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Semiregular Convex Polyhedra

Facets are regular convex polygons. Vertex-transitive

symmetry group.

• Platonic solids, Archimedean solids, prisms, antiprisms



Semiregular Convex n-Polytopes, n ≥ 4

Facets are regular (n − 1)-polytopes. Vertex-transitive
symmetry group.

Case n = 4: facets are Platonic solids, different shapes.

• Three polytopes for n = 4, and one each for n = 5,6,7,8,

in addition to the regular polytopes.

• Case n = 4: t1{3,3,3}, snub 24-cell, and t1{3,3,5}.

Schlegel diagram for t1{3,3,3}

Facets octahedra, tetrahedra



• Case n = 5: half-5-cube

(facets are 4-crosspolytopes and 4-simplices).

• Case n = 6,7,8: Gosset polytopes 221, 321, 421 related to

the Coxeter groups E6, E7 and E8

(via Wythoff’s construction, with first node of Coxeter diagram ringed)

symbol facet types vert. vertex-fig.

221 5-simpl (72), 5-crossp (27) 27 half-5-cubes

321 6-simpl (567), 6-crossp (126) 56 221

421 7-simpl (17280), 7-crossp (2160) 240 321

421 is the E8 root polytope (convex hull of root system E8).

Semiregular polytopes are uniform polytopes.



Abstract Polytopes P of rank n

Ranked partially ordered sets, elements called faces.

(I1) Smallest and largest face (of ranks -1, n)

(I2) All flags contains exactly n+2 faces

(I3) P connected

(I4) Intervals of rank 1 are diamonds:
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Rank 3: maps on closed surfaces



Rank n ≥ 4: How about polytopes of rank 4?

Local picture for a 4-polytope of type {4,4,3}

Torus maps {4,4}(s,0) as facets & Cubes {4,3} as vertex-figures

2 tori meeting at each 2-face

3 tori surround each edge

6 tori surround each vertex

P regular iff Γ(P) flag transitive.

P semi-regular iff facets regular and Γ(P) vertex-transitive.



Semiregular abstract polytopes

• Facets regular polytopes, and automorphism group vertex-
transitive.

• n = 3: Every vertex-transitive abstract polyhedron is semiregular.

(Small genera: Nedela, Karabas, Pellicer, Weiss, ...)

• n = 4: semiregular tessellation T of E3 by tetrahedra and
octahedra. Alternating! Cuboctahedral vertex-figures



Alternating semiregular polytopes S

• Facets of S all regular, group Γ(S) vertex-transitive.

• Two kinds of regular facets P and Q alternate around each
face of S of co-rank 2.

Facets P and Q must be compatible: their own facets
must be isomorphic, to some polytope K.

• Tomotope S: two hemi-octahedra P and two tetrahedra
Q alternate around an edge of S

2 is called the interlacing number of P and Q in S.

• n = 2: P triangle, Q hexagon



Universal alternating semiregular polytopes

Input: any two regular n-polytopes P and Q with isomorphic

facets K.

• The universal U(P,Q) exists for all compatible P and Q!

It is semiregular and alternating, with infinitely many copies

of P and Q appearing alternately at each face of co-rank 2).

• Γ := Γ(P )∗Γ(K)Γ(Q) = 〈α0, . . . , αn−2, αn−1, βn−1〉
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Questions

• How about finite alternating examples?

• Interlacing number k: number of facets of each kind

around a ridge (corank-2 face).

• Assembly Problem: For any P and Q and any preas-

signed interlacing number k, does there exist an alternating

semiregular (n+ 1)-polytope S with facets P and Q?



Tail-triangle group Γ = 〈α0, . . . , αn−2, αn−1, βn−1〉,
with intersection property

v v

v

v

v v �
�
�
�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q
Q
Q

αn−3 αn−2α0 α1 . . . . . .

βn−1

αn−1

k

←− P

& possibly more rels.

←− Q

p1 pn−2

pn−1

qn−1

Rank n+ 1 polytope S

• j-faces for j ≤ n− 2

(right) cosets of Γj := 〈α0, . . . , αj−1, αj+1, . . . , αn−1, βn−1〉

• (n− 1)-faces

cosets of Γn−1 := 〈α0, . . . , αn−2〉



• n-faces

cosets of Γn, with Γn either given by

ΓPn := 〈α0, . . . , αn−1〉 or ΓQn := 〈α0, . . . , αn−2, βn−1〉.

• partial order: Γjν < Γkµ iff j < k and Γjν ∩ Γkµ 6= ∅



Universal Uk(P,Q)

Now: finite interlacing number k

Tail-triangle group Γ = 〈α0, . . . , αn−2, αn−1, βn−1〉
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No additional relations!

If any alternating semiregular polytope S with inter-
lacing number k exists, then Uk(P,Q) also exists and
covers S.



Cubes/Hemicubes

Odd interlacing number k always possible? NO!

• P = {4,3}3 (hemicube), Q = {4,4}(2,0) (2 × 2 square

torus). Cannot be assembled for any odd k.

Now k = 2.

• P = {4,3}3 (hemicube), Q = {4,4}(s,0) (s × s square

torus), s odd. Cannot be assembled with k = 2.
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• P = {4,3}3 (hemicube), Q = {4,4}(s,0), s ≥ 4 even. Can

be assembled with k = 2! Now U2(P,Q) is finite, with a

group of order 24s3.

• P = {4,3} (cube), Q = {4,4}(s,0), any s ≥ 2. Can be

assembled with k = 2!
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S = U2(P,Q) and Γ(S) = Ws n D3, where Ws is a Coxeter

group with a hexagonal diagram with all branches marked s.

S is finite iff s = 2, with Γ(S) = C6
2 nD3 if s = 2.



• P = {4,3, . . . ,3,3}n (n-hemicube) and Q = {4,3 . . . ,3,4}(s,0,...,0)
(s× s× . . .× s cubical n-toroid).

Cannot be assembled with k = 2, for any n ≥ 3 and s odd!
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3× 3× 3 cubical toroid {4,3,4}(3,0,0)



• How about hemi-octahedra and tetrahedra as facets?

Tomotope: 4 vertices, 12 edges, 16 triangles, 4 tetrahedra & 4 hemi-

octahedra.

Vertex-figures hemi-cuboctahedra. Group order 96.

(Monson, Pellicer, Williams)



Hexagonal torus map

• P = {6,3}(1,1), and Q either {6,3} or any map {6,3}(b,c)
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& (α0α1α2)2 = 1 & one rel.

Assembly with k = 2 only possible when Q = {6,3}(2,2) or

Q = P (in this case Γ has order 576 or 144).

P = {6,3}(1,1) and Q = {6,3}(2,0) cannot be assembled for

k = 4 either! Group collapses!



Some conjectures

• Conj. 1: If Uk(P,Q) exists and k |m, then Um(P,Q) exists.

• Conj. 2: Given compatible P,Q there are infinitely many

integers k ≥ 2 such that Uk(P,Q) exist.

(Recall that U∞(P,Q) exists! Maybe for k large enough.)

• Conj. 3: For any even k ≥ 2, there exist compatible P,Q

such that Uk(P,Q) does not exist.



Universal Uk(P,Q) when P = {4,4}(r,0), Q = {4,4}(s,0)
(r, s, k ≥ 2)

Uk(P,Q) has group W (r, s, k) n C2, where W (r, s, k) is the

Coxeter group with diagram
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Uk(P,Q) always infinite, as are its vertex-figures.



Some constructions

• Small examples with k = 2 exist for many choices of P,Q!

If Γ(P ) = NP n Γ(K) and Γ(Q) = NQ n Γ(K), then

Γ := (NP ×NQ) n Γ(K)

is a tail-triangle C-group giving an alternating semiregular

polytope S with facets P,Q and k = 2.

Smallness : f0(S) = f0(P)f0(Q)/f0(K), fn(S) = fn−1(P)+fn−1(Q).

Examples: P,Q taken from {4,4}(2t,0), {4,4}(2t,2t) or {3,6}(3t,0),

for t ≥ 1.



P = {4,4}(2s,0), Q = {4,4}(2t,0)
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Γ = (Ds ×Ds ×Dt ×Dt) nD4,

#(vertices of S) = 4s2t2, #(facets of S) = 4(s2 + t2)



• Many finite examples by modular reduction from crystal-

lographic Coxeter groups!

p prime, p 6= 2: O(4, p,±1), O1(4, p,±1)t �
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P = {3,4} (octahedron), Q a certain map of type {3, p} with

group PSL(Zp) n C2 or PGL(Zp) n C2

p = 3,5,7: Q is the tetrahedron {3,3}, icosahedron {3,5},
or Klein map {3,7}8, resp.

Future work by Kadin (Finn) Prideaux!



Abstract

Geometry and Combinatorics of Semiregular Polytopes

Traditionally, a polyhedron or polytope is semiregular if its

facets are regular and its symmetry group is transitive on ver-

tices. We briefly review the semiregular convex polytopes,

and then discuss semiregular abstract polytopes, which have

abstract regular facets, still with combinatorial automor-

phism group transitive on vertices. Our focus is on alternat-

ing semiregular polytopes, with two kinds of regular facets

occurring in an alternating fashion. The cuboctahedron is a

familiar example in rank 3. We then describe recent progress

on the assembly problem for alternating semiregular poly-

topes: which pairs of regular n-polytopes can occur as facets



of a semiregular (n+1)-polytope. If time permits, we brief

discuss semiregularity in the context of skeletal polyhedra in

3-space. Most work is joint with Barry Monson.


