The two-variable Bollobás–Riordan polynomial of a connected even delta-matroid is irreducible

Steven Noble Jo Ellis-Monaghan, Andrew Goodall, Iain Moffatt, Luis Vena

Birkbeck, University of London

21/6/21

The Tutte polynomial

The Tutte polynomial of a graph G is given by

$$T(G; x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)},$$

where r(A) = |V| - k(G|A), the number of edges in the largest forest of G|A.

The Tutte polynomial

The Tutte polynomial of a graph G is given by

$$T(G; x, y) = \sum_{A \subseteq E} (x - 1)^{r(E) - r(A)} (y - 1)^{|A| - r(A)},$$

where r(A) = |V| - k(G|A), the number of edges in the largest forest of G|A.

Equivalently, T(G; x, y) = 1 if G has no edges, and for each edge e,

$$T(G; x, y) = \begin{cases} xT(G/e; x, y) & \text{if } e \text{ is a bridge}, \\ yT(G \setminus e; x, y) & \text{if } e \text{ is a loop}, \\ T(G/e; x, y) + T(G \setminus e; x, y) & \text{otherwise}. \end{cases}$$

Irreducibility of T

Theorem (Merino, de Mier, Noy (2001))

T(G; x, y) is irreducible in $\mathbb{C}[x, y]$ if and only if G is 2-connected.

(This is also true for matroids.)

Key facts used in the proof

Write $T(G; x, y) = \sum_{i,j} b_{i,j} x^i y^j$. (We have $b_{i,j} \ge 0$.)

- Brylawski's affine identities. For example,
 - if G has at least one edge then $b_{0,0} = 0$;
 - 2 if G has at least two edges then $b_{1,0} = b_{0,1}$.
- If *G* has at least 2 edges, then $b_{1,0} \neq 0$ if and only if *G* is 2-connected.
- T(G; x, y) has degree r(E) in x and if G is loopless then b_{r(E),0} = 1 and otherwise b_{r(E),i} = 0.
- T(G; x, y) has degree |E| r(E) in y and if G is bridgeless then b_{0,|E|-r(E)} = 1 and otherwise b_{i,|E|-r(E)} = 0.

For an orientable ribbon graph \mathbb{G} and set *A* of its edges, let g(A) denote the genus of the subgraph G|A.

Let $\sigma(A) = r(A) + g(A)$.

For an orientable ribbon graph \mathbb{G} and set *A* of its edges, let g(A) denote the genus of the subgraph G|A.

Let $\sigma(A) = r(A) + g(A)$.

We define the ribbon graph polynomial by

$$R(\mathbb{G}; x, y) = \sum_{A \subseteq E} (x - 1)^{\sigma(E) - \sigma(A)} (y - 1)^{|A| - \sigma(A)}.$$

For an orientable ribbon graph \mathbb{G} and set *A* of its edges, let g(A) denote the genus of the subgraph G|A.

Let $\sigma(A) = r(A) + g(A)$.

We define the ribbon graph polynomial by

$$R(\mathbb{G}; x, y) = \sum_{A \subseteq E} (x-1)^{\sigma(E)-\sigma(A)} (y-1)^{|A|-\sigma(A)}.$$

We have

 $R(\mathbb{G}; x, y) = (x-1)^{g(\mathbb{G})} BR(\mathbb{G}, x, y-1, 1/\sqrt{(x-1)(y-1)}),$

where $BR(\mathbb{G})$ is the Bollobás–Riordan polynomial of \mathbb{G} .

For an orientable ribbon graph \mathbb{G} and set *A* of its edges, let g(A) denote the genus of the subgraph G|A.

Let $\sigma(A) = r(A) + g(A)$.

We define the ribbon graph polynomial by

$$R(\mathbb{G}; x, y) = \sum_{A \subseteq E} (x-1)^{\sigma(E)-\sigma(A)} (y-1)^{|A|-\sigma(A)}.$$

We have

 $R(\mathbb{G}; x, y) = (x-1)^{g(\mathbb{G})} BR(\mathbb{G}, x, y-1, 1/\sqrt{(x-1)(y-1)}),$

where $BR(\mathbb{G})$ is the Bollobás–Riordan polynomial of \mathbb{G} .

If \mathbb{G} is a plane graph, then $R(\mathbb{G}) = T(G)$.

In this graph $\sigma(E) = 1$.

$$R(\mathbb{G}) = (x - 1) + 3(x - 1)(y - 1) + (x - 1)(y - 1)^{2}$$
$$+ 2(y - 1) + (y - 1)^{2}$$
$$= xy^{2} + xy - x - y,$$

which is irreducible.

A ribbon graph is not 2-connected if its edges can be partitioned into sets A and B, so that each circuit lies in either A or B

A ribbon graph is not 2-connected if its edges can be partitioned into sets A and B, so that each circuit lies in either A or B and no circuit in A is interlaced with a circuit in B.

A ribbon graph is not 2-connected if its edges can be partitioned into sets A and B, so that each circuit lies in either A or B and no circuit in A is interlaced with a circuit in B.

A loop is trivial if it is not interlaced with any other circuit.

Delete-Contract

If \mathbb{G} has no edges than $R(\mathbb{G}; x, y) = 1$ and for each edge e,

• If *e* is not a loop in either G or G*, then

 $R(\mathbb{G}; x, y) = R(\mathbb{G} \setminus e; x, y) + R(\mathbb{G}/e; x, y).$

• If e is a loop in \mathbb{G} but not in \mathbb{G}^* , then

 $R(\mathbb{G}; x, y) = (x - 1)R(\mathbb{G} \setminus e; x, y) + R(\mathbb{G}/e; x, y).$

• If *e* is a loop in \mathbb{G}^* but not in \mathbb{G} , then $R(\mathbb{G}; x, y) = R(\mathbb{G} \setminus e; x, y) + (y - 1)R(\mathbb{G}/e; x, y).$

• If *e* is a loop in both \mathbb{G} and \mathbb{G}^* , then $R(\mathbb{G}; x, y) = (x - 1)R(\mathbb{G} \setminus e; x, y) + (y - 1)R(\mathbb{G}/e; x, y).$ Key facts

Write $R(\mathbb{G}; x, y) = \sum_{i,j} r_{i,j} x^i y^j$. (We no longer have $r_{i,j} \ge 0$.)

Brylawski's affine identities.

Gordon (2015) showed that Brylawski's affine identities hold extremely generally.

If G has at least 2 edges, then $b_{1,0} \neq 0$ if and only if G is 2-connected.

If \mathbb{G} has at least 2 edges, then $r_{1,0} \neq 0$ if and only if \mathbb{G} is 2-connected. This follows from a result of Bouchet (2001), which implies that if \mathbb{G} is 2-connected then at least one of $\mathbb{G} \setminus e$ and \mathbb{G}/e is 2-connected.

• T(G; x, y) has degree r(E) in x and if G is loopless then $b_{r(E),0} = 1$ and otherwise $b_{r(E),i} = 0$.

If $i > \sigma(E)$, then $r_{i,j} = 0$. Moreover

$$\sum_{j} r_{\sigma(E),j} = 1.$$

Main theorem

Theorem

If \mathbb{G} is an orientable ribbon graph, then $R(\mathbb{G}; x, y)$ is irreducible if and only if \mathbb{G} is 2-connected.

(This extends to even delta-matroids.)

Thanks and questions

Thank you for listening.