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Analysis of vibrations
‘Classical’ analysis (frequency domain): Helmholtz equation
Discretization: FE, BE, Trefftz

(K − ω2M)x = f (K + ıωC − ω2M)x = f

Simple ω dependency =⇒
Frequency sweeping
(computing x for many ω)
Time stepping (connection between
Fourier domain and time domain)
Eigenvalue computations
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Trends in the analysis of vibrations
Nonlinear frequency dependencies
Nonlinear time dependent models (mechatronic systems)
Digital twins, optimization, inverse problems:

I Time critical: model order reduction and other fast methods
I Time domain
I Coupled systems
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Polynomial and rational

Polynomial and rational frequency dependency = linear in the
frequency.
‘Quadratic eigenvalue problem’

(K + sC + s2M)x = f

is ‘linearized’ to [
K C + sM
sI −I

](
x
sx

)
=

(
f
0

)
Linear in s = ıω =⇒:

I Time stepping
I Fast frequency sweeping
I Eigenvalues

K. Meerbergen (KU Leuven) 8ECM June 21st, 2021 4 / 22



Rational: Plate with poro-elastic damping
Model: Ke + s2M +

G0 +

p∑
j=1

Gj
sτj

1 + sτj

Kv

 x = f

with p = 12. Problem of size n = 28,087 [Lietaert, Deckers, M., 2018]
Linearization:

Ke + G0Kv sM G1Kv · · · GpKv
sI −I
−sτ1I 1 + sτ1

. . . . . .
−sτp 1 + sτp




x
sx

sτ1
1+sτ1

x
...

sτp
1+sτp

x

 =


f
0
0
...
0


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Nonlinear damping

Clamped sandwich beam
Linear system(

Ke +
G0 + G∞(sτ)α

1 + (sτ)α
Kv + s2M

)
x = f

with α = 0.675 and τ = 8.230.
Parameters G0,G∞, α, τ are obtained from measurements.
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Linearizations of nonlinear frequency dependencies
Two approaches for

A(s)x = f
y = cT x

1 Rational approximation of y(s):
I Sampling methods (Loewner matrices) [Mayo, Antoulas, 2007]
I Possibly combined with IRKA (TFIRKA) [Beattie, Gugercin, . . . ]
I Used for ‘matrix free’ BEM [Desmet, Jonckheere, 2016]
I Computational cost is high.

2 Rational approximation of A(s):
I Approximate A(s) by a (rational) polynomial
I Form the linear representation
I All advantages of linear models
I . . . provided the rational approximation is fast to form
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Approach of linearization

A(s)x = f

We assume the following form (holomorphic decomposition):

A(s) =
m∑

i=1
Cigi(s)

with gi holomorphic in ıR.
Two steps

1 polynomial/rational approximation

A(s) ≈
m∑

i=1
Ciψi(s)

with ψi (rational) polynomial of degree d, with poles outside ıR.
2 Linearization
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Rational approximation

Padé approximation [Su & Bai, 2011]
Infinite Arnoldi: Spectral discretization [Trefethen 2000], [Michiels,
Niculescu 2007] [Jarlebring, Michiel, M. 2013]
NLEIGS: potential theory [Güttel, Van Beemen, M. & Michiels, 2014]
AAA: Adaptive Antoulas Anderson [Nakatsukasa, Sète, Trefethen,
2018] [Lietaert, M., 2018] [Lietaert, M., Perez, Vandereycken,
2020] [Güttel, Negri Porzio and Tisseur, 2020]
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AAA approximation

Rational approximation in barycentric form:

g(s) ≈ r(s) =
d∑

j=1

g(zj)ωj
s− zj

/ d∑
j=1

ωj
s− zj

Ω

zj : support point
ωj : weight

Selection of zj and ωj : greedy procedure adaptive Antoulas–Anderson
[Nakatsukasa, Sète, & Trefethen, 2017]
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AAA

A(s) = A0 + sB0 + A1g1(s)

A(s) ≈ R(s) = A0 + sB0 + A1(aT
1 (E1 − sF1)−1b1

and linearization [
A0 + sB0 aT

1 ⊗ A1
b1 ⊗ In (E1 − sF1)⊗ In

]
with

[
0 aT

1
b1 E1 − sF1

]
=



0 g1(z1) g1(z2) · · · g1(zd)

−1 1 1 · · · 1
0 ω2(s − z1) ω1(z2 − s)
... ω3(s − z2)

. . .
...

. . . ωd−2(zd−1 − s)
0 ωd(s − zd−1) ωd−1(zd − s)


[Lietaert, M., Pérez, Vandereycken, 2020]
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Set valued AAA

A(s) = A0 + sB0 +
r∑

j=1
Ajgj(s)

if r > 1, then we have to build separate AAA approximations for each
gj and join them together as follows:

A(s) = A0 + sB0 +
r∑

j=1
Aj(aT

j (Ej − sFj)
−1bj

and linearization (for r = 2):A0 + sB0 aT
1 ⊗ A1 aT

2 ⊗ A2
b1 ⊗ In (E1 − sF1)⊗ In 0
b2 ⊗ In 0 (E2 − sF2)⊗ In


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Set valued AAA

Related to [FastAAA by Hochman, 2018]

A(s) = A0 + sB0 +
m∑

j=1
Ajgj(s)

Support points and weights are the same for all gj .

A(s) ≈ R(s) = A0 + sB0 −
r∑

j=1
(aT

j ⊗ Aj)(bT (E − sF)−1 ⊗ In)

The linearization is [
A0 + sB0

∑r
j=1 aT

j ⊗ Aj
b⊗ In (E − sF)⊗ In

]
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Set valued AAA

[Elsworth & Güttel, 2018]

Apply AAA to v∗A(s)u for well chosen v and u.
Use the support points of v∗A(s)u for rational approximation of
A(s).
Good choice when matrices do not have an explicit form
A(s) =

∑m
j=1 Cjgj(s).

As matrix vector products v∗A(s)u as test points required.
We found that gj are not always well approximated, although the
linear combination

m∑
j=1

(v∗Cju)gj(s)

is. (Typically lower degree for v∗A(s)u.)
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Example

1 2D model of a semiconductor
device

2 81 functions: gj = ei
√

s−αj for
j = 0, . . . ,80.

3 interval [α0, α1] was
discretized with 1000
equidistant interior points.

4 With tolerance 10−12 this led
to a rational approximation
with d = 45.

−0.3 −0.2 −0.1 0.1 0.2 0.3 0.4
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−2
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‘Real’ formulation

Symmetry along the real axis:
gj(s) = gj(s).
Obtain a real valued function for real
s.
Two complex conjugate support
points z1, z2 = z2 (add in pairs):

g(z1)ω1
s− z1

+
g(z1)ω1
s− z1

/g(z1)ω1
s− z1

+
g(z1)ω1
s− z1

Real weights ω1 en ω2.
Also see [Hochman, 2018], but
without linearization.
Make linearization real valued by
linear combination of rows/columns.

Re

Im
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Rational Krylov method
Optimal choice of interpolation points

IRKA (Iterative Rational Krylov) [Gugercin, Antoulas, Beattie,
2008]

I Iteratively determine interpolation points that guarantee, on
convergence, minimal H2 error

I Expensive procedure: each iteration, an order k model has to be
constructed

Greedy optimization [Druskin, Simoncini, 2008] [Druskin,
Lieberman, Zaslavsky, 2010]

I On each iteration, add one interpolation point
I Choose interpolation point based on an error estimation
I The easiest is to choose the residual norm of the linear system

(cheap and accurate)
I Does not produce an optimal reduction

Combination: SPARK [Panzer, Jaensch, Wolf, and Lohmann, 2013].
Computational improvement: keep the shift during a small number
of iterations.
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Greedy algorithm
Build a reduced model of dimension k × k by projection of the
linear model on a subspace
At iteration k, add state vector x(σk) with σk chosen so that the
residual r(s), with s ∈ ıR has largest norm for s = σk .
Higher order interpolation: build a small Krylov space for the shift:

(σkE − A)−1f , . . . , ((σkE − A)−1E)m−1(σkE − A)−1f
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Fast frequency sweeping: plate

The problem (n = 28,087) (0− 500Hz)

(Ke + Gv(ω)Kv − ω2M)x = f

Gv = G0 +
m∑

k=1
Gk

ıωτk
1 + ıωτk

Results for Greedy method with multiple shifts:
solves LU subspace time

per shift factorizations dimension
1 30 65 251.9

20 4 141 48.1
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Time integration
Linearization in Laplace domain has state vector

x
φ1x

...
φdx


with φj barycentric rational basis functions.
In the time domain:

x̃
ỹ1
...

ỹd

 with ỹj(t) = βj,0x̃(t) +
d∑

i=1
βj,i

∫ ∞
0

x̃(t − s)eαisds.

Initial values: ỹj(0) = 0 if x(t) = 0 for t ≤ 0 (system in rest
position).
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Example of the clamped beam(
Ke +

G0 + G∞(sτ)α

1 + (sτ)α
Kv + s2M

)
x = 0

right-hand side f(t) = f0 · sin(ωt) with ω = 2π · 10.
Two selections of approximations:

1 1000 sample points (log scale) in [10,103]Hz: d = 33
2 1000 sample points (log scale) in [10,105]Hz: d = 47

Amplitude corresponds to modulus of transfer function for s = ıω.

0.1 0.2 0.3

1

2

3

4

·106

t

‖x(t)‖2
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0.2
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t

‖x(t)‖2
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Conclusions

Linearizations by AAA leads to fast methods for frequency
sweeping and time integration
Choosing a large frequency range is essential for stability of the
ODE/DAE
Downside: problems with many gj ’s to approximate may annihilate
the disadvantages.
Work on going with Simon Dirckx, Daan Huybrechs en Elke
Deckers to improve for other situations including BEM.
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