The use of rational approximation for linearization
of models that are nonlinear in the frequency
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Analysis of vibrations
@ ‘Classical’ analysis (frequency domain): Helmholtz equation
@ Discretization: FE, BE, Trefftz

(K —w®M)x = f (K +wC — w?M)x = f

Simple w dependency —

@ Frequency sweeping
(computing x for many w)

@ Time stepping (connection between
Fourier domain and time domain)

@ Eigenvalue computations
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Trends in the analysis of vibrations
@ Nonlinear frequency dependencies

@ Nonlinear time dependent models (mechatronic systems)
@ Digital twins, optimization, inverse problems:
» Time critical: model order reduction and other fast methods
» Time domain
» Coupled systems
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Polynomial and rational

@ Polynomial and rational frequency dependency = linear in the
frequency.

@ ‘Quadratic eigenvalue problem’

(K 4+sC +s°M)x =f

(%)= (o)

@ is ‘linearized’ to

K C+sM
sl —1

@ Linearin s = w =

» Time stepping
» Fast frequency sweeping
» Eigenvalues
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Rational: Plate with poro-elastic damping

o
2 S7j _
(Ke-l-s M + (Go+jz1:Gj1 +S7’j) KV)Xf

with p = 12. Problem of size n = 28,087 [Lietaert, Deckers, M., 2018]

Model:

Linearization:
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Nonlinear damping

@ Clamped sandwich beam
@ Linear system

Go + Goo(ST)” o B
<K6-|- 5 (sr)o Ky+sM)x=f

with o = 0.675 and 7 = 8.230.
Parameters Gy, G, «, T are obtained from measurements.
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Linearizations of nonlinear frequency dependencies
Two approaches for

A(s)x =
y = ¢c'x

@ Rational approximation of y(s):
» Sampling methods (Loewner matrices) [Mayo, Antoulas, 2007]
» Possibly combined with IRKA (TFIRKA) [Beattie, Gugercin, ...]
» Used for ‘matrix free’ BEM [Desmet, Jonckheere, 2016]
» Computational cost is high.

@ Rational approximation of A(s):

Approximate A(s) by a (rational) polynomial

Form the linear representation

All advantages of linear models

... provided the rational approximation is fast to form
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Approach of linearization

A(s)x = f

We assume the following form (holomorphic decomposition):

As) =Y Cigi(s)
i=

with g; holomorphic in :R.
Two steps

@ polynomial/rational approximation
m
Als) ~ Y Cui(s)
i=1

with ¢; (rational) polynomial of degree d, with poles outside :R.
@ Linearization

K. Meerbergen (KU Leuven) 8ECM June 21st, 2021 8/22



Rational approximation

@ Padé approximation [Su & Bai, 2011]

@ Infinite Arnoldi: Spectral discretization [Trefethen 2000], [Michiels,
Niculescu 2007] [Jarlebring, Michiel, M. 2013]

@ NLEIGS: potential theory [Gttel, Van Beemen, M. & Michiels, 2014]

@ AAA: Adaptive Antoulas Anderson [Nakatsukasa, Sete, Trefethen,
2018] [Lietaert, M., 2018] [Lietaert, M., Perez, Vandereycken,
2020] [Guttel, Negri Porzio and Tisseur, 2020]
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AAA approximation

Rational approximation in barycentric form:

o) = r(s) = 3 92 S /: Z 7
2

@ z;: support point
@ w;: weight

Selection of z; and w;: greedy procedure adaptive Antoulas—Anderson
[Nakatsukasa, Seéte, & Trefethen, 2017]
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AAA

A(s) = Ao + 5By + A191(s)
A(s) = R(s) = A + sBy + A(a] (Ey — sFy) by

and linearization
Ao + sBg a1T ® A4
b1®/n (E1—SF1)®/n

with
[0 | gi(z1) 91(22) 91(20)
7 1 1 I 1
0 a}. - 0 wZ(S —Z1) w1 (22 — S)
by | Ey — sF;y o . UJ3(S — 22)
: wg—2(Zg—1 — 8)
L 0 wd(S — Zd,1) Wa—1 (Zd — S) ]

[Lietaert, M., Pérez, Vandereycken, 2020]
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Set valued AAA

.
A(s) = Ao +5Bo+ Y _Aig;(s)
=1

if r > 1, then we have to build separate AAA approximations for each
g; and join them together as follows:

r
A(s) = AO + SBO + ZA/(ajT(E/ _ SI:j)_1b/‘

j=1
and linearization (for r = 2):
Ao + By al ® A a) ® Ag
b1®/n (E1—SF1)®/n O
bo ® In 0 (E2—8F2)®In
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Set valued AAA

Related to [FastAAA by Hochman, 2018]

m
A(s) = Ao +5Bo+ ) Aigi(s)
j=1

Support points and weights are the same for all g;.

A(s) =~ R(s) = Ay +SBy — i(af RA)BT(E —sF) " @1y)
j=1

The linearization is

Ao+8By >_qa] ®A
bol, (E-sF)®l,

K. Meerbergen (KU Leuven) 8ECM June 21st, 2021

13/22



Set valued AAA

[Elsworth & Guttel, 2018]

Apply AAA to v*A(s)u for well chosen v and u.
@ Use the support points of v*A(s)u for rational approximation of
A(s).
@ Good choice when matrices do not have an explicit form
A(s) = >4 Cigj(s).
@ As matrix vector products v*A(s)u as test points required.

@ We found that g; are not always well approximated, although the
linear combination .
> (v*Cu)gj(s

j=1
is. (Typically lower degree for v*A(s)u.)
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Example

1072
1 .
Im X
ap O (6% asg
@ 2D model of a semiconductor  _g 5 _.5'2 fo1 | e
device :
@ 81 functions: g; = 'V~ for . 1
j=0,...,80. . .
Q interval [ag, 4] was . ol
discretized with 1000
equidistant interior points.
. . . -3
@ With tolerance 10~'2 this led
to a rational approximation
with d = 45. _4
-5 1L
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‘Real’ formulation

@ Symmetry along the real axis:
9i(s) = gj(s).

Im
@ Obtain a real valued function for real
S.
@ Two complex conjugate support
points z4, zo = Z> (add in pairs):
Re

9(z1)wy N 9(z1)w1 /9(Z1)w1 N 9(21)w1
S — 74 S—2z1/ 8§—2z4 S—2z1

@ Real weights wq en wo.

@ Also see [Hochman, 2018], but
without linearization.

@ Make linearization real valued by
linear combination of rows/columns.
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Rational Krylov method

Optimal choice of interpolation points

@ IRKA (lterative Rational Krylov) [Gugercin, Antoulas, Beattie,
2008]
» lteratively determine interpolation points that guarantee, on
convergence, minimal H, error
» Expensive procedure: each iteration, an order kK model has to be
constructed

@ Greedy optimization [Druskin, Simoncini, 2008] [Druskin,
Lieberman, Zaslavsky, 2010]

» On each iteration, add one interpolation point

» Choose interpolation point based on an error estimation

» The easiest is to choose the residual norm of the linear system
(cheap and accurate)

» Does not produce an optimal reduction

@ Combination: SPARK [Panzer, Jaensch, Wolf, and Lohmann, 2013].
@ Computational improvement: keep the shift during a small number
of iterations.
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Greedy algorithm
@ Build a reduced model of dimension k x k by projection of the
linear model on a subspace
@ At iteration k, add state vector x(oy) with o, chosen so that the
residual r(s), with s € R has largest norm for s = oy.
@ Higher order interpolation: build a small Krylov space for the shift:

(okE =AY, ... ((0kE — A)T'EY" 1 (0kE — A)7'f

T . T . T
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Fast frequency sweeping: plate

@ The problem (n = 28,087) (0 — 500Hz)
(Ke + Gy(w)K, — w?M)x = f
W Tk

m
GV:GO+;GK1+MTk

@ Results for Greedy method with multiple shifts:

solves LU subspace time
per shift factorizations dimension
1 30 65 251.9
20 4 141 48.1
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Time integration
@ Linearization in Laplace domain has state vector

X
P1X
PaX
with ¢; barycentric rational basis functions.
@ In the time domain:

@ Initial values: y;(0) = 0 if x(t) = 0 for t < 0 (system in rest
position).
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Example of the clamped beam

GO +GOO(ST)a 2 o
<Ke+1—|—(ST)aKV+S Mlx=0

@ right-hand side f(t) = fy - sin(wt) with w = 27 - 10.

@ Two selections of approximations:
@ 1000 sample points (log scale) in [10,10%]Hz: d = 33
@ 1000 sample points (log scale) in [10, 10%|Hz: d = 47

@ Amplitude corresponds to modulus of transfer function for s = ww.

-108
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Conclusions

@ Linearizations by AAA leads to fast methods for frequency
sweeping and time integration

@ Choosing a large frequency range is essential for stability of the
ODE/DAE

@ Downside: problems with many g;’s to approximate may annihilate
the disadvantages.

@ Work on going with Simon Dirckx, Daan Huybrechs en Elke
Deckers to improve for other situations including BEM.
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