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From the Euclidean to the metric setting

Let Ω ⊂ RN . The Neumann boundary value problem driven by a
p-Laplacian operator is

{
−∆pu = g in Ω,

−|∇u|p−2∂ηu = f on ∂Ω,
(1)

where 1 < p <∞, g is a continuous function and ∂ηu is the
directional derivative of u in the direction of the outer normal to ∂Ω.
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From the Euclidean to the metric setting

The weak formulation of the problem is to find u ∈W 1,p(Ω) such that∫
Ω

|∇u(x)|p−2∇u(x)∇ϕ(x)dx−
∫
∂Ω

ϕ(x)f (x)dHn−1(x) =

∫
Ω

g(u(x))ϕ(x)dx ,

for all ϕ ∈W 1,p(Ω).

Thus, solving (1) reduces to look for critical points of the p-energy
functional

J(u) =

∫
Ω

|∇u|pdx −
∫

Ω

G(u)dx +

∫
∂Ω

ufdHn−1,

where G is a primitive of g.
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Applications

Calculus on Riemannian manifolds.

Subelliptic operators associated with vector fields.

Potential theory on graphs.

Weighted Sobolev spaces.
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The problem

Let X be a complete metric space equipped with a doubling measure
supporting a (1,p)-Poincaré inequality (1 < p < +∞).

Given a Neumann boundary value problem with boundary data f 6= 0
and reaction term G, we consider the following functional

J(u) =

∫
Ω

gp
u dµ−

∫
Ω

G(u)dµ+

∫
∂Ω

Tu f dPΩ for all u ∈ N1,p(Ω). (2)

where

Ω is a bounded domain (non empty, connected open set) in X
with X \ Ω of positive measure such that Ω is of finite perimeter
with perimeter measure PΩ;
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The problem

Let X be a complete metric space equipped with a doubling measure
supporting a (1,p)-Poincaré inequality (1 < p < +∞).

Given a Neumann boundary value problem with boundary data f 6= 0
and reaction term G, we consider the following functional

J(u) =

∫
Ω

gp
u dµ−

∫
Ω

G(u)dµ+

∫
∂Ω

Tu f dPΩ for all u ∈ N1,p(Ω).

where

G : Ω→ R is defined as

G(u) = c − |u|γ for all u ∈ N1,p(Ω), (3)

for some c > 0 and 1 < γ < p∗ = ps
s−p if p < s and 1 < γ < +∞

otherwise;
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The problem

Let X be a complete metric space equipped with a doubling measure
supporting a (1,p)-Poincaré inequality (1 < p < +∞).

Given a Neumann boundary value problem with boundary data f 6= 0
and reaction term G, we consider the following functional

J(u) =

∫
Ω

gp
u dµ−

∫
Ω

G(u)dµ+

∫
∂Ω

Tu f dPΩ for all u ∈ N1,p(Ω).

where

f : ∂Ω→ R is a bounded PΩ-measurable function with∫
∂Ω

fdPΩ = 0.
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Solution to the Neumann boundary value problem

Definition

A function u0 ∈ N1,p
∗ (Ω) is a p-harmonic solution to the Neumann

boundary value problem with boundary data f 6= 0 and reaction term
G if

J(u0) =

∫
Ω

gp
u0dµ−

∫
Ω

G(u0)dµ+

∫
∂Ω

Tu0fdPΩ

≤
∫

Ω

gp
v dµ−

∫
Ω

G(v)dµ+

∫
∂Ω

TvfdPΩ = J(v)

for every v ∈ N1,p
∗ (Ω), where gu0 , gv are the minimal p-weak upper

gradients of u0 and v in Ω, respectively, and Tu0 and Tv are the traces
of u0 and v on ∂Ω, respectively.
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Overview of the results obtained

existence of a solution and a weaker uniqueness property;

minimizers of the Neumann p-Laplacian problem satisfy a De
Giorgi type inequality and consequently we give boundedness
properties for them;

minimizers of the Neumann p-Laplacian problem with zero
boundary data are in the De Giorgi class. This permits us to
prove some further regularity results.
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Doubling measure

Let (X ,d , µ) be a metric measure space, where µ is a Borel regular
measure. Let B(x , ρ) ⊂ X be a ball with the center x ∈ X and the
radius ρ > 0.

Definition ((Björn, Björn (2011)), Section 3.1)

A measure µ on X is said to be doubling if there exists a constant K ,
called the doubling constant, such that

0 < µ(B(x ,2ρ)) ≤ Kµ(B(x , ρ)) < +∞,

for all x ∈ X and ρ > 0.
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(1,p)-Poincaré inequality

For a measurable set S ⊂ X of finite positive measure and for a
measurable function u : S → R, we denote

uS =
1

µ(S)

∫
S

udµ.

Definition ((Björn, Björn (2011)), Definition 4.1)

Let p ∈ [1,+∞[. A metric measure space X supports a
(1,p)-Poincaré inequality if there exist K > 0 and λ ≥ 1 such that

1
µ(B(x , r))

∫
B(x,r)

|u − uB(x,r)|dµ ≤ Kr

(
1

µ(B(x , λr))

∫
B(x,λr)

gp
u dµ

) 1
p

for all balls B(x , r) ⊂ X and for all u ∈ L1
loc(X ).
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Upper gradient

Definition ((Björn, Björn (2011)), Definition 1.13)

A non negative Borel measurable function g is said to be an upper
gradient of function u : X → [−∞,+∞] if, for all compact rectifiable
arc length parametrized paths γ connecting x and y , we have

|u(x)− u(y)| ≤
∫
γ

g ds (4)

whenever u(x) and u(y) are both finite and
∫
γ

g ds = +∞ otherwise.
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p-weak upper gradient

Definition ((Björn, Björn (2011)), Definition 1.33)

Let p ∈ [1,+∞[. Let Γ be a family of paths in X . We say that

inf
φ

∫
X
φpdµ

is the p-modulus of Γ, where the infimum is taken among all non
negative Borel measurable functions φ satisfying

∫
γ
φds ≥ 1, for all

rectifiable paths γ ∈ Γ.

Definition ((Björn, Björn (2011)), Definition 1.32)

If (4) is satisfied for p-almost all paths γ in X , that is the set of non
constant paths that do not satisfy (4) is of zero p-modulus, then g is
said a p-weak upper gradient of u.
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minimal p-weak upper gradient

The family of weak upper gradients satisfy the result contained in the
following theorem concerning the existence of a minimal element.

Theorem ((Björn, Björn (2011)), Theorem 2.5)

Let p ∈]1,+∞[. Suppose that u ∈ Lp(X ) has an Lp(X ) integrable
p-weak upper gradient. Then there exists a p-weak upper gradient,
denoted with gu, such that gu ≤ g µ-a.e. in X, for each p-weak upper
gradient g of u. This gu is called the minimal p-weak upper gradient
of u.

We note that gu is µ-a.e. uniquely determinated by u.
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The Newtonian space

Let X be a complete metric space equipped with a doubling measure
supporting a (1,p)-Poincaré inequality.

Definition

The Newtonian space N1,p(X ) is defined by

N1,p(X ) = V 1,p(X ) ∩ Lp(X ), p ∈ [1,+∞],

where V 1,p(X ) = {u : u is measurable and gu ∈ Lp(X )}. We consider
N1,p(X ) equipped with the norm

‖u‖N1,p(X) = ‖gu‖Lp(X) + ‖u‖Lp(X).

We denote with N1,p
∗ (X ) = {u ∈ N1,p(X ) :

∫
X u dx = 0}.

The Newtonian space N1,p(X ) is a complete normed vector space,
which generalizes the Sobolev space W 1,p(Ω) to a metric setting.
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The perimeter

Definition (see (Miranda (2003)))

A Borel set E ⊂ X is said to be of finite perimeter if there exists a
sequence {un}n∈N in N1,1(X ) such that un → χE in L1(X ) and

lim inf
n→+∞

∫
X

gun dµ <∞.

The perimeter PE (X ) of E is the infimum of the above limit among all
sequences {un} as above. For an open set U ⊂ X , the perimeter of E
in U is

PE (U) = inf
{

lim inf
n→+∞

∫
X

gun dµ : {un}n∈N ⊂ N1,1(U),un → χE∩U in L1(U)

}
.

We note that E is a set of finite perimeter iff χE is a BV(U) function
(Miranda (2003), Definition 4.1).
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Hypotheses set on Ω

(H1) There exists a constant K ≥ 1 such that for all y ∈ Ω and
0 < ρ ≤ diam (Ω), we have

µ(B(y , ρ) ∩ Ω) ≥ 1
K
µ(B(y , ρ)).

(H2) (Ahlfors codimension 1 regularity of PΩ) For all y ∈ ∂Ω we have
that

1
Kρ

µ(B(y , ρ)) ≤ PΩ(B(y , ρ)) ≤ K
ρ
µ(B(y , ρ)),

where K and ρ are as in (H1).

(H3) (Ω,d|Ω, µ|Ω) admits a (1,p)-Poincaré inequality with λ = 1,
where p ∈]1,+∞[.
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Trace operator

Definition (Lahti (2015), Definition 4.1)

Let Ω ⊂ X be an open set and let u be a µ-measurable function on Ω.
A function Tu : ∂Ω→ R is the trace of u if for H-almost every y ∈ ∂Ω
we have

lim
ρ→0+

1
µ(Ω ∩ B(y , ρ))

∫
Ω∩B(y,ρ)

|u − Tu(y)|dµ = 0.
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Existence of a solution and a weaker uniqueness
result

The existence of a nontrivial solution to the Neumann boundary value
problem with non zero boundary data f and reaction term G is an
immediate consequence of the following theorem which shows that J
has a minimizer.

Theorem

J has a minimizer in N1,p
∗ (Ω).

If u1,u2 ∈ N1,p
∗ (Ω) are two minimizers of J, then gu1 = gu2 a.e. in

Ω.
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Boundedness property

We show that minimizers are locally bounded near the boundary
under appropriate hypothesis on the boundary data f .
We assume that f ∈ L∞(∂Ω). Our aim is to prove that, under this
assumption, we get that u ∈ L∞(ΩR) and Tu ∈ L∞(∂ΩR) where

ΩR =

{
y ∈ Ω : d(y , ∂Ω) <

R
2

}
(5)

for an appropriate R > 0, that is u is bounded near the boundary.
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De Giorgi type inequality

Lemma

Let u ∈ N1,p
∗ (Ω) be a minimizer of J and f ∈ L∞(∂Ω). If y ∈ ∂Ω,

0 < ρ < R < diam(Ω)
10 and α ∈ R, then there is K ≥ 1 such that the

following De Giorgi type inequality∫
Ω∩B(y,ρ)

gp
(u−α)+

dµ ≤ K
(R − ρ)p

∫
Ω∩B(y,R)

(u − α)p
+dµ (6)

+ K
∫
∂Ω∩B(y,R)

|f |(u − α)p
+dPΩ

is satisfied.
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The proof

We define

τρ,R(x) = τ(x) =

(
1− d(x ,B(y , ρ))

R − ρ

)
+

and

Sα,r = {x ∈ B(y , r) ∩ Ω : u(x) > α} ∪ {x ∈ B(y , r) ∩ ∂Ω : u(x) > α}.

We consider

w = u − τ(u − α)+ =

{
(1− τ)(u − α) + α in Sα,R
u otherwise.

(7)
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The proof

We observe that, from the definition of w , we have |w | ≤ |u|. Using
Leibniz rule,

gw ≤

(1− τ)gu +
u − α
R − ρ

χB(y,R)\B(y,ρ) in Sα,R

gu otherwise.
(8)

By (8) we deduce that

gp
w ≤ 2p

(
gp

u (1− χSα,ρ) +
(u − α)p

(R − ρ)p

)
in Sα,R . (9)
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The proof

Since u is a minimizer of J, then

J(u) =

∫
Ω∩B(y,R)

gp
u dµ−

∫
Ω∩B(y,R)

(c − |u|γ)dµ+

∫
∂Ω∩B(y,R)

ufdPΩ

≤
∫

Ω∩B(y,R)

gp
w dµ−

∫
Ω∩B(y,R)

(c − |w |γ)dµ+

∫
∂Ω∩B(y,R)

wfdPΩ

= J(w). (10)
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By adding
−
∫

Ω∩B(y,R)\Sα,R gp
u dµ+

∫
Ω∩B(y,R)

(c − |u|γ)dµ−
∫
∂Ω∩B(y,R)

ufdPΩ

to both sides of (10), we get∫
Sα,R

gp
u dµ ≤

∫
Sα,R

gp
w dµ−

∫
Ω∩B(y,R)

(c − |w |γ − (c − |u|γ))dµ

−
∫
∂Ω∩Sα,R

τ(u − α)fdPΩ

≤
∫

Sα,R
gp

w dµ−
∫

Ω∩B(y,R)

(|u|γ − |w |γ)dµ

−
∫
∂Ω∩Sα,R

τ(u − α)fdPΩ

≤
∫

Sα,R
gp

w dµ−
∫
∂Ω∩Sα,R

τ(u − α)fdPΩ (by (7)). (11)
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The proof

Using (9) and (11), we obtain∫
Sα,ρ

gp
u dµ ≤ 2p

∫
Sα,R\Sα,ρ

gp
u dµ+

2p

(R − ρ)p

∫
Sα,R

(u − α)pdµ

−
∫
∂Ω∩Sα,R

τ(u − α)fdPΩ.
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Now, we add 2p
∫

Sα,ρ
gp

u dµ to both sides of the inequality, then we
divide all by 1 + 2p and we obtain

∫
Sα,ρ

gp
u dµ ≤ 2p

1 + 2p

∫
Sα,R

gp
u dµ+

2p

(1 + 2p)(R − ρ)p

∫
Sα,R

(u − α)pdµ

− 1
(1 + 2p)

∫
∂Ω∩Sα,R

τ(u − α)fdPΩ.

(12)

Antonella Nastasi Università degli Studi di Palermo



A p laplacian problem on metric measure spaces
Some results

Forthcoming research

The proof

At this point we can use (12) and a lemma by Giusti (Giusti, Direct
Methods in the Calculus of Variations. World Scientific Publishing,
River Edge (2003), Lemma 6.1) to get∫

Sα,ρ
gp

u dµ ≤ K
(R − ρ)p

∫
Sα,R

(u − α)pdµ+ K
∫
∂Ω∩Sα,R

τ(u − α)|f |dPΩ.

That completes the proof.
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A boundedness result

Theorem

Let 0 < R < diam(Ω)
4 and ΩR =

{
y ∈ Ω : d(y , ∂Ω) < R

2

}
.

If u ∈ N1,p
∗ (Ω) is a minimizer of J and f ∈ L∞(∂Ω), then

u ∈ L∞(ΩR) and Tu ∈ L∞(∂ΩR).
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Sketch of the proof

Proceeding as in the proof of [Malý and Shanmugalingam (2018),
Theorem 5.2], we can find d ≥ 0 such that∫

Ω∩B(x, R
2 )

(u − d)p
+dµ = 0, for all x ∈ ∂Ω.

This implies that u ≤ d µ−a.e. in Ω ∩ B
(
x , R

2

)
. Consequently, u ≤ d

µ−a.e. in ΩR .
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Sketch of the proof

In order to deduce that u is also µ−a.e. lower bounded, we observe
that if u is a minimizer for J, then −u is a minimizer for J−, where J−
is defined as

J−(u) =

∫
Ω

gu dµ−
∫

Ω

(c − |u|γ)dµ−
∫
∂Ω

ufdPΩ.

In fact, u minimizer for J means J(u) ≤ J(v) for all v ∈ N1,p
∗ (Ω).
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Sketch of the proof

We have that

J−(−u) = J(u) ≤ J(v) = J−(−v) for all v ∈ N1,p
∗ (Ω),

which means that −u is a minimizer of J−. This ensures that −u is
µ−a.e. upper bounded in ΩR and so u is µ−a.e. lower bounded in
ΩR . We conclude that u ∈ L∞(ΩR). In a similar way, we have that
Tu ∈ L∞(∂ΩR).
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Other results and forthcoming research

Neumann p-Laplacian problem with zero boundary data;

Extending the results to the (p,q)- Laplacian problem in the
metric setting.
[Joint paper with Cintia Pacchiano Camacho]
Given a Dirichlet (p,q)-boundary value problem, we associate
the following functional

J(u) =

∫
Ω

gp
u dµ+

∫
Ω

gq
u dµ for all u ∈ N1,p

loc (Ω). (13)

in the setting of a non empty open set Ω of a metric measure
space (X ,d , µ) equipped with a doubling Borel regular measure
µ and supporting a weak (1, s)-Poincaré inequality for some s
such that 1 < s < q < p < s∗, where s∗ is the critical exponent
associated to s.
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Definition

A function u0 ∈ N1,p
loc (Ω) is a quasi-minimizer of J on Ω if there exists

C ≥ 1 such that for every bounded open subset Ω′ of Ω with Ω′ ⊂ Ω

and for all functions v ∈ N1,p(Ω′) with u0 − v ∈ N1,p
0 (Ω′) the inequality∫

Ω′
gp

u0dµ+

∫
Ω′

gq
u0dµ ≤C

(∫
Ω′

gp
v dµ+

∫
Ω′

gq
v dµ

)
holds, where gu0 , gv are the minimal p-weak upper gradients of u0
and v in Ω, respectively.
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Other results and forthcoming research

Definition

Let Lp
loc(Ω) be the space of all measurable functions that are

p-integrable on bounded subsets of X .
The space N1,p

loc (Ω) is defined by

N1,p
loc (Ω) = V 1,p

loc (Ω) ∩ Lp
loc(Ω), p ∈ [1,+∞],

where V 1,p
loc (Ω) = {u : u is measurable and gu ∈ Lp

loc(Ω)}.
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Lemma

Let u ∈ N1,p
loc (Ω) be a quasi minimizer of J. If 0 < ρ < R < diam(Ω)

3 , then
there exists c1, c2 ≥ 0 such that the following De Giorgi type inequality∫

Sα,ρ
(gp

u + gq
u )dµ ≤ c1

(R − ρ)p

∫
Sα,R

(u − α)pdµ

+
c2

(R − ρ)q

∫
Sα,R

(u − α)qdµ,

is satisfied.

Antonella Nastasi Università degli Studi di Palermo



A p laplacian problem on metric measure spaces
Some results

Forthcoming research

Other results and forthcoming research

De Giorgi type inequality has a key role in order to prove...

boundedness results

other regularity results as Hölder continuity, Harnack’s inequality,
strong maximum principle ...
(to be continued)
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Thanks for your attention!
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