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Semiregular Convex Polyhedra

Facets are regular convex polygons. Vertex-transitive
symmetry group.

e Platonic solids, Archimedean solids, prisms, antiprisms
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Semiregular Convex n-Polytopes, n > 4

Facets are regular (n — 1)-polytopes. Vertex-transitive
symmetry group.

Case n = 4: facets are Platonic solids, different shapes.

e Three polytopes for n =4, and one each for n=5,6,7,8,
in addition to the regular polytopes.

o Casen=4: t1{3,3,3}, snub 24-cell, and t1{3,3,5}.

Schlegel diagram for t1{3, 3, 3}

Facets octahedra, tetrahedra



e Case n=05: half-b-cube
(facets are 4-crosspolytopes and 4-simplices).

e Casen =6,7,8:. Gosset polytopes 251, 351, 4-71 related to
the Coxeter groups Eg, /7 and Eg

(via Wythoff's construction, with first node of Coxeter diagram ringed)

symbol | facet types vert. | vertex-fig.
251 5-simpl (72), 5-crossp (27) 27 | half-5-cubes
351 6-simpl (567), 6-crossp (126) 56 251
41 7-simpl (17280), 7-crossp (2160) | 240 321

451 is the Eg root polytope (convex hull of root system Eg).

Semiregular polytopes are uniform polytopes.



Abstract Polytopes P of rank n

Ranked partially ordered sets, elements called faces.

(I1) Smallest and largest face (of ranks -1, n)
(I2) AIll flags contains exactly n+42 faces
(I3) P connected 1+ 1

(14) Intervals of rank 1 are diamonds: )

Rank 3: maps on closed surfaces




Rank n > 4: How about polytopes of rank 47
Local picture for a 4-polytope of type {4, 4,3}

Torus maps {4,4} o) as facets & Cubes {4, 3} as vertex-figures

2 tori meeting at each 2-face
3 tori surround each edge

6 tori surround each vertex

P regular iff (P) flag transitive.

P semi-regular iff facets regular and M'(P) vertex-transitive.



Semiregular abstract polytopes

e Facets regular polytopes, and automorphism group vertex-
transitive.

® n — 3. Every vertex-transitive abstract polyhedron is semiregular.

(Small genera: Nedela, Karabas, Pellicer, Weiss, ...)

e n — 4: semiregular tessellation T' of E3 by tetrahedra and
octahedra. Alternating! Cuboctahedral vertex-figures




Alternating semiregular polytopes S
e Facets of S all regular, group I'(S) vertex-transitive.

e Two kinds of regular facets P and @) alternate around each
face of S of co-rank 2.

Facets P and Q must be compatible: their own facets
must be isomorphic, to some polytope K.

e [Tomotope S: two hemi-octahedra P and two tetrahedra
() alternate around an edge of S

2 is called the interlacing number of P and Q in S.

e n=2. P triangle, Q hexagon




Universal alternating semiregular polytopes

Input: any two regular n-polytopes P and @ with isomorphic
facets K.

e The universal U(P,(Q) exists for all compatible P and Q!
It is semiregular and alternating, with infinitely many copies
of P and Q appearing alternately at each face of co-rank 2).
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Questions

e How about finite alternating examples?

e Interlacing number k: number of facets of each kind
around a ridge (corank-2 face).

e Assembly Problem: For any P and ¢ and any preas-
sighed interlacing number k, does there exist an alternating
semiregular (n 4+ 1)-polytope S with facets P and Q7



Tail-triangle group I = (ao,..
with intersection property

el <—— P
Pn
o’ o .. ang3 g k & possibly morerels.
P1 Pn—2
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Bn—l A Q
Rank n 4+ 1 polytope S
e j-faces for j <n—2
(right) cosets of I'; := (g, -+, j_1, %415+, 1, Bn—1)
e (n—1)-faces
cosets of IM,,_1 ;= {(ag,...,an_2)

5y On_2,0np_1, 571—1>'




e n-faces

cosets of I, with I, either given by
M2 = (ag,...,an_1) or T¥:=(ag,...,an 2,8, 1)

e partial order: v < Fpp iff j <k and MvNTpp #0



Universal U*(P, Q)
Now: finite interlacing number k

Tail-triangle group I = {(ag, .
Pn—1
a0 a1 On—3 On—2
. ‘ oooooo '
p1 Pn—2
dn—1

No additional relations!

e &pn_2,0n_1, Bn—1>

el «— P

Bn—l N Q?

If any alternating semiregular polytope S with inter-
lacing number k exists, then U*(P,Q) also exists and

covers S.



Cubes/Hemicubes

Odd interlacing number k always possible? NO!

e P = {4,3}3 (hemicube), Q = {4,4} 2.0 (2 x 2 square
torus). Cannot be assembled for any odd k.

Now k = 2.

e P = {4,3}3 (hemicube), Q = {4,4}, o) (s X s square
torus), s odd. Cannot be assembled with k = 2.
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670) x1,3
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o P ={4,3}3 (hemicube), Q@ = {4,4} ), s >4 even. Can
be assembled with k = 2! Now U?(P,Q) is finite, with a
group of order 24s3.

o P = {4,3} (cube), Q@ = {4,4}(50), any s > 2. Can be
assembled with k = 2!
a2

aQ a1,3
L4 4 & (aoalﬁgal)s =1

4
B2
S = U?2(P,Q) and I'(S) = Ws x D3, where Wy is a Coxeter
group with a hexagonal diagram with all branches marked s.

S is finite iff s = 2, with (S) = C8§ x D3 if s = 2.




e P={4,3,...,3,3}n (n-hemicube) and Q@ = {4,3.. .,3,4}(8’07_”,0)
(s X s X ... X s cubical n-toroid).

Cannot be assembled with k£ = 2, for any n > 3 and s odd!

3 x 3 x 3 cubical toroid {4,3,4}(30.0)

(0,0,0) (3,0,0)



e How about hemi-octahedra and tetrahedra as facets?

Tomotope: 4 vertices, 12 edges, 16 triangles, 4 tetrahedra & 4 hemi-
octahedra.

Vertex-figures hemi-cuboctahedra. Group order 96.

(Monson, Pellicer, Williams)



Hexagonal torus map
e P={6,3}(11), and Q either {6,3} or any map {6,3}

a2

aQ a1/3 5
® 6 3 & (040041042) = 1& onerel.
B2

Assembly with k = 2 only possible when Q = {6,3}5 ) or
@ = P (in this case I' has order 576 or 144).

P ={6,3}(11) and Q = {6,3}(2 o) cannot be assembled for
k = 4 either! Group collapses!



Some conjectures

e Conj. 1: If UK(P,Q) exists and k|m, then U™(P,Q) exists.

e Conj. 2: Given compatible P,Q there are infinitely many
integers k > 2 such that U*(P, Q) exist.

(Recall that U*(P, Q) exists! Maybe for k large enough.)

e Conj. 3: For any even k > 2, there exist compatible P, Q)
such that U*(P,Q) does not exist.



Universal U¥(P,Q) when P = {4,4}.4), Q = {4,4}(, 0
(r,s,k >2)

UR(P,Q) has group W(r,s, k) x Co, where W(r,s, k) is the
Coxeter group with diagram

o

UR(P,Q) always infinite, as are its vertex-figures.



Some constructions

e Small examples with £ = 2 exist for many choices of P, Q!
If T(P)=NpxT(K)and I'(Q) = Ngx I'(K), then

M= (Np x Ng) x M(K)

is a tail-triangle C-group giving an alternating semiregular
polytope S with facets P,Q and k£ = 2.

Smallness : fo(S) = fo(P)fo(Q)/fo(K), fr(S) = fn_1(P)+fh_1(Q).

Examples: P,Q taken from {4,4}5; 0y, {4,4}(2¢.2¢) OF {3, 6} (310
fort > 1.



P = {4, 4}(23,0)' Q = {4, 4}(2t70)

a2

e i 2s 2t
* 2 4 & (aparazan)® = (aparfaar)” =1

B2

F:(szszDtth)xD4,

#(vertices of S) = 4s2t2,  #(facets of S) = 4(s2 4+ t2)



e Many finite examples by modular reduction from crystal-
lographic Coxeter groups!

p prime, p # 2: o 4 O(4,p,£1), O1(4,p,£1)

P = {3,4} (octahedron), Q a certain map of type {3, p} with
group PSL(Zp) x Co or PGL(Zp) x C»o

p=3,5,7: @ is the tetrahedron {3,3}, icosahedron {3,5},
or Klein map {3,7}g, resp.

Future work by Kadin (Finn) Prideaux!



Abstract
Geometry and Combinatorics of Semiregular Polytopes

Traditionally, a polyhedron or polytope is semiregular if its
facets are regular and its symmetry group is transitive on ver-
tices. We briefly review the semiregular convex polytopes,
and then discuss semiregular abstract polytopes, which have
abstract regular facets, still with combinatorial automor-
phism group transitive on vertices. Our focus is on alternat-
ing semiregular polytopes, with two kinds of regular facets
occurring in an alternating fashion. The cuboctahedron is a
familiar example in rank 3. We then describe recent progress
on the assembly problem for alternating semiregular poly-
topes: which pairs of regular n-polytopes can occur as facets



of a semiregular (n+1)-polytope. If time permits, we brief
discuss semiregularity in the context of skeletal polyhedra in
3-space. Most work is joint with Barry Monson.



