max }}$ as follows: $\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{M}$.

Sketch of a proof:
We start with $\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H$, where $M \in E_{q^{n-1}}\left[E_{q^{n}}\right]$.
also, we need $\bigcup_{H \npreceq M} H=\bigcup_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$,
where both sides of an equation are considered to be a subsets of $E_{q^{n}}$ and M is a maximal subgroup of $E_{q^{n}}$.

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.
Therefore,

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.
Therefore,
$\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H=\mathcal{H}_{M}+\frac{1}{\alpha} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}=\mathcal{H}_{M}+\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.
Therefore,
$\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H=\mathcal{H}_{M}+\frac{1}{\alpha} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}=\mathcal{H}_{M}+\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Now, we show that

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.
Therefore,
$\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H=\mathcal{H}_{M}+\frac{1}{\alpha} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}=\mathcal{H}_{M}+\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Now, we show that

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H} \backslash \bigcup_{\langle g\rangle \cap M=1} \mathcal{H}_{M},
$$

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.
Therefore,
$\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H=\mathcal{H}_{M}+\frac{1}{\alpha} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}=\mathcal{H}_{M}+\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Now, we show that

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H} \backslash \bigcup_{\langle g\rangle \cap M=1} \mathcal{H}_{M},
$$

where both sides of equality are considered as subsets of $E_{q^{n}}$.

Let's define $\alpha_{H}=[H] \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Then we show that
$\alpha_{H}=\frac{\left|H \cap M^{c}\right|}{q-1}=q^{k-1}$.
Therefore,
$\mathcal{H}=\mathcal{H}_{M}+\sum_{H \nsubseteq M} H=\mathcal{H}_{M}+\frac{1}{\alpha} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}=\mathcal{H}_{M}+\frac{1}{q^{k-1}} \sum_{\langle g\rangle \cap M=1} \mathcal{H}_{\langle g\rangle}$.
Now, we show that

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H} \backslash \bigcup_{\langle g\rangle \cap M=1} \mathcal{H}_{M},
$$

where both sides of equality are considered as subsets of $E_{q^{n}}$.

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,

$$
\text { Let } \mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M} \text {, }
$$

where $\langle g\rangle \nless H$.

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|=
$$

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\begin{gathered}
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|= \\
=\left|E_{q^{n-1-k}}\left[E_{q^{n}} / H\right]\right|-\left|E_{q^{n-1-k-1}}\left[E_{q^{n}} /\langle H, g\rangle\right]\right|=
\end{gathered}
$$

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\begin{gathered}
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|= \\
=\left|E_{q^{n-1-k}}\left[E_{q^{n}} / H\right]\right|-\left|E_{q^{n-1-k-1}}\left[E_{q^{n}} /\langle H, g\rangle\right]\right|=
\end{gathered}
$$

$$
=\left[\begin{array}{c}
n-k \\
n-1-k
\end{array}\right]_{q}-\left[\begin{array}{l}
n-k-1 \\
n-k-2
\end{array}\right]_{q}=\left[\begin{array}{c}
n-k \\
1
\end{array}\right]_{q}-\left[\begin{array}{c}
n-k-1 \\
1
\end{array}\right]_{q}=q^{n-k-1}
$$

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\begin{gathered}
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|= \\
=\left|E_{q^{n-1-k}}\left[E_{q^{n}} / H\right]\right|-\left|E_{q^{n-1-k-1}}\left[E_{q^{n}} /\langle H, g\rangle\right]\right|= \\
=\left[\begin{array}{c}
n-k \\
n-1-k
\end{array}\right]_{q}-\left[\begin{array}{c}
n-k-1 \\
n-k-2
\end{array}\right]_{q}=\left[\begin{array}{c}
n-k \\
1
\end{array}\right]_{q}-\left[\begin{array}{c}
n-k-1 \\
1
\end{array}\right]_{q}=q^{n-k-1} .
\end{gathered}
$$

Thus,

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\begin{gathered}
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|= \\
=\left|E_{q^{n-1-k}}\left[E_{q^{n}} / H\right]\right|-\left|E_{q^{n-1-k-1}}\left[E_{q^{n}} /\langle H, g\rangle\right]\right|=
\end{gathered}
$$

$$
=\left[\begin{array}{c}
n-k \\
n-1-k
\end{array}\right]_{q}-\left[\begin{array}{l}
n-k-1 \\
n-k-2
\end{array}\right]_{q}=\left[\begin{array}{c}
n-k \\
1
\end{array}\right]_{q}-\left[\begin{array}{c}
n-k-1 \\
1
\end{array}\right]_{q}=q^{n-k-1} .
$$

Thus,
μ_{H} doesn't depend on H.

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\begin{gathered}
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|= \\
=\left|E_{q^{n-1-k}}\left[E_{q^{n}} / H\right]\right|-\left|E_{q^{n-1-k-1}}\left[E_{q^{n}} /\langle H, g\rangle\right]\right|=
\end{gathered}
$$

$=\left[\begin{array}{c}n-k \\ n-1-k\end{array}\right]_{q}-\left[\begin{array}{l}n-k-1 \\ n-k-2\end{array}\right]_{q}=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q}-\left[\begin{array}{c}n-k-1 \\ 1\end{array}\right]_{q}=q^{n-k-1}$.
Thus,
μ_{H} doesn't depend on H.
Hence, we finally get

Let $\mu_{H}=[H] \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M}$,
where $\langle g\rangle \nless H$.
Then,

$$
\begin{gathered}
\mu_{H}=\left|E_{q^{n-1}}[H]^{-1}\right|-\left|E_{q^{n-1}}[\langle H, g\rangle]^{-1}\right|= \\
=\left|E_{q^{n-1-k}}\left[E_{q^{n}} / H\right]\right|-\left|E_{q^{n-1-k-1}}\left[E_{q^{n}} /\langle H, g\rangle\right]\right|=
\end{gathered}
$$

$=\left[\begin{array}{c}n-k \\ n-1-k\end{array}\right]_{q}-\left[\begin{array}{l}n-k-1 \\ n-k-2\end{array}\right]_{q}=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q}-\left[\begin{array}{c}n-k-1 \\ 1\end{array}\right]_{q}=q^{n-k-1}$.
Thus,
μ_{H} doesn't depend on H.
Hence, we finally get

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M} .
$$

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M} .
$$

The next result makes a connection between min and max blocks with the blocks of initial design.

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M} .
$$

The next result makes a connection between min and max blocks with the blocks of initial design.

Theorem 0.4 Blocks $\mathcal{B}_{\text {max }}$ and $\mathcal{B}_{\text {min }}$ satisfy the following:

$$
\mathcal{B}_{\text {max }}+q^{n-k} \mathcal{B}_{\text {min }}=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} \mathcal{H} .
$$

$$
\mathcal{H}_{\langle g\rangle}=\mathcal{H}-\frac{1}{q^{n-k-1}} \sum_{M \cap\langle g\rangle=1} \mathcal{H}_{M} .
$$

The next result makes a connection between min and max blocks with the blocks of initial design.

Theorem 0.4 Blocks $\mathcal{B}_{\text {max }}$ and $\mathcal{B}_{\text {min }}$ satisfy the following:

$$
\mathcal{B}_{\text {max }}+q^{n-k} \mathcal{B}_{\text {min }}=\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q} \mathcal{H} .
$$

Incidence matrices of $\mathcal{D}_{\text {max }}$ and $\mathcal{D}_{\text {min }}$

Incidence matrices of $\mathcal{D}_{\max }$ and $\mathcal{D}_{\min }$

We need the following

4
-
4
-
Back
Close

Incidence matrices of $\mathcal{D}_{\max }$ and $\mathcal{D}_{\min }$

We need the following
Lemma 1.1 The following holds: $|\mathcal{H}|=\lambda\left[\begin{array}{l}n \\ t\end{array}\right]_{q} /\left[\begin{array}{l}k \\ t\end{array}\right]_{q}$ and $\left|\mathcal{H}_{\langle g\rangle}\right|=$
$\lambda\left[\begin{array}{l}n-1 \\ t-1\end{array}\right]_{q} /\left[\begin{array}{l}k-1 \\ t-1\end{array}\right]_{q}$. Furthermore, $\left|\mathcal{H}_{\langle g\rangle} \cap \mathcal{H}_{\langle h\rangle}\right|=\lambda\left[\begin{array}{l}n-2 \\ t-2\end{array}\right]_{q} /\left[\begin{array}{l}k-2 \\ t-2\end{array}\right]_{q}$ where $\langle g\rangle \neq\langle h\rangle$.

Incidence matrices of $\mathcal{D}_{\max }$ and $\mathcal{D}_{\min }$

We need the following

Lemma 1.1 The following holds: $|\mathcal{H}|=\lambda\left[\begin{array}{l}n \\ t\end{array}\right]_{q},\left[\begin{array}{l}k \\ t\end{array}\right]_{q}$ and $\left|\mathcal{H}_{\langle g\rangle}\right|=$
$\lambda\left[\begin{array}{l}n-1 \\ t-1\end{array}\right]_{q} /\left[\begin{array}{l}k-1 \\ t-1\end{array}\right]_{q}$. Furthermore, $\left|\mathcal{H}_{\langle g\rangle} \cap \mathcal{H}_{\langle h\rangle}\right|=\lambda\left[\begin{array}{l}n-2 \\ t-2\end{array}\right]_{q} /\left[\begin{array}{l}k-2 \\ t-2\end{array}\right]_{q}$ where $\langle g\rangle \neq\langle h\rangle$.

Lets define $\alpha_{s}=\left[\begin{array}{l}n-s \\ t-s\end{array}\right]_{q} /\left[\begin{array}{l}k-s \\ t-s\end{array}\right]_{q}$.

Incidence matrices of $\mathcal{D}_{\max }$ and $\mathcal{D}_{\min }$

We need the following

Lemma 1.1 The following holds: $|\mathcal{H}|=\lambda\left[\begin{array}{l}n \\ t\end{array}\right]_{q},\left[\begin{array}{l}k \\ t\end{array}\right]_{q}$ and $\left|\mathcal{H}_{\langle g\rangle}\right|=$
$\lambda\left[\begin{array}{l}n-1 \\ t-1\end{array}\right]_{q} /\left[\begin{array}{l}k-1 \\ t-1\end{array}\right]_{q}$. Furthermore, $\left|\mathcal{H}_{\langle g\rangle} \cap \mathcal{H}_{\langle h\rangle}\right|=\lambda\left[\begin{array}{l}n-2 \\ t-2\end{array}\right]_{q} /\left[\begin{array}{l}k-2 \\ t-2\end{array}\right]_{q}$ where $\langle g\rangle \neq\langle h\rangle$.

Lets define $\alpha_{s}=\left[\begin{array}{l}n-s \\ t-s\end{array}\right]_{q} /\left[\begin{array}{l}k-s \\ t-s\end{array}\right]_{q}$.

Definition 1.2 Let $v=|\mathcal{H}|=\alpha_{0} \lambda, E_{q}\left[E_{q^{n}}\right]=\sum_{i=1}^{\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}}\left\langle g_{i}\right\rangle$ and $\mathcal{H}=$ $H_{1}+\cdots+H_{v}$. A matrix $A=\left(A_{i j}\right)_{\left[\begin{array}{l}n \\ 1\end{array}\right]_{q} \times \alpha_{0} \lambda^{\prime}}$ given by

$$
A_{i j}= \begin{cases}1, & \text { if } H_{j} \in \mathcal{H}_{\left\langle g_{i}\right\rangle} \\ 0, & \text { otherwise },\end{cases}
$$

is an incidence matrix of a design $\mathcal{D}_{\text {min }}$.

Definition 1.2 Let $v=|\mathcal{H}|=\alpha_{0} \lambda, E_{q}\left[E_{q^{n}}\right]=\sum_{i=1}^{\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}}\left\langle g_{i}\right\rangle$ and $\mathcal{H}=$ $H_{1}+\cdots+H_{v}$. A matrix $A=\left(A_{i j}\right)_{\left[\begin{array}{l}n \\ 1\end{array}\right]_{q} \times \alpha_{0} \lambda^{\prime}}$ given by

$$
A_{i j}= \begin{cases}1, & \text { if } H_{j} \in \mathcal{H}_{\left\langle g_{i}\right\rangle} \\ 0, & \text { otherwise }\end{cases}
$$

is an incidence matrix of a design $\mathcal{D}_{\text {min }}$.

Theorem 1.3 The incidence matrix A satisfies the following:

$$
A A^{t}=\left(\alpha_{1}-\alpha_{2}\right) \lambda I+\alpha_{2} \lambda J .
$$

Definition 1.2 Let $v=|\mathcal{H}|=\alpha_{0} \lambda, E_{q}\left[E_{q^{n}}\right]=\sum_{i=1}^{\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}}\left\langle g_{i}\right\rangle$ and $\mathcal{H}=$ $H_{1}+\cdots+H_{v}$. A matrix $A=\left(A_{i j}\right)_{\left[\begin{array}{l}n \\ 1\end{array}\right]_{q} \times \alpha_{0} \lambda^{\prime}}$ given by

$$
A_{i j}= \begin{cases}1, & \text { if } H_{j} \in \mathcal{H}_{\left\langle g_{i}\right\rangle} \\ 0, & \text { otherwise }\end{cases}
$$

is an incidence matrix of a design $\mathcal{D}_{\text {min }}$.

Theorem 1.3 The incidence matrix A satisfies the following:

$$
A A^{t}=\left(\alpha_{1}-\alpha_{2}\right) \lambda I+\alpha_{2} \lambda J .
$$

Definition 1.4 Let $E_{q^{n-1}}\left[E_{q^{n}}\right]=\sum_{i=1}^{\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}} M_{i}, \mathcal{H}=H_{1}+\cdots+H_{v}$. A matrix $B=\left(B_{i j}\right)_{\left[\begin{array}{l}{[n} \\ 1\end{array}\right]_{q} \times \alpha_{0} \lambda}$ given by

$$
B_{i j}= \begin{cases}1, & \text { if } H_{j} \in \mathcal{H}_{M_{i}} \\ 0, & \text { otherwise, }\end{cases}
$$

is an incidence matrix of a design $\mathcal{D}_{\text {max }}$.

Definition 1.4 Let $E_{q^{n-1}}\left[E_{q^{n}}\right]=\sum_{i=1}^{\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}} M_{i}, \mathcal{H}=H_{1}+\cdots+H_{v}$. A matrix $B=\left(B_{i j}\right)_{\left[\begin{array}{l}{\left[\begin{array}{l}1 \\ 1\end{array}\right]_{q} \times \alpha_{0} \lambda}\end{array}\right.}$ given by

$$
B_{i j}= \begin{cases}1, & \text { if } H_{j} \in \mathcal{H}_{M_{i}} \\ 0, & \text { otherwise, }\end{cases}
$$

is an incidence matrix of a design $\mathcal{D}_{\text {max }}$.

Lemma 1.5 Let $M \in E_{q^{n-1}}\left[E_{q^{n}}\right]$, then $\left|\mathcal{H}_{M}\right|=\frac{\left(\alpha_{0}-\alpha_{1}\right)}{q^{k}} \cdot \lambda$.

Definition 1.4 Let $E_{q^{n-1}}\left[E_{q^{n}}\right]=\sum_{i=1}^{\left[\begin{array}{c}n \\ 1\end{array}\right]_{q}} M_{i}, \mathcal{H}=H_{1}+\cdots+H_{v}$. A matrix $B=\left(B_{i j}\right)_{\left[\begin{array}{l}{[1}\end{array}\right]_{q} \times \alpha_{0} \lambda}$ given by

$$
B_{i j}= \begin{cases}1, & \text { if } H_{j} \in \mathcal{H}_{M_{i}} \\ 0, & \text { otherwise, }\end{cases}
$$

is an incidence matrix of a design $\mathcal{D}_{\text {max }}$.

Lemma 1.5 Let $M \in E_{q^{n-1}}\left[E_{q^{n}}\right]$, then $\left|\mathcal{H}_{M}\right|=\frac{\left(\alpha_{0}-\alpha_{1}\right)}{q^{k}} \cdot \lambda$.

Lemma 1.6 If M_{1} and M_{2} are two different maximal subgroups, then

$$
\left|\mathcal{H}_{M_{1}} \cap \mathcal{H}_{M_{2}}\right|=\frac{\left[\begin{array}{c}
n-2 \\
k
\end{array}\right]_{q}}{\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]} \cdot \lambda .
$$

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,
a matrix A is an incidence matrix of a design with parameters

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,
a matrix A is an incidence matrix of a design with parameters
$\left(\lambda \alpha_{0}, \lambda \alpha_{1}, \lambda \alpha_{2}\right)$,

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,
a matrix A is an incidence matrix of a design with parameters
$\left(\lambda \alpha_{0}, \lambda \alpha_{1}, \lambda \alpha_{2}\right)$,
where we think of a $\left(v^{\prime}, k^{\prime}, \lambda^{\prime}\right)$ design as

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,
a matrix A is an incidence matrix of a design with parameters
$\left(\lambda \alpha_{0}, \lambda \alpha_{1}, \lambda \alpha_{2}\right)$,
where we think of a $\left(v^{\prime}, k^{\prime}, \lambda^{\prime}\right)$ design as
a collection of k^{\prime}-element subsets (blocks) of a v^{\prime}-element set, such that

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,
a matrix A is an incidence matrix of a design with parameters
$\left(\lambda \alpha_{0}, \lambda \alpha_{1}, \lambda \alpha_{2}\right)$,
where we think of a $\left(v^{\prime}, k^{\prime}, \lambda^{\prime}\right)$ design as
a collection of k^{\prime}-element subsets (blocks) of a v^{\prime}-element set, such that each two mutually different blocks intersect in an exactly λ^{\prime} points.

Theorem 1.7 The incidence matrix B satisfies the following:

$$
B B^{t}=\lambda\left(\alpha_{0}-\beta\right) I+\beta \lambda J,
$$

where $\beta=\frac{\left[\begin{array}{c}n-2 \\ k\end{array}\right]_{q}}{\left[\begin{array}{c}n-t \\ k-t\end{array}\right]_{q}}$.
Based on a previous results,
a matrix A is an incidence matrix of a design with parameters
$\left(\lambda \alpha_{0}, \lambda \alpha_{1}, \lambda \alpha_{2}\right)$,
where we think of a $\left(v^{\prime}, k^{\prime}, \lambda^{\prime}\right)$ design as
a collection of k^{\prime}-element subsets (blocks) of a v^{\prime}-element set, such that each two mutually different blocks intersect in an exactly λ^{\prime} points.

Also, a matrix B is an incidence matrix of a design with parameters

Also, a matrix B is an incidence matrix of a design with parameters

$$
\left(\lambda \alpha_{0}, \frac{\left(\alpha_{0}-\alpha_{1}\right) \lambda}{q^{k}},\left[\begin{array}{c}
n-2 \\
k
\end{array}\right]_{q} /\left[\begin{array}{l}
n-t \\
k-t
\end{array}\right]_{q} \lambda\right) .
$$

Also, a matrix B is an incidence matrix of a design with parameters

$$
\left(\lambda \alpha_{0}, \frac{\left(\alpha_{0}-\alpha_{1}\right) \lambda}{q^{k}},\left[\begin{array}{c}
n-2 \\
k
\end{array}\right]_{q} /\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right]_{q} \lambda\right) .
$$

The next result show how to get an incidence matric of $\mathcal{D}_{\text {min }}$ in a case when an incidence matrix of $\mathcal{D}_{\text {max }}$ is known.

Also, a matrix B is an incidence matrix of a design with parameters

$$
\left(\lambda \alpha_{0}, \frac{\left(\alpha_{0}-\alpha_{1}\right) \lambda}{q^{k}},\left[\begin{array}{c}
n-2 \\
k
\end{array}\right]_{q} /\left[\begin{array}{l}
n-t \\
k-t
\end{array}\right]_{q} \lambda\right) .
$$

The next result show how to get an incidence matric of $\mathcal{D}_{\text {min }}$ in a case when an incidence matrix of $\mathcal{D}_{\text {max }}$ is known.

Theorem 1.8 Matrices A and B satisfy $A=J-\frac{1}{q^{n-k-1}} C B$, where $C=\left(C_{i j}\right)_{\left[\begin{array}{l}{[n} \\ 1\end{array}\right]} \times\left[\begin{array}{l}{\left[\begin{array}{l}n \\ 1\end{array}\right]}\end{array}\right]_{q}$ is given by

$$
C_{i j}= \begin{cases}1, & \text { if } M_{j} \cap\left\langle g_{i}\right\rangle=1 \\ 0, & \text { otherwise } .\end{cases}
$$

The next step will be to establish the way how to determine an incidence matrix of $\mathcal{D}_{\text {max }}$ if an incidence matrix of $\mathcal{D}_{\text {min }}$ is known.

The next step will be to establish the way how to determine an incidence matrix of $\mathcal{D}_{\text {max }}$ if an incidence matrix of $\mathcal{D}_{\text {min }}$ is known.

Theorem 1.9 Matrices A and B satisfy $B=J-\frac{1}{q^{k-1}} D A$ where $D=\left(D_{i j}\right)_{\left[\begin{array}{l}n \\ 1\end{array}\right]_{q} \times\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}}$ is given by

$$
D_{i j}= \begin{cases}1, & \text { if }\left\langle g_{j}\right\rangle \cap M_{i}=1 \\ 0, & \text { otherwise. }\end{cases}
$$

The next step will be to establish the way how to determine an incidence matrix of $\mathcal{D}_{\text {max }}$ if an incidence matrix of $\mathcal{D}_{\text {min }}$ is known.

Theorem 1.9 Matrices A and B satisfy $B=J-\frac{1}{q^{k-1}} D A$ where $D=\left(D_{i j}\right)_{\left[\begin{array}{l}n \\ 1\end{array}\right]_{q} \times\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}}$ is given by

$$
D_{i j}= \begin{cases}1, & \text { if }\left\langle g_{j}\right\rangle \cap M_{i}=1 \\ 0, & \text { otherwise. }\end{cases}
$$

From the definitions of C and D immediately follows $C=D^{t}$.

The next step will be to establish the way how to determine an incidence matrix of $\mathcal{D}_{\text {max }}$ if an incidence matrix of $\mathcal{D}_{\text {min }}$ is known.

Theorem 1.9 Matrices A and B satisfy $B=J-\frac{1}{q^{k-1}} D A$ where $D=\left(D_{i j}\right)_{\left[\begin{array}{l}n \\ 1\end{array}\right]_{q} \times\left[\begin{array}{l}n \\ 1\end{array}\right]_{q}}$ is given by

$$
D_{i j}= \begin{cases}1, & \text { if }\left\langle g_{j}\right\rangle \cap M_{i}=1 \\ 0, & \text { otherwise. }\end{cases}
$$

From the definitions of C and D immediately follows $C=D^{t}$.

Corollary 1.10 For matrices A, B, C, D following holds:

1. $A=J-\frac{1}{q^{n-k-1}} C J+\frac{1}{q^{n-2}} C D A$
2. $B=J-\frac{1}{q^{k-1}} D J+\frac{1}{q^{n-2}} D C B$.

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Hence,

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Hence,
C and D are always known and depend only on how we index the maximal subgroups and group elements.

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Hence,
C and D are always known and depend only on how we index the maximal subgroups and group elements.

The following results give additional information about matrices A, B, C, D.

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Hence,
C and D are always known and depend only on how we index the maximal subgroups and group elements.

The following results give additional information about matrices A, B, C, D.

Lemma 1.11 A matrix C satisfy the following equation:

$$
C C^{t}=q^{n-2} I+q^{n-2}(q-1) J .
$$

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Hence,
C and D are always known and depend only on how we index the maximal subgroups and group elements.

The following results give additional information about matrices A, B, C, D.

Lemma 1.11 A matrix C satisfy the following equation:

$$
C C^{t}=q^{n-2} I+q^{n-2}(q-1) J .
$$

Lemma 1.12 A matrix D satisfy the following equation:

$$
D D^{t}=q^{n-2}(q-1) J+q^{n-2} I=C C^{t} .
$$

Matrices C and D simply hold information on maximal subgroups of $E_{q^{n}}$.

Hence,
C and D are always known and depend only on how we index the maximal subgroups and group elements.

The following results give additional information about matrices A, B, C, D.

Lemma 1.11 A matrix C satisfy the following equation:

$$
C C^{t}=q^{n-2} I+q^{n-2}(q-1) J .
$$

Lemma 1.12 A matrix D satisfy the following equation:

$$
D D^{t}=q^{n-2}(q-1) J+q^{n-2} I=C C^{t} .
$$

Lemma 1.13 Matrices A and B satisfy the following:

1. $J A=\left[\begin{array}{l}k \\ 1\end{array}\right]_{q} J$
2. $J B=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Lemma 1.13 Matrices A and B satisfy the following:

1. $J A=\left[\begin{array}{l}k \\ 1\end{array}\right]_{q} J$
2. $J B=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Lemma 1.14 Matrices C and D satisfy the following:

1. $C J=q^{n-1} J$
2. $D J=q^{k}\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Lemma 1.13 Matrices A and B satisfy the following:

1. $J A=\left[\begin{array}{l}k \\ 1\end{array}\right]_{q} J$
2. $J B=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Lemma 1.14 Matrices C and D satisfy the following:

1. $C J=q^{n-1} J$
2. $D J=q^{k}\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Thank you for your attention!

Lemma 1.13 Matrices A and B satisfy the following:

1. $J A=\left[\begin{array}{l}k \\ 1\end{array}\right]_{q} J$
2. $J B=\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Lemma 1.14 Matrices C and D satisfy the following:

1. $C J=q^{n-1} J$
2. $D J=q^{k}\left[\begin{array}{c}n-k \\ 1\end{array}\right]_{q} J$.

Thank you for your attention!

