The use of rational approximation for linearization of models that are nonlinear in the frequency

Elke Deckers Stijn Jonckheere Karl Meerbergen

June 21st, 2021

Analysis of vibrations

(k

- 'Classical' analysis (frequency domain): Helmholtz equation
- Discretization: FE, BE, Trefftz

$$(K - \omega^2 M)x = f$$
 $(K + \iota\omega C - \omega^2 M)x$

Simple ω dependency \Longrightarrow

- Frequency sweeping (computing *x* for many ω)
- Time stepping (connection between Fourier domain and time domain)
- Eigenvalue computations

= f

Trends in the analysis of vibrations

- Nonlinear frequency dependencies
- Nonlinear time dependent models (mechatronic systems)
- Digital twins, optimization, inverse problems:
 - Time critical: model order reduction and other fast methods
 - Time domain
 - Coupled systems

Polynomial and rational

- Polynomial and rational frequency dependency = linear in the frequency.
- 'Quadratic eigenvalue problem'

$$(K + sC + s^2M)x = f$$

is 'linearized' to

$$\begin{bmatrix} K & C + sM \\ sI & -I \end{bmatrix} \begin{pmatrix} x \\ sx \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

- Linear in $s = \imath \omega \Longrightarrow$:
 - Time stepping
 - Fast frequency sweeping
 - Eigenvalues

Rational: Plate with poro-elastic damping Model:

$$\left(K_{e} + s^{2}M + \left(G_{0} + \sum_{j=1}^{p} G_{j} \frac{s\tau_{j}}{1 + s\tau_{j}} \right) K_{v} \right) x = f$$

with p = 12. Problem of size n = 28,087 [Lietaert, Deckers, M., 2018] Linearization:

Nonlinear damping

- Clamped sandwich beam
- Linear system

$$\left(K_{e}+rac{G_{0}+G_{\infty}(s au)^{lpha}}{1+(s au)^{lpha}}K_{v}+s^{2}M
ight)x=f$$

with $\alpha = 0.675$ and $\tau = 8.230$. Parameters $G_0, G_{\infty}, \alpha, \tau$ are obtained from measurements.

Linearizations of nonlinear frequency dependencies

Two approaches for

$$\begin{array}{rcl} \mathsf{A}(s)x &=& f\\ y &=& c^{\mathsf{T}}x \end{array}$$

1

Rational approximation of y(s):

- Sampling methods (Loewner matrices) [Mayo, Antoulas, 2007]
- Possibly combined with IRKA (TFIRKA) [Beattie, Gugercin, ...]
- Used for 'matrix free' BEM [Desmet, Jonckheere, 2016]
- Computational cost is high.
- 2 Rational approximation of A(s):
 - Approximate A(s) by a (rational) polynomial
 - Form the linear representation
 - All advantages of linear models
 - ... provided the rational approximation is fast to form

Approach of linearization

$$A(s)x = f$$

We assume the following form (holomorphic decomposition):

$$A(s) = \sum_{i=1}^m C_i g_i(s)$$

with g_i holomorphic in $i\mathbb{R}$. Two steps

$$A(s) ~pprox ~\sum_{i=1}^m C_i \psi_i(s)$$

with ψ_i (rational) polynomial of degree *d*, with poles outside $i\mathbb{R}$.

Linearization

Rational approximation

- Padé approximation [Su & Bai, 2011]
- Infinite Arnoldi: Spectral discretization [Trefethen 2000], [Michiels, Niculescu 2007] [Jarlebring, Michiel, M. 2013]
- NLEIGS: potential theory [Güttel, Van Beemen, M. & Michiels, 2014]
- AAA: Adaptive Antoulas Anderson [Nakatsukasa, Sète, Trefethen, 2018] [Lietaert, M., 2018] [Lietaert, M., Perez, Vandereycken, 2020] [Güttel, Negri Porzio and Tisseur, 2020]

AAA approximation

Rational approximation in barycentric form:

$$g(s) \approx r(s) = \sum_{j=1}^{d} \frac{g(z_j) \omega_j}{s - z_j} / \sum_{j=1}^{d} \frac{\omega_j}{s - z_j}$$

z_j: support point

Selection of z_j and ω_j : greedy procedure *adaptive Antoulas–Anderson* [Nakatsukasa, Sète, & Trefethen, 2017]

AAA

$$A(s) = A_0 + sB_0 + A_1g_1(s)$$

 $A(s) \approx R(s) = A_0 + sB_0 + A_1(a_1^T(E_1 - sF_1)^{-1}b_1)$

and linearization

$$\begin{bmatrix} A_0 + sB_0 & a_1^T \otimes A_1 \\ b_1 \otimes I_n & (E_1 - sF_1) \otimes I_n \end{bmatrix}$$

with

$$\begin{bmatrix} 0 & a_1^T \\ \hline b_1 & E_1 - sF_1 \end{bmatrix} = \begin{bmatrix} 0 & g_1(z_1) & g_1(z_2) & \cdots & g_1(z_d) \\ \hline -1 & 1 & 1 & \cdots & 1 \\ 0 & \omega_2(s - z_1) & \omega_1(z_2 - s) \\ \vdots & & \omega_3(s - z_2) & \ddots \\ \vdots & & \ddots & & \omega_{d-2}(z_{d-1} - s) \\ 0 & & & \omega_d(s - z_{d-1}) & \omega_{d-1}(z_d - s) \end{bmatrix}$$

[Lietaert, M., Pérez, Vandereycken, 2020]

Set valued AAA

$$A(s) = A_0 + sB_0 + \sum_{j=1}^r A_j g_j(s)$$

if r > 1, then we have to build separate AAA approximations for each g_i and join them together as follows:

$$A(s) = A_0 + sB_0 + \sum_{j=1}^r A_j (a_j^T (E_j - sF_j)^{-1} b_j)$$

and linearization (for r = 2):

$$\begin{bmatrix} A_0 + sB_0 & a_1^T \otimes A_1 & a_2^T \otimes A_2 \\ b_1 \otimes I_n & (E_1 - sF_1) \otimes I_n & 0 \\ b_2 \otimes I_n & 0 & (E_2 - sF_2) \otimes I_n \end{bmatrix}$$

Set valued AAA

Related to [FastAAA by Hochman, 2018]

$$A(s) = A_0 + sB_0 + \sum_{j=1}^m A_j g_j(s)$$

Support points and weights are the same for all g_i .

$$A(s) pprox R(s) = A_0 + sB_0 - \sum_{j=1}^r (a_j^T \otimes A_j)(b^T (E - sF)^{-1} \otimes I_n)$$

The linearization is

$$\begin{bmatrix} A_0 + sB_0 & \sum_{j=1}^r a_j^T \otimes A_j \\ b \otimes I_n & (E - sF) \otimes I_n \end{bmatrix}$$

Set valued AAA

[Elsworth & Güttel, 2018]

Apply AAA to $v^*A(s)u$ for well chosen v and u.

- Use the support points of v*A(s)u for rational approximation of A(s).
- Good choice when matrices do not have an explicit form $A(s) = \sum_{j=1}^{m} C_j g_j(s)$.
- As matrix vector products $v^*A(s)u$ as test points required.
- We found that *g_j* are not always well approximated, although the linear combination

$$\sum_{j=1}^m (v^*C_j u)g_j(s)$$

is. (Typically lower degree for $v^*A(s)u$.)

Example

- 2D model of a semiconductor device
- 81 functions: $g_j = e^{i\sqrt{s-\alpha_j}}$ for $j = 0, \dots, 80$.
- interval [α₀, α₁] was discretized with 1000 equidistant interior points.
- With tolerance 10^{-12} this led to a rational approximation with d = 45.

'Real' formulation

- Symmetry along the real axis: $g_j(\overline{s}) = \overline{g_j(s)}$.
- Obtain a real valued function for real s.

$$\frac{g(z_1)\omega_1}{s-z_1} + \frac{\overline{g(z_1)}\omega_1}{s-\overline{z_1}} \Big/ \frac{g(z_1)\omega_1}{s-z_1} + \frac{\overline{g(z_1)}\omega_1}{s-\overline{z_1}}$$

- Real weights ω_1 en ω_2 .
- Also see [Hochman, 2018], but without linearization.
- Make linearization real valued by linear combination of rows/columns.

Rational Krylov method

Optimal choice of interpolation points

- IRKA (Iterative Rational Krylov) [Gugercin, Antoulas, Beattie, 2008]
 - Iteratively determine interpolation points that guarantee, on convergence, minimal H₂ error
 - Expensive procedure: each iteration, an order k model has to be constructed
- Greedy optimization [Druskin, Simoncini, 2008] [Druskin, Lieberman, Zaslavsky, 2010]
 - On each iteration, add one interpolation point
 - Choose interpolation point based on an error estimation
 - The easiest is to choose the residual norm of the linear system (cheap and accurate)
 - Does not produce an optimal reduction
- Combination: SPARK [Panzer, Jaensch, Wolf, and Lohmann, 2013].
- Computational improvement: keep the shift during a small number of iterations.

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector $x(\sigma_k)$ with σ_k chosen so that the residual r(s), with $s \in i\mathbb{R}$ has largest norm for $s = \sigma_k$.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

June 21st. 2021

18/22

- Build a reduced model of dimension k × k by projection of the linear model on a subspace
- At iteration k, add state vector x(σ_k) with σ_k chosen so that the residual r(s), with s ∈ iℝ has largest norm for s = σ_k.
- Higher order interpolation: build a small Krylov space for the shift:

$$(\sigma_k E - A)^{-1} f, \dots, ((\sigma_k E - A)^{-1} E)^{m-1} (\sigma_k E - A)^{-1} f$$

Fast frequency sweeping: plate

• The problem (*n* = 28,087) (0 – 500Hz)

$$(K_e + G_v(\omega)K_v - \omega^2 M)x = f$$

$$G_{\nu} = G_0 + \sum_{k=1}^m G_k \frac{\imath \omega \tau_k}{1 + \imath \omega \tau_k}$$

• Results for Greedy method with multiple shifts:

solves	LU	subspace	time
per shift	factorizations	dimension	
1	30	65	251.9
20	4	141	48.1

Time integration

• Linearization in Laplace domain has state vector

$$\begin{pmatrix} x \\ \phi_1 x \\ \vdots \\ \phi_d x \end{pmatrix}$$

with ϕ_i barycentric rational basis functions.

In the time domain:

$$\begin{pmatrix} \tilde{x} \\ \tilde{y}_1 \\ \vdots \\ \tilde{y}_d \end{pmatrix} \quad \text{with} \quad \tilde{y}_j(t) = \beta_{j,0} \tilde{x}(t) + \sum_{i=1}^d \beta_{j,i} \int_0^\infty \tilde{x}(t-s) e^{\alpha_i s} ds.$$

• Initial values: $\tilde{y}_j(0) = 0$ if x(t) = 0 for $t \le 0$ (system in rest position).

Example of the clamped beam

$$\left({{{\mathcal{K}}_{e}}+rac{{{G}_{0}}+{{G}_{\infty }}({{m{s}} au })^{lpha }}{1+({{m{s}} au })^{lpha }}{{\mathcal{K}}_{m{v}}}+{{m{s}}^{2}M}
ight)x=0$$

- right-hand side $f(t) = f_0 \cdot \sin(\omega t)$ with $\omega = 2\pi \cdot 10$.
- Two selections of approximations:
 - 1000 sample points (log scale) in [10, 10^3]Hz: d = 33
 - 3 1000 sample points (log scale) in $[10, 10^5]$ Hz: d = 47
- Amplitude corresponds to modulus of transfer function for $s = i\omega$.

Conclusions

- Linearizations by AAA leads to fast methods for frequency sweeping and time integration
- Choosing a large frequency range is essential for stability of the ODE/DAE
- Downside: problems with many *g_j*'s to approximate may annihilate the disadvantages.
- Work on going with Simon Dirckx, Daan Huybrechs en Elke Deckers to improve for other situations including BEM.