Non-holonomic equations for sub-Riemannian extremals and metrizable parabolic geometries

Jan Slovák

Masaryk University, Brno, Czech Republic
based on joint work with D. Alekseevsky, A. Medvedev, arxiv:1712.10278,
D.M.J. Calderbank, V. Souček, arxiv:1803.10482, and R. Gover, arxiv:1909.06592

June 22, 2021
Portorož, 8EMC
(1) Background

- The tractor-like view
- The Schouten and Hladky connections
(2) Non-holonomic equations
- The renormalized variational equations
- Example
(3) Underlying filtered geometry
- Canonical connections
- Underlying parabolic geometries
- Curvatures

4 Sub-Riemannian metrizability

- Metrizability of parabolic geometries
- Links to BGG machinery
(5) Thanks
(1) Background
- The tractor-like view
- The Schouten and Hladky connections
(2) Non-holonomic equations
- The renormalized variational equations
- Example
(3) Underlying filtered geometry
- Canonical connections
- Underlying parabolic geometries
- Curvatures

4 Sub-Riemannian metrizability

- Metrizability of parabolic geometries
- Links to BGG machineryThanks

Subriemannian geometry

Definition

Subriemannian geometry (M, D, S) on a manifold M is given by a distribution D, and (positive definite) metric S on D.

Subriemannian geometry

Definition

Subriemannian geometry (M, D, S) on a manifold M is given by a distribution D, and (positive definite) metric S on D.

Sheaf $\mathcal{D}^{-1}=\mathcal{D}$ of vector fields valued in D generates the filtration by sheafs

$$
\mathcal{D}^{j}=\left\{[X, Y], X \in \mathcal{D}^{j+1}, Y \in \mathcal{D}^{-1}\right\}, \quad j=-2,-3, \ldots
$$

We say that D is a bracket generating distribution if for some k, \mathcal{D}^{k} is the sheaf of all vector fields on M.

Bracket generating distribution D defines the filtration of subspaces

$$
T_{x} M=D_{x}^{k} \supset \cdots \supset D_{x}^{-1}
$$

at each point $x \in M$.
The associated graded tangent space

$$
\operatorname{gr} T_{x} M=T_{x} M / D_{x}^{k+1} \oplus \cdots \oplus D_{x}^{-1}
$$

comes equipped with the structure of a nilpotent Lie algebra.

Bracket generating distribution D defines the filtration of subspaces

$$
T_{x} M=D_{x}^{k} \supset \cdots \supset D_{x}^{-1}
$$

at each point $x \in M$.
The associated graded tangent space

$$
\operatorname{gr} T_{x} M=T_{x} M / D_{x}^{k+1} \oplus \cdots \oplus D_{x}^{-1}
$$

comes equipped with the structure of a nilpotent Lie algebra.

Definition

(M, D, S) is a sub-Riemannian geometry with constant symbol if D is bracket generating, and the nilpotent algebra $\operatorname{gr} T_{x} M$, together with the metric, is isomorphic to a fixed graded Lie algebra

$$
\mathfrak{g}_{-}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1}
$$

with a fixed metric σ on \mathfrak{g}_{-1}.

The sub-Riemannian metric can be viewed as $h: T^{*} M \rightarrow T M$ with the image D and kernel D^{\perp}.
There are the equivalent short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow K \rightarrow T^{*} M \xrightarrow{h} D \rightarrow 0 \\
& 0 \rightarrow D \rightarrow T M \xrightarrow{q} Q \rightarrow 0 .
\end{aligned}
$$

There is also the D-valued Levi-form defined by projecting the Lie bracket of vector fields in D

$$
L: D \times D \rightarrow Q
$$

Splittings of the sequences correspond to splittings of $T M$ or $T^{*} M$.

Tractor-like view

A change of splitting from s to another $\widehat{s}: Q \rightarrow T M$ may be naturally identified with a bundle map $f: Q \rightarrow D$.
Changes of splitting induce:

$$
[T M]_{s} \ni[v]_{s}=\binom{\sigma^{a}}{u^{i}}_{s} \mapsto\binom{\widehat{\sigma}^{a}}{\widehat{u}^{i}}_{\widehat{s}}=\binom{\sigma^{a}}{u^{i}-f_{a}^{i} \sigma^{a}}_{\widehat{s}}=[v]_{\widehat{s}} \in[T M]_{\widehat{s}}
$$

and similarly

$$
\binom{u^{i}}{\nu_{a}} \mapsto\binom{u^{i}}{\nu_{a}+f_{a}^{i} u_{i}} \quad \text { where } \quad u_{i}=h_{i j} u^{j}
$$

Non-holonomic Riemannian structure $\left(M, g, D, D^{\perp}\right)$

Fix an extension of the metric to the entire TM. In particular, there is the orthogonal complement D^{\perp}.
Choose $E=T M$ and for $\alpha \geq 0$

$$
\Phi_{\alpha}= \begin{cases}\operatorname{id}_{D} & \text { on } D \\ \alpha \mathrm{id}_{D^{\perp}} & \text { on } D^{\perp} .\end{cases}
$$

When α approaches zero we charge each of the D^{\perp} components of the velocities $\dot{c}(t)$ by a $1 / \alpha$ multiple of its original size with respect to g. At the $\alpha=0$ limit we obtain the original sub-Riemannian geometry.

Non-holonomic Riemannian structure $\left(M, g, D, D^{\perp}\right)$

Fix an extension of the metric to the entire TM. In particular, there is the orthogonal complement D^{\perp}.
Choose $E=T M$ and for $\alpha \geq 0$

$$
\Phi_{\alpha}= \begin{cases}\operatorname{id}_{D} & \text { on } D \\ \alpha \mathrm{id}_{D^{\perp}} & \text { on } D^{\perp} .\end{cases}
$$

When α approaches zero we charge each of the D^{\perp} components of the velocities $\dot{c}(t)$ by a $1 / \alpha$ multiple of its original size with respect to g. At the $\alpha=0$ limit we obtain the original sub-Riemannian geometry.

The Schouten connection

The projections of the Levi Civita connection to D and D^{\perp} provide the Schouten connection ∇. This is a metric connection preserving $D \oplus D^{\perp}$.

The Hladky connection

Given a sub-Riemannian geometry (M, D, h), let g be a Riemannian metric on $T M$ that restricts to h on D and write D^{\perp} for the orthogonal complement of D. Then there is the unique metric connection ${ }^{a} \nabla$ on $T M$ such that both D and D^{\perp} are preserved, and

$$
T_{D D}^{D}=0, \quad T_{D^{\perp} D^{\perp}}^{D^{\perp}}=0
$$

$T_{D D^{\perp}}^{D^{\perp}}$ is symmetric with respect to $g_{\mid D^{\perp}}$ $T_{D D^{\perp}}^{D}$ is symmetric with respect to $g_{\mid D}$.

This connection ∇ is invariant with respect to constant rescalings of g on D or D^{\perp}.

[^0](1) Background

- The tractor-like view
- The Schouten and Hladky connections
(2) Non-holonomic equations
- The renormalized variational equations
- Example
(3) Underlying filtered geometry
- Canonical connections
- Underlying parabolic geometries
- Curvatures

4 Sub-Riemannian metrizability

- Metrizability of parabolic geometries
- Links to BGG machineryThanks

Fix extension metric g of the given sub-Riemannian metric h, write $T M=D \oplus D^{\perp}$, consider the family of metrics $g_{\mid D}^{\epsilon}=g$ and $g_{D^{\perp}}^{\epsilon}=\epsilon g$. They all share the Hladky connection ∇.
We rewrite the geodesic equation for the metric minimizers of g^{ϵ} in term of ∇ and its torsion.
Write D^{ϵ} for the Levi Civita connection of g^{ϵ} and $A^{\epsilon}: T M \otimes T M \rightarrow T M$ be the contorsion tensor,

$$
D_{X}^{\epsilon} Y=\nabla_{X} Y+A^{\epsilon}(X, Y)
$$

Consider local non-holonomic frames spanning D and D^{\perp} and use indices i, j, k, \ldots and a, b, c, \ldots in relation to D and D^{\perp}, respectively, i.e., $u=u^{i}+u^{a}$ is the tangent curve $u=\dot{c}$, $\nabla=\nabla_{i}+\nabla_{a}$.
Similarly, write $g_{i j}$ and $\epsilon g_{a b}$, and torsions

$$
T^{i}{ }_{j k}+T_{j a}^{i}+T_{a b}^{i}+T^{a}{ }_{j k}+T^{a}{ }_{j b}+T^{a}{ }_{b c} .
$$

Consider local non-holonomic frames spanning D and D^{\perp} and use indices i, j, k, \ldots and a, b, c, \ldots in relation to D and D^{\perp}, respectively, i.e., $u=u^{i}+u^{a}$ is the tangent curve $u=\dot{c}$, $\nabla=\nabla_{i}+\nabla_{a}$.
Similarly, write $g_{i j}$ and $\epsilon g_{a b}$, and torsions

$$
T^{i}{ }_{j k}+T^{i}{ }_{j a}+T^{i}{ }_{a b}+T^{a}{ }_{j k}+T^{a}{ }_{j b}+T^{a}{ }_{b c} .
$$

Observations

The symmetric parts of the torsions $T^{i}{ }_{j a}$ and $T^{a}{ }_{i b}$ are given by the formula (via polarization)

$$
\langle X, T(Z, X)\rangle=\frac{1}{2} Z\|X\|^{2}+\langle X,[X, Z]\rangle
$$

The torsion $T^{a}{ }_{i j}$ is just the Levi form $L^{a}{ }_{i j}$, i.e. the projection of the Lie bracket of vector fields.

Variational equations for extremals

The variational equations $D_{u}^{\epsilon} u=0$ for the tangent curves $u=\dot{c}^{\epsilon}$ of the g^{ϵ} critical curves c^{ϵ} are

$$
\begin{aligned}
& 0= g_{i j} u^{k} \nabla_{k} u^{j}+g_{i j} u^{a} \nabla_{a} u^{j}+g_{k j} u^{k} T^{j}{ }_{i a} u^{a} \\
&+\epsilon g_{a b} u^{a} T^{b}{ }_{i c} u^{c}+\epsilon g_{a b} u^{a} T^{b}{ }_{i k} u^{k} \\
& 0=\epsilon g_{a b} u^{k} \nabla_{k} u^{b}+\epsilon g_{a b} u^{c} \nabla_{c} u^{b}+g_{i j} u^{i} T^{j}{ }_{a b} u^{b} \\
&+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+\epsilon g_{c b} u^{b} T^{c}{ }_{a k} u^{k} .
\end{aligned}
$$

The renormalization

Next we "renormalize" the D^{\perp} component u^{a} as

$$
u^{a}=\frac{1}{\epsilon} \nu^{a}
$$

and consider $\delta=1 / \epsilon$. In the limit $\delta=0$ we arrive at

$$
\begin{aligned}
& 0=g_{i j} u^{k} \nabla_{k} u^{j}+g_{a b} \nu^{a} T^{b}{ }_{i k} u^{k} \\
& 0=g_{a b} u^{k} \nabla_{k} \nu^{b}+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+g_{c b} \nu^{b} T^{c}{ }_{a k} u^{k}
\end{aligned}
$$

With the help of g, we can view the result as equations coupling the components $\left(u^{i}\right) \in \mathcal{D}$ with $\left(\nu_{a}\right)$ in the annihilator of \mathcal{D} in $T^{*} M$:

With the help of g, we can view the result as equations coupling the components $\left(u^{i}\right) \in \mathcal{D}$ with $\left(\nu_{a}\right)$ in the annihilator of \mathcal{D} in $T^{*} M$:

Theorem

For each set of initial conditions $x \in M, u(0) \in \mathcal{D} \subset T_{x} M$, and $\nu(0) \in \mathcal{D}^{\perp} \subset T_{x}^{*} M$, the component $u(t)$ of the unique solution of the equations

$$
\begin{align*}
& 0=u^{k} \nabla_{k} u^{i}+g^{i j} \nu_{a} L^{a}{ }_{i k} u^{k} \\
& 0=u^{k} \nabla_{k} \nu_{a}+g_{i j} u^{i} T^{j}{ }_{a k} u^{k}+\nu_{b} T^{b}{ }_{a k} u^{k} \tag{1}
\end{align*}
$$

projects to a locally defined normal extremal $c(t)$ of the sub-Riemannian geometry with $c(0)=x$ and $\dot{c}(t)=u(t)$.

generalized Heisenberg in 5D

Holonomic coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}, z\right), D$ spanned by

$$
\begin{array}{ll}
x_{1}=\frac{\partial}{\partial x^{1}}-x^{3} \frac{\partial}{\partial z} & x_{2}=\lambda\left(\frac{\partial}{\partial x^{2}}-x^{4} \frac{\partial}{\partial z}\right) \\
x_{3}=\frac{\partial}{\partial x^{3}}+x^{1} \frac{\partial}{\partial z} & x_{4}=\lambda\left(\frac{\partial}{\partial x^{4}}+x^{2} \frac{\partial}{\partial z}\right)
\end{array}
$$

generalized Heisenberg in 5D

Holonomic coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}, z\right), D$ spanned by

$$
\begin{array}{ll}
x_{1}=\frac{\partial}{\partial x^{1}}-x^{3} \frac{\partial}{\partial z} & x_{2}=\lambda\left(\frac{\partial}{\partial x^{2}}-x^{4} \frac{\partial}{\partial z}\right) \\
x_{3}=\frac{\partial}{\partial x^{3}}+x^{1} \frac{\partial}{\partial z} & x_{4}=\lambda\left(\frac{\partial}{\partial x^{4}}+x^{2} \frac{\partial}{\partial z}\right)
\end{array}
$$

The set of first 5 equations reads (here $u(t)=\alpha^{i} X_{i}$ in the non-holonomic frame)

$$
\begin{aligned}
\dot{x}^{1} & =\alpha^{1}, \quad \dot{x}^{2}=\lambda \alpha^{2}, \quad \dot{x}^{3}=\alpha^{3}, \quad \dot{x}^{4}=\lambda \alpha^{4}, \\
\dot{z} & =x^{1} \alpha^{3}-x^{3} \alpha^{1}+\lambda x^{2} \alpha^{4}-\lambda x^{4} \alpha^{2},
\end{aligned}
$$

Our "non-holonomic equations" then get

$$
\begin{aligned}
\dot{\alpha}^{1}= & \frac{\lambda_{x^{1}}-x^{3} \lambda_{z}}{\lambda}\left(\alpha^{2} \alpha^{2}+\alpha^{4} \alpha^{4}\right)-\nu \alpha^{3}, \\
\dot{\alpha}^{2}= & -\frac{\lambda_{x^{1}}-x^{3} \lambda_{z}}{\lambda} \alpha^{1} \alpha^{2}-\frac{\lambda_{x^{3}}+x_{1} \lambda_{z}}{\lambda} \alpha^{2} \alpha^{3}-\left(\lambda_{x^{3}}+x^{2} \lambda_{z}\right) \alpha^{2} \alpha^{4} \\
& -\left(x^{4} \lambda_{z}-\lambda_{x^{2}}\right) \alpha^{4} \alpha^{4}-\lambda^{2} \nu \alpha^{4}, \\
\dot{\alpha}^{3}= & \frac{\lambda_{x^{3}}-x^{1} \lambda_{z}}{\lambda}\left(\alpha^{2} \alpha^{2}+\alpha^{4} \alpha^{4}\right)-\nu \alpha^{1}, \\
\dot{\alpha}^{4}= & -\frac{\lambda_{x^{1}}-x^{3} \lambda_{z}}{\lambda} \alpha^{1} \alpha^{4}-\frac{\lambda_{x^{3}}+x_{1} \lambda_{z}}{\lambda} \alpha^{3} \alpha^{4}+\left(\lambda_{x^{4}}+x^{2} \lambda_{z}\right) \alpha^{2} \alpha^{2} \\
& +\left(x^{4} \lambda_{z}-\lambda_{x^{2}}\right) \alpha^{2} \alpha^{4}+\lambda^{2} \nu \alpha^{2}, \\
\dot{\nu}= & \frac{2 \lambda_{z}}{\lambda}\left(\alpha^{2} \alpha^{2}+\alpha^{4} \alpha^{4}\right) .
\end{aligned}
$$

In particular, if $\lambda_{z}=0$ then ν is a free constant parameter. These equations coincide with the standard ones if λ is a constant function.
(1) Background

- The tractor-like view
- The Schouten and Hladky connections
(2) Non-holonomic equations
- The renormalized variational equations
- Example
(3) Underlying filtered geometry
- Canonical connections
- Underlying parabolic geometries
- Curvatures

4) Sub-Riemannian metrizability

- Metrizability of parabolic geometries
- Links to BGG machinery

Thanks

Prolongation of sub-Riemannian geometries

Let $\mathfrak{g}_{0} \subset \mathfrak{s o}\left(\mathfrak{g}_{-1}\right)$ be the Lie algebra of the Lie group G_{0} of all automorphisms of the graded nilpotent algebra \mathfrak{g}_{-}preserving the metric σ on \mathfrak{g}_{-1}.
The action of the derivations from \mathfrak{g}_{0} on \mathfrak{g}_{-}extends the Lie algebra structure on \mathfrak{g}_{-}to the Lie algebra

$$
\mathfrak{g}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}
$$

Prolongation of sub-Riemannian geometries

Let $\mathfrak{g}_{0} \subset \mathfrak{s o}\left(\mathfrak{g}_{-1}\right)$ be the Lie algebra of the Lie group G_{0} of all automorphisms of the graded nilpotent algebra \mathfrak{g}_{-}preserving the metric σ on \mathfrak{g}_{-1}.
The action of the derivations from \mathfrak{g}_{0} on \mathfrak{g}_{-}extends the Lie algebra structure on \mathfrak{g}_{-}to the Lie algebra

$$
\mathfrak{g}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0}
$$

Observation 1

The Tanaka prolongation of \mathfrak{g} is finite. ${ }^{a}$
${ }^{a}$ Corollary 2 of Theorem 11.1 in Tanaka, N., On differential systems, graded Lie algebras and pseudo-groups, J. Math. Koyto Univ., 10, 1 (1970), 1-82.

Observation 2

Already the first prolongation is trivial. ${ }^{a}$ Thus \mathfrak{g} is the full prolongation of \mathfrak{g}_{-}.
${ }^{2}$ Yatsui, T., On pseudo-product graded Lie algebras, Hokkaido Math. J., 17 (1988), 333-343.

Observation 2

Already the first prolongation is trivial. ${ }^{a}$ Thus \mathfrak{g} is the full prolongation of \mathfrak{g}_{-}.
> ${ }^{2}$ Yatsui, T., On pseudo-product graded Lie algebras, Hokkaido Math. J., 17 (1988), 333-343.

Theorem

For each subriemannian manifold (M, D, S) with constant symbol, there is the unique Cartan connection $(\mathcal{G} \rightarrow M, \omega)$ of type $\left(\mathfrak{g}, G_{0}\right)$ with the curvature function $\kappa: \mathcal{G} \rightarrow \mathfrak{g} \otimes \Lambda^{2} \mathfrak{g}_{-}^{*}$ satisfying $\partial^{*} \kappa=0$. Via the Bianchi identities, the entire curvature is obtained from its harmonic projection κ_{H}, i.e. the component with $\partial \kappa_{H}=0$ as well. ${ }^{a}$

[^1]
Underlying filtered geometry

The distribution D on M itself often defines a nice finite type filtered geometry which enjoys a canonical Cartan connection, too. Many of them belong to the class of the parabolic geometries, for which the full Tanaka prolongation of \mathfrak{g}_{-}is a semisimple Lie algebra

$$
\overline{\mathfrak{g}}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \overline{\mathfrak{g}}_{0} \oplus \overline{\mathfrak{g}}_{1} \oplus \cdots \oplus \overline{\mathfrak{g}}_{k}
$$

and $\mathfrak{g}_{-}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1}$ is the opposite nilpotent radical to the parabolic subalgebra $\mathfrak{p}=\overline{\mathfrak{g}}_{0} \oplus \cdots \oplus \overline{\mathfrak{g}}_{k} \subset \overline{\mathfrak{g}}$, with $\mathfrak{g}_{0} \subset \overline{\mathfrak{g}}_{0}$.

Fix one such graded semisimple \bar{g} and consider the frame bundle $\mathcal{G}_{0} \rightarrow M$ of gr TM giving a parabolic geometry. Often the structure group G_{0} of \mathcal{G}_{0} is the full group of graded automorphisms of $\mathfrak{g}_{-} .{ }^{1}$ Adding a metric S on D, we have got two (related) Cartan connections there.
${ }^{1}$ See Čap, A., Slovák, J., Parabolic Geometries I, Background and General Theory, AMS, Math. Surveys and Monographs 154, x+628pp. for details.

Fix one such graded semisimple \bar{g} and consider the frame bundle $\mathcal{G}_{0} \rightarrow M$ of gr TM giving a parabolic geometry. Often the structure group G_{0} of \mathcal{G}_{0} is the full group of graded automorphisms of \mathfrak{g} _. ${ }^{1}$ Adding a metric S on D, we have got two (related) Cartan connections there.

Theorem

Consider a bracket generating distribution D on M with the constant symbol equal to the negative part of a graded semisimple Lie algebra $\overline{\mathfrak{g}}$ and the corresponding frame bundle $\mathcal{G}_{0} \rightarrow M$ of gr TM. Then there is the unique Cartan connection $(\overline{\mathcal{G}} \rightarrow M, \omega)$ of type $(\overline{\mathfrak{g}}, P)$ with the curvature function $\bar{\kappa}: \overline{\mathcal{G}} \rightarrow \overline{\mathfrak{g}} \otimes \Lambda^{2} \mathfrak{g}_{-}^{*}$ satisfying $\partial^{*} \bar{\kappa}=0$. Via the Bianchi identities, the entire curvature is obtained from its harmonic projection $\bar{\kappa}_{H}$, i.e. the component with $\partial \bar{\kappa}_{H}=0$ as well.

[^2]Consider a parabolic geometry (M, D) equipped by the metric S on D, assume (M, D, S) has got constant symbol.
Thus we have got:

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \\
& \overline{\mathfrak{g}}=\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1} \oplus \overline{\mathfrak{g}}_{0} \oplus \overline{\mathfrak{g}}_{1} \oplus \cdots \oplus \overline{\mathfrak{g}}_{k}
\end{aligned}
$$

This is an instance of a \mathfrak{g}_{-}-submodule W of \mathfrak{g}_{-}-module V.

The short exact sequence:

$$
0 \longrightarrow W \longrightarrow V \longrightarrow V / W \longrightarrow 0
$$

induces the short exact sequence of differential complexes

$$
0 \longrightarrow C^{\bullet}\left(\mathfrak{g}_{-}, W\right) \xrightarrow{i} C^{\bullet}\left(\mathfrak{g}_{-}, V\right) \xrightarrow{\pi} C^{\bullet}\left(\mathfrak{g}_{-}, V / W\right) \longrightarrow 0
$$

and thus the long exact sequence in cohomologies

$$
\begin{aligned}
& \longrightarrow H^{n}\left(\mathfrak{g}_{-}, W\right) \xrightarrow{i} H^{n}\left(\mathfrak{g}_{-}, V\right) \xrightarrow{\pi} H^{n}\left(\mathfrak{g}_{-}, V / W\right) \\
& \longleftrightarrow H^{n+1}\left(\mathfrak{g}_{-}, W\right) \xrightarrow{i} H^{n+1}\left(\mathfrak{g}_{-}, V\right) \xrightarrow{\pi} H^{n+1}\left(\mathfrak{g}_{-}, V / W\right) \longrightarrow
\end{aligned}
$$

The differentials ∂ respect our gradings, thus we get grading on the cohomology spaces, too. Clearly, we may consider the sequences for the individual homogeneities separately.

The differentials ∂ respect our gradings, thus we get grading on the cohomology spaces, too. Clearly, we may consider the sequences for the individual homogeneities separately. Notice, the filtration is induced by the distribution D and we declare its symbol to be equal to the Lie algebra \mathfrak{g}_{-}at all points. Thus, all the curvature homogeneities ≤ 0 vanish.

Theorem

Let $\overline{\mathfrak{g}}=\overline{\mathfrak{g}}_{-} \oplus \overline{\mathfrak{g}}_{0} \oplus \overline{\mathfrak{g}}_{+}$be a graded Lie algebra and $\mathfrak{g}=\mathfrak{g}_{-} \oplus \mathfrak{g}_{0}$ be a non-positively graded Lie algebra such that $\mathfrak{g}_{-}=\overline{\mathfrak{g}}_{-}$and $\mathfrak{g}_{0} \subset \overline{\mathfrak{g}}_{0}$. The cohomology $H_{>0}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ as a \mathfrak{g}_{0}-submodule is isomorphic to a direct sum of 2 parts:
(1) $H_{>0}^{1}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}} / \mathfrak{g}\right) / H_{>0}^{1}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}}\right)$,
(2) $\operatorname{ker} \pi \subset H_{>0}^{2}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}}\right)$,
where $\pi: H_{>0}^{2}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}}\right) \rightarrow H_{>0}^{2}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}} / \mathfrak{g}\right)$ is the projection induced by the projection in cochains $\pi: C_{>0}^{2}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}}\right) \rightarrow C_{>0}^{2}\left(\mathfrak{g}_{-}, \overline{\mathfrak{g}} / \mathfrak{g}\right)$.
(1) Background

- The tractor-like view
- The Schouten and Hladky connections
(2) Non-holonomic equations
- The renormalized variational equations
- Example
(3) Underlying filtered geometry
- Canonical connections
- Underlying parabolic geometries
- Curvatures

4 Sub-Riemannian metrizability

- Metrizability of parabolic geometries
- Links to BGG machinery

Recall, many generic bracket generating distributions $\mathcal{H} \subset T M$ define a parabolic geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P). This is a special type of Cartan geometries modelled over $G \rightarrow G / P$ with G semisimple and P parabolic, with the Maurer-Cartan form ω.

Recall, many generic bracket generating distributions $\mathcal{H} \subset T M$ define a parabolic geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P). This is a special type of Cartan geometries modelled over $G \rightarrow G / P$ with G semisimple and P parabolic, with the Maurer-Cartan form ω.
The curved parabolic geometries always come equipped with the class of Weyl connections modelled over one-forms.

Recall, many generic bracket generating distributions $\mathcal{H} \subset T M$ define a parabolic geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P). This is a special type of Cartan geometries modelled over $G \rightarrow G / P$ with G semisimple and P parabolic, with the Maurer-Cartan form ω.
The curved parabolic geometries always come equipped with the class of Weyl connections modelled over one-forms.

sub-Riemannian metrizability

With G semisimple and $P \subset G$ parabolic, there is the class $\left[\nabla_{\mid \mathcal{H}}\right]$ of partial Weyl connections on M and we may look for metrics on \mathcal{H} parallel in the \mathcal{H}-directions for at least one of the connections in the class.

The homogeneous model

On $M=G / P$, the exponential coordinates identify the big cell $\exp \mathfrak{g}_{-} \subset M$ with the nilpotent group.
This identification yields the reduction of $G \rightarrow G / P$ to the Levi factor P_{0} of P and thus the (very flat) Weyl connection ∇ (as a reduction of the Maurer Cartan form ω).
Any metric on $\mathfrak{h} \subset T_{O} M$ in the origin can be uniquely extended by left shifts and this provides a parallel metric on the big cell. This is the usual nilpotent approximation in the geometric control theory.

The homogeneous model

On $M=G / P$, the exponential coordinates identify the big cell $\exp \mathfrak{g}_{-} \subset M$ with the nilpotent group.
This identification yields the reduction of $G \rightarrow G / P$ to the Levi factor P_{0} of P and thus the (very flat) Weyl connection ∇ (as a reduction of the Maurer Cartan form ω).
Any metric on $\mathfrak{h} \subset T_{O} M$ in the origin can be uniquely extended by left shifts and this provides a parallel metric on the big cell.
This is the usual nilpotent approximation in the geometric control theory.
Our aim is to consider the G_{0}-irreducible components of the metrics on \mathfrak{h} with G-dominant highest weights. Let us write W for those tractors. It turns out that under certain conditions on the weights (limited number of components in certain tensor products), the space of the metrics admitting parallel Weyl connections is in 1-1 correspondence with the parallel tractors.

The metric tractor bundle and first BGG operator

Consider \mathcal{V}, a bundle coming from a G representation \mathbb{V}. There is the so called BGG sequence of invariant operators. All the bundles here come from P-modules with \mathfrak{p}-dominant highest weights on the same affine orbit of the Weyl group as \mathbb{V}.

The metric tractor bundle and first BGG operator

Consider \mathcal{V}, a bundle coming from a G representation \mathbb{V}. There is the so called BGG sequence of invariant operators. All the bundles here come from P-modules with \mathfrak{p}-dominant highest weights on the same affine orbit of the Weyl group as \mathbb{V}. The first BGG operator D is defined on the bundle defined by the highest weight of \mathbb{V} viewed as a weight for a P-module and it is always an overdetermined operator.

The metric tractor bundle and first BGG operator

Consider \mathcal{V}, a bundle coming from a G representation \mathbb{V}. There is the so called BGG sequence of invariant operators. All the bundles here come from P-modules with \mathfrak{p}-dominant highest weights on the same affine orbit of the Weyl group as \mathbb{V}. The first BGG operator D is defined on the bundle defined by the highest weight of \mathbb{V} viewed as a weight for a P-module and it is always an overdetermined operator.
On the homogenous model $G / P, D$ has got the maximal space of global solutions, parametrized by the representation space \mathbb{V} (the kernel of the operator is in bijective correspondence with the space of parallel sections of the tractor bundle in question).

The metric tractor bundle and first BGG operator

Consider \mathcal{V}, a bundle coming from a G representation \mathbb{V}.
There is the so called BGG sequence of invariant operators. All the bundles here come from P-modules with \mathfrak{p}-dominant highest weights on the same affine orbit of the Weyl group as \mathbb{V}.
The first BGG operator D is defined on the bundle defined by the highest weight of \mathbb{V} viewed as a weight for a P-module and it is always an overdetermined operator.
On the homogenous model $G / P, D$ has got the maximal space of global solutions, parametrized by the representation space \mathbb{V} (the kernel of the operator is in bijective correspondence with the space of parallel sections of the tractor bundle in question).
The solutions are always expressed by polynomial formulae in the flat normal coordinates at the homogenous model.

The metric tractor bundle and first BGG operator

Consider \mathcal{V}, a bundle coming from a G representation \mathbb{V}. There is the so called BGG sequence of invariant operators. All the bundles here come from P-modules with \mathfrak{p}-dominant highest weights on the same affine orbit of the Weyl group as \mathbb{V}. The first BGG operator D is defined on the bundle defined by the highest weight of \mathbb{V} viewed as a weight for a P-module and it is always an overdetermined operator.
On the homogenous model $G / P, D$ has got the maximal space of global solutions, parametrized by the representation space \mathbb{V} (the kernel of the operator is in bijective correspondence with the space of parallel sections of the tractor bundle in question).
The solutions are always expressed by polynomial formulae in the flat normal coordinates at the homogenous model.
Still true for those solutions on general curved geometries which are determined by parallel sections of the corresponding tractor bundle, the so called normal solutions.

The free distribution case

Here $\mathfrak{g}=\mathfrak{s o}(n+1, n)=\Lambda^{2} \mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{g l}(\mathfrak{h}) \oplus \mathfrak{h}^{*} \oplus \Lambda^{2} \mathfrak{h}^{*}, \mathcal{B}=S^{2} \mathfrak{h}$ is irreducible and satisfies the ALC.

The free distribution case

Here $\mathfrak{g}=\mathfrak{s o}(n+1, n)=\Lambda^{2} \mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{g l}(\mathfrak{h}) \oplus \mathfrak{h}^{*} \oplus \Lambda^{2} \mathfrak{h}^{*}, \mathcal{B}=S^{2} \mathfrak{h}$ is irreducible and satisfies the ALC.
The standard tractor bundle is the bundle associated to the defining representation V of $G=S O(n+1, n)$. Explicitly, $v=\left(\lambda^{a}, \tau, \ell_{a}\right)^{T}$ with the action

$$
\left(\begin{array}{ccc}
0 & x^{a} & y^{a b} \\
0 & 0 & -x^{a} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\lambda^{b} \\
\tau \\
\ell_{b}
\end{array}\right)=\left(\begin{array}{c}
x^{a} \tau+y^{a b} \ell_{b} \\
-x^{b} \ell_{b} \\
0
\end{array}\right) .
$$

The metric tractor bundle in this example is associated to the symmetric tracefree square $S_{0}^{2} V$ of V.

The free distribution case

Here $\mathfrak{g}=\mathfrak{s o}(n+1, n)=\Lambda^{2} \mathfrak{h} \oplus \mathfrak{h} \oplus \mathfrak{g l}(\mathfrak{h}) \oplus \mathfrak{h}^{*} \oplus \Lambda^{2} \mathfrak{h}^{*}, \mathcal{B}=S^{2} \mathfrak{h}$ is irreducible and satisfies the ALC.
The standard tractor bundle is the bundle associated to the defining representation V of $G=S O(n+1, n)$. Explicitly, $v=\left(\lambda^{a}, \tau, \ell_{a}\right)^{T}$ with the action

$$
\left(\begin{array}{ccc}
0 & x^{a} & y^{a b} \\
0 & 0 & -x^{a} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\lambda^{b} \\
\tau \\
\ell_{b}
\end{array}\right)=\left(\begin{array}{c}
x^{a} \tau+y^{a b} \ell_{b} \\
-x^{b} \ell_{b} \\
0
\end{array}\right) .
$$

The metric tractor bundle in this example is associated to the symmetric tracefree square $S_{0}^{2} V$ of V.
The normal solutions are (in the normal coordinates) given by

$$
\begin{aligned}
\eta^{a b}(x, y)= & \nu^{a b}+x^{(a} \sigma^{b)}-y^{c(a} \psi_{c}^{b)}+\frac{1}{2} x^{c} x^{(a} \psi_{c}^{b)}+x^{(a} y^{b) c} \xi_{c}+\frac{1}{2} x^{a} x^{b} \psi_{c}^{c} \\
& +\frac{2}{3} x^{a} x^{b} x^{c} \xi_{c}-\frac{1}{3} x^{(a} y^{b) c} x^{d} \tau_{d c}-\frac{1}{6} x^{a} x^{b} x^{c} x^{d} \tau_{c d}
\end{aligned}
$$

The following tables classify triples $\mathfrak{p}, \mathfrak{g}, B$, where ∂ is a parabolic subalgebra in a real simple Lie algebra \mathfrak{g}, and B is an irreducible \mathfrak{p}-submodule of $S^{2} \mathfrak{h}$, with $\mathfrak{h} \cong\left(\mathfrak{p}^{\perp} /\left[\mathfrak{p}^{\perp}, \mathfrak{p}^{\perp}\right]\right)^{*}$ irreducible, satisfying the ALC and admiting nondegenerate elements. There are 14 infinite series of geometries and 6 special cases.

The following tables classify triples $\mathfrak{p}, \mathfrak{g}, B$, where ∂ is a parabolic subalgebra in a real simple Lie algebra \mathfrak{g}, and B is an irreducible \mathfrak{p}-submodule of $S^{2} \mathfrak{h}$, with $\mathfrak{h} \cong\left(\mathfrak{p}^{\perp} /\left[\mathfrak{p}^{\perp}, \mathfrak{p}^{\perp}\right]\right)^{*}$ irreducible, satisfying the ALC and admiting nondegenerate elements. There are 14 infinite series of geometries and 6 special cases.

Complex geometries with hermitian B

Case	Diagram Δ_{ℓ} for \mathfrak{p}, B	Real simple \mathfrak{g}	Growth
A_{ℓ}^{h}	$1 \bullet \cdots \times \times \ldots{ }^{1}$	$\mathfrak{s l}(\ell+1, \mathbb{C}) \quad \ell \geq 2$	2ℓ
B_{ℓ}^{h}	$1 \quad \cdots \cdots \Leftrightarrow+\cdots$	$\mathfrak{s o}(2 \ell+1, \mathbb{C}) \quad \ell \geq 2$	$2 k, 2 k+k(k-1)$
G_{2}^{h}	$\begin{array}{ll} 1 \\ \Longleftrightarrow \end{array}$	$G_{2}^{\text {C }}$	4, 6, 10

Real geometries with absolutely irreducible \mathfrak{h}

Case	Diagram Δ_{ℓ} for \mathfrak{p}, B	Real simple \mathfrak{g}	Growth
$A_{\ell}^{1,1}$	+ $\quad \ldots$	$\mathfrak{s l}(\ell+1, \mathbb{R}) \quad \ell \geq 2$	ℓ
$A_{\ell}^{1,2}$	$\bullet \times \ldots{ }^{1}$.	$\begin{aligned} & \mathfrak{s} l(\ell+1, \mathbb{R}), \mathfrak{s l}(p+1, \mathbb{H}) \\ & \ell=2 p+1, p \geq 2 \end{aligned}$	$4 p$
$B_{\ell}^{1, k}$	$\stackrel{2}{\bullet} \cdot \cdots \cdot \frac{x}{x} \cdot \cdots \Leftrightarrow$	$\begin{aligned} & \mathfrak{s o}(p, q), k \leq p \leq q \\ & p+q=2 \ell+1 \end{aligned}$	$\begin{aligned} d & =k(2 \ell-2 k+1), \\ n & =d+\frac{1}{2} k(k-1) \end{aligned}$
$B_{\ell}^{1, \ell}$	$2 \quad \bullet \ldots \Leftrightarrow x$	$\mathfrak{s o}(\ell, \ell+1) \ell \geq 2$	$k, k+\frac{1}{2} k(k-1)$
$C_{4}^{1,2}$	$\cdots \quad x \quad 1$	$\begin{aligned} & \mathfrak{s p (8 , \mathbb { R })} \\ & \mathfrak{s p}(2,2) \quad \mathfrak{s p}(1,3) \end{aligned}$	8,11
$C_{\ell}^{1, k}$	$\stackrel{1}{\bullet \cdots \neq 2 j \geq 4} \times \cdots$	$\begin{aligned} & \mathfrak{s p (2 \ell , \mathbb { R }) \mathfrak { s p (p , q) }} \begin{array}{l} \quad \ell=p+q, k \leq p \leq q \end{array} \end{aligned}$	$\begin{aligned} & d=k(2 \ell-2 k), \\ & n=d+\frac{1}{2} k(k+1) \end{aligned}$
$D_{\ell}^{1, k}$	$\stackrel{2}{\bullet} \cdot \cdots \cdot \underset{k}{x} \bullet \cdots \cdot$	$\mathfrak{s o}(p, q)$ $\mathfrak{s o}^{*}(2 \ell)$ $2 \ell=p+q$ $k=2 j$ $k \leq p \leq q$ $k \leq \ell-2$	$\begin{aligned} & d=k(2 \ell-2 k), \\ & n=d+\frac{1}{2} k(k-1) \end{aligned}$
$E_{6}^{1,1}$	$\times \bullet \bullet$ -	$E_{6(6)}, E_{6(-26)}$	16
$G_{2}^{1,1}$	${ }^{2}$	$G_{2(2)}$	2, 3, 5

Real geometries with \mathfrak{h} not absolutely irreducible

Case	Diagram Δ_{ℓ} for \mathfrak{p}, B	Real simple \mathfrak{g}	Growth
$A_{3}^{2,1}$	$\stackrel{2}{\longleftrightarrow}$	$\mathfrak{s u}(1,3), \mathfrak{s} u(2,2)$	4, 5
$A_{\ell}^{2, k}$	$\stackrel{1}{\bullet} \cdot \ldots \cdot{ }_{k \geq 2}^{x} \cdot \cdots \cdot{ }_{\ell-k}^{\times} \cdot \cdots \stackrel{1}{\bullet}$	$\begin{aligned} & \mathfrak{s u} u(p, q), k \leq p \leq q \\ & \ell=p+q-1 \geq 4 \end{aligned}$	$\begin{aligned} & d=2 k(\ell-2 k+1 \\ & n=d+k^{2} \end{aligned}$
$A_{\ell}^{2, h}$		$\begin{aligned} & \mathfrak{s u} u(p, q), 2 \leq p \leq q \\ & \ell=p+q-1 \geq 6 \end{aligned}$	$4(\ell-3), 4(\ell-2)$
$A_{2 k+1}^{2, s}$		$\begin{aligned} & \mathfrak{s u} u(k, k+2), \\ & \mathfrak{s} u(k+1, k+1) \\ & \ell=2 k+1 \geq 7 \end{aligned}$	$4 k, 4 k+k^{2}$
$A_{2 k}^{2, s}$		$\begin{aligned} & \mathfrak{s u} u(k, k+1) \\ & \ell=2 k \geq 4 \end{aligned}$	$2 k, 2 k+k^{2}$
$D_{\ell}^{2, s}$	$2 \cdot x^{x}$	$\begin{aligned} & \mathfrak{s o}(\ell-1, \ell+1) \\ & \mathfrak{s o}^{*}(2 \ell), \ell=2 j+1 \end{aligned}$	$\begin{aligned} & d=2(\ell-1) \\ & d+\frac{1}{2}(\ell-1)(\ell- \end{aligned}$
$D_{\ell}^{2, h}$		$\begin{aligned} & \mathfrak{s o}(\ell-1, \ell+1) \\ & \mathfrak{s o}^{*}(2 \ell), \ell=2 j+1 \end{aligned}$	$\begin{aligned} & d=2(\ell-1), \\ & d+\frac{1}{2}(\ell-1)(\ell- \end{aligned}$
$E_{6}^{2, h}$		$E_{6(2)}$	$16,24$

(1) Background

- The tractor-like view
- The Schouten and Hladky connections
(2) Non-holonomic equations
- The renormalized variational equations
- Example
(3) Underlying filtered geometry
- Canonical connections
- Underlying parabolic geometries
- Curvatures

4) Sub-Riemannian metrizability

- Metrizability of parabolic geometries
- Links to BGG machinery

(5) Thanks

HOPE TO SEE SOME MORE EXAMPLES AND APPLICATIONS !!

Thank you for attention!

[^0]: ${ }^{\text {a }}$ R.K. Hladky, Connections and curvature in sub-Riemannian geometry. Houston J. Math. 38 (2012), no. 4, 1107-1134, see also F. Baudoin, E. Grong, G. Molino, L. Rizzi, Comparison theorems on H-type sub-Riemannian manifolds, arXiv:1909.03532

[^1]: ${ }^{a}$ Morimoto, T., Cartan connection associated with a subriemannian structure, Differential Geometry and its Applications 26 (2008), 75-78.

[^2]: ${ }^{1}$ See Čap, A., Slovák, J., Parabolic Geometries I, Background and General Theory, AMS, Math. Surveys and Monographs 154, x+628pp. for detaits.

