The two-variable Bollobás-Riordan polynomial of a connected even delta-matroid is irreducible

Steven Noble
Jo Ellis-Monaghan, Andrew Goodall, lain Moffatt, Luis Vena

Birkbeck, University of London

21/6/21

The Tutte polynomial

The Tutte polynomial of a graph G is given by

$$
T(G ; x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)},
$$

where $r(A)=|V|-k(G \mid A)$, the number of edges in the largest forest of $G \mid A$.

The Tutte polynomial

The Tutte polynomial of a graph G is given by

$$
T(G ; x, y)=\sum_{A \subseteq E}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)},
$$

where $r(A)=|V|-k(G \mid A)$, the number of edges in the largest forest of $G \mid A$.

Equivalently, $T(G ; x, y)=1$ if G has no edges, and for each edge e,

$$
T(G ; x, y)= \begin{cases}x T(G / e ; x, y) & \text { if } e \text { is a bridge } \\ y T(G \backslash e ; x, y) & \text { if } e \text { is a loop } \\ T(G / e ; x, y)+T(G \backslash e ; x, y) & \text { otherwise }\end{cases}
$$

Irreducibility of T

Theorem (Merino, de Mier, Noy (2001))
$T(G ; x, y)$ is irreducible in $\mathbb{C}[x, y]$ if and only if G is 2-connected.
(This is also true for matroids.)

Key facts used in the proof

Write $T(G ; x, y)=\sum_{i, j} b_{i, j} x^{i} y^{j}$. (We have $b_{i, j} \geq 0$.)
(3) Brylawski's affine identities. For example,
(1) if G has at least one edge then $b_{0,0}=0$;
(2) if G has at least two edges then $b_{1,0}=b_{0,1}$.
(3. If G has at least 2 edges, then $b_{1,0} \neq 0$ if and only if G is 2-connected.
(0) $T(G ; x, y)$ has degree $r(E)$ in x and if G is loopless then $b_{r(E), 0}=1$ and otherwise $b_{r(E), i}=0$.
(© $T(G ; x, y)$ has degree $|E|-r(E)$ in y and if G is bridgeless then $b_{0,|E|-r(E)}=1$ and otherwise $b_{i,|E|-r(E)}=0$.

The ribbon graph polynomial

For an orientable ribbon graph \mathbb{G} and set A of its edges, let $g(A)$ denote the genus of the subgraph $G \mid A$.

Let $\sigma(A)=r(A)+g(A)$.

The ribbon graph polynomial

For an orientable ribbon graph \mathbb{G} and set A of its edges, let $g(A)$ denote the genus of the subgraph $G \mid A$.

Let $\sigma(A)=r(A)+g(A)$.
We define the ribbon graph polynomial by

$$
R(\mathbb{G} ; x, y)=\sum_{A \subseteq E}(x-1)^{\sigma(E)-\sigma(A)}(y-1)^{|A|-\sigma(A)} .
$$

The ribbon graph polynomial

For an orientable ribbon graph \mathbb{G} and set A of its edges, let $g(A)$ denote the genus of the subgraph $G \mid A$.

Let $\sigma(A)=r(A)+g(A)$.
We define the ribbon graph polynomial by

$$
R(\mathbb{G} ; x, y)=\sum_{A \subseteq E}(x-1)^{\sigma(E)-\sigma(A)}(y-1)^{|A|-\sigma(A)} .
$$

We have

$$
R(\mathbb{G} ; x, y)=(x-1)^{g(\mathbb{G})} B R(\mathbb{G}, x, y-1,1 / \sqrt{(x-1)(y-1)}),
$$

where $B R(\mathbb{G})$ is the Bollobás-Riordan polynomial of \mathbb{G}.

The ribbon graph polynomial

For an orientable ribbon graph \mathbb{G} and set A of its edges, let $g(A)$ denote the genus of the subgraph $G \mid A$.

Let $\sigma(A)=r(A)+g(A)$.
We define the ribbon graph polynomial by

$$
R(\mathbb{G} ; x, y)=\sum_{A \subseteq E}(x-1)^{\sigma(E)-\sigma(A)}(y-1)^{|A|-\sigma(A)} .
$$

We have

$$
R(\mathbb{G} ; x, y)=(x-1)^{g(\mathbb{G})} B R(\mathbb{G}, x, y-1,1 / \sqrt{(x-1)(y-1)}),
$$

where $B R(\mathbb{G})$ is the Bollobás-Riordan polynomial of \mathbb{G}.
If \mathbb{G} is a plane graph, then $R(\mathbb{G})=T(G)$.

An example

An example

In this graph $\sigma(E)=1$.

$$
\begin{aligned}
R(\mathbb{G})= & (x-1)+3(x-1)(y-1)+(x-1)(y-1)^{2} \\
& +2(y-1)+(y-1)^{2} \\
= & x y^{2}+x y-x-y,
\end{aligned}
$$

which is irreducible.

An example

A ribbon graph is not 2-connected if its edges can be partitioned into sets A and B, so that each circuit lies in either A or B

An example

A ribbon graph is not 2-connected if its edges can be partitioned into sets A and B, so that each circuit lies in either A or B and no circuit in A is interlaced with a circuit in B.

An example

A ribbon graph is not 2-connected if its edges can be partitioned into sets A and B, so that each circuit lies in either A or B and no circuit in A is interlaced with a circuit in B.

A loop is trivial if it is not interlaced with any other circuit.

Delete-Contract

If \mathbb{G} has no edges than $R(\mathbb{G} ; x, y)=1$ and for each edge e,

- If e is not a loop in either \mathbb{G} or \mathbb{G}^{*}, then

$$
R(\mathbb{G} ; x, y)=R(\mathbb{G} \backslash e ; x, y)+R(\mathbb{G} / e ; x, y) .
$$

- If e is a loop in \mathbb{G} but not in \mathbb{G}^{*}, then

$$
R(\mathbb{G} ; x, y)=(x-1) R(\mathbb{G} \backslash e ; x, y)+R(\mathbb{G} / e ; x, y) .
$$

- If e is a loop in \mathbb{G}^{*} but not in \mathbb{G}, then

$$
R(\mathbb{G} ; x, y)=R(\mathbb{G} \backslash e ; x, y)+(y-1) R(\mathbb{G} / e ; x, y) .
$$

- If e is a loop in both \mathbb{G} and \mathbb{G}^{*}, then

$$
R(\mathbb{G} ; x, y)=(x-1) R(\mathbb{G} \backslash e ; x, y)+(y-1) R(\mathbb{G} / e ; x, y) .
$$

Key facts

Write $R(\mathbb{G} ; x, y)=\sum_{i, j} r_{i, j} x^{i} y^{j}$. (We no longer have $r_{i, j} \geq 0$.)
© Brylawski's affine identities.
Gordon (2015) showed that Brylawski's affine identities hold extremely generally.
(6. If G has at least 2 edges, then $b_{1,0} \neq 0$ if and only if G is 2-connected.

If \mathbb{G} has at least 2 edges, then $r_{1,0} \neq 0$ if and only if \mathbb{G} is 2 -connected. This follows from a result of Bouchet (2001), which implies that if \mathbb{G} is 2-connected then at least one of $\mathbb{G} \backslash e$ and \mathbb{G} / e is 2-connected.
(․) $T(G ; x, y)$ has degree $r(E)$ in x and if G is loopless then $b_{r(E), 0}=1$ and otherwise $b_{r(E), i}=0$.

If $i>\sigma(E)$, then $r_{i, j}=0$. Moreover

$$
\sum_{j} r_{\sigma(E), j}=1
$$

Main theorem

Theorem

If \mathbb{G} is an orientable ribbon graph, then $R(\mathbb{G} ; x, y)$ is irreducible if and only if \mathbb{G} is 2 -connected.
(This extends to even delta-matroids.)

Thanks and questions

Thank you for listening.

