The use of rational approximation for linearization of models that are nonlinear in the frequency

Elke Deckers Stijn Jonckheere Karl Meerbergen

Analysis of vibrations

- ‘Classical’ analysis (frequency domain): Helmholtz equation
- Discretization: FE, BE, Trefftz

$$
\left(K-\omega^{2} M\right) x=f \quad\left(K+\imath \omega C-\omega^{2} M\right) x=f
$$

Simple ω dependency \Longrightarrow

- Frequency sweeping
(computing x for many ω)
- Time stepping (connection between

Fourier domain and time domain)

- Eigenvalue computations

Trends in the analysis of vibrations

- Nonlinear frequency dependencies
- Nonlinear time dependent models (mechatronic systems)
- Digital twins, optimization, inverse problems:
- Time critical: model order reduction and other fast methods
- Time domain
- Coupled systems

Polynomial and rational

- Polynomial and rational frequency dependency = linear in the frequency.
- 'Quadratic eigenvalue problem'

$$
\left(K+s C+s^{2} M\right) x=f
$$

- is 'linearized' to

$$
\left[\begin{array}{cc}
K & C+s M \\
s l & -l
\end{array}\right]\binom{x}{s x}=\binom{f}{0}
$$

- Linear in $s=\imath \omega \Longrightarrow$:
- Time stepping
- Fast frequency sweeping
- Eigenvalues

Rational: Plate with poro-elastic damping
Model:

$$
\left(K_{e}+s^{2} M+\left(G_{0}+\sum_{j=1}^{p} G_{j} \frac{s \tau_{j}}{1+s \tau_{j}}\right) K_{v}\right) x=f
$$

with $p=12$. Problem of size $n=28,087$ [Lietaert, Deckers, M., 2018] Linearization:

$$
\left[\begin{array}{ccccc}
K_{e}+G_{0} K_{v} & s M & G_{1} K_{v} & \cdots & G_{p} K_{v} \\
s l & -I & & & \\
-s \tau_{1} l & & 1+s \tau_{1} & & \\
& \ddots & \ddots & & \\
& & & -s \tau_{p} & 1+s \tau_{p}
\end{array}\right]\left(\begin{array}{c}
x \\
s x \\
\frac{s \tau_{1}}{1+s \tau_{1}} x \\
\vdots \\
s \tau_{\rho} \\
1+s \tau_{p} x
\end{array}\right)=\left(\begin{array}{c}
f \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Nonlinear damping

- Clamped sandwich beam
- Linear system

$$
\left(K_{e}+\frac{G_{0}+G_{\infty}(s \tau)^{\alpha}}{1+(s \tau)^{\alpha}} K_{v}+s^{2} M\right) x=f
$$

with $\alpha=0.675$ and $\tau=8.230$.
Parameters $G_{0}, G_{\infty}, \alpha, \tau$ are obtained from measurements.

Linearizations of nonlinear frequency dependencies

Two approaches for

$$
\begin{aligned}
A(s) x & =f \\
y & =c^{T} x
\end{aligned}
$$

(1) Rational approximation of $y(s)$:

- Sampling methods (Loewner matrices) [Mayo, Antoulas, 2007]
- Possibly combined with IRKA (TFIRKA) [Beattie, Gugercin, ...]
- Used for 'matrix free' BEM [Desmet, Jonckheere, 2016]
- Computational cost is high.
(2) Rational approximation of $A(s)$:
- Approximate $A(s)$ by a (rational) polynomial
- Form the linear representation
- All advantages of linear models
- ... provided the rational approximation is fast to form

Approach of linearization

$$
A(s) x=f
$$

We assume the following form (holomorphic decomposition):

$$
A(s)=\sum_{i=1}^{m} C_{i} g_{i}(s)
$$

with g_{i} holomorphic in $\imath \mathbb{R}$.
Two steps
(1) polynomial/rational approximation

$$
A(s) \approx \sum_{i=1}^{m} C_{i} \psi_{i}(s)
$$

with ψ_{i} (rational) polynomial of degree d, with poles outside $\imath \mathbb{R}$.
(2) Linearization

Rational approximation

- Padé approximation [Su \& Bai, 2011]
- Infinite Arnoldi: Spectral discretization [Trefethen 2000], [Michiels, Niculescu 2007] [Jarlebring, Michiel, M. 2013]
- NLEIGS: potential theory [Güttel, Van Beemen, M. \& Michiels, 2014]
- AAA: Adaptive Antoulas Anderson [Nakatsukasa, Sète, Trefethen, 2018] [Lietaert, M., 2018] [Lietaert, M., Perez, Vandereycken, 2020] [Güttel, Negri Porzio and Tisseur, 2020]

AAA approximation

Rational approximation in barycentric form:

$$
g(s) \approx r(s)=\sum_{j=1}^{d} \frac{g\left(z_{j}\right) \omega_{j}}{s-z_{j}} / \sum_{j=1}^{d} \frac{\omega_{j}}{s-z_{j}}
$$

- z_{j} : support point
- ω_{j} : weight

Selection of z_{j} and ω_{j} : greedy procedure adaptive Antoulas-Anderson [Nakatsukasa, Sète, \& Trefethen, 2017]

AAA

$$
\begin{gathered}
A(s)=A_{0}+s B_{0}+A_{1} g_{1}(s) \\
A(s) \approx R(s)=A_{0}+s B_{0}+A_{1}\left(a_{1}^{T}\left(E_{1}-s F_{1}\right)^{-1} b_{1}\right.
\end{gathered}
$$

and linearization

$$
\left[\begin{array}{cc}
A_{0}+s B_{0} & a_{1}^{T} \otimes A_{1} \\
b_{1} \otimes I_{n} & \left(E_{1}-s F_{1}\right) \otimes I_{n}
\end{array}\right]
$$

with
$\left[\begin{array}{c|c}0 & a_{1}^{\top} \\ \hline b_{1} & E_{1}-s F_{1}\end{array}\right]=\left[\begin{array}{c|cccc}0 & g_{1}\left(z_{1}\right) & g_{1}\left(z_{2}\right) & \ldots & g_{1}\left(z_{d}\right) \\ \hline-1 & 1 & 1 & \cdots & 1 \\ 0 & \omega_{2}\left(s-z_{1}\right) & \omega_{1}\left(z_{2}-s\right) & & \\ \vdots & & \omega_{3}\left(s-z_{2}\right) & \ddots & \\ \vdots & & \ddots & \omega_{d-2}\left(z_{d-1}-s\right) & \\ 0 & & & \omega_{d}\left(s-z_{d-1}\right) & \omega_{d-1}\left(z_{d}-s\right)\end{array}\right]$
[Lietaert, M., Pérez, Vandereycken, 2020]

Set valued AAA

$$
A(s)=A_{0}+s B_{0}+\sum_{j=1}^{r} A_{j} g_{j}(s)
$$

if $r>1$, then we have to build separate AAA approximations for each g_{j} and join them together as follows:

$$
A(s)=A_{0}+s B_{0}+\sum_{j=1}^{r} A_{j}\left(a_{j}^{T}\left(E_{j}-s F_{j}\right)^{-1} b_{j}\right.
$$

and linearization (for $r=2$):

$$
\left[\begin{array}{ccc}
A_{0}+s B_{0} & a_{1}^{T} \otimes A_{1} & a_{2}^{T} \otimes A_{2} \\
b_{1} \otimes I_{n} & \left(E_{1}-s F_{1}\right) \otimes I_{n} & 0 \\
b_{2} \otimes I_{n} & 0 & \left(E_{2}-s F_{2}\right) \otimes I_{n}
\end{array}\right]
$$

Set valued AAA

Related to [FastAAA by Hochman, 2018]

$$
A(s)=A_{0}+s B_{0}+\sum_{j=1}^{m} A_{j} g_{j}(s)
$$

Support points and weights are the same for all g_{j}.

$$
A(s) \approx R(s)=A_{0}+s B_{0}-\sum_{j=1}^{r}\left(a_{j}^{T} \otimes A_{j}\right)\left(b^{T}(E-s F)^{-1} \otimes I_{n}\right)
$$

The linearization is

$$
\left[\begin{array}{cc}
A_{0}+s B_{0} & \sum_{j=1}^{r} a_{j}^{T} \otimes A_{j} \\
b \otimes I_{n} & (E-s F) \otimes I_{n}
\end{array}\right]
$$

Set valued AAA

[Elsworth \& Güttel, 2018]
Apply AAA to $v^{*} A(s) u$ for well chosen v and u.

- Use the support points of $v^{*} A(s) u$ for rational approximation of A(s).
- Good choice when matrices do not have an explicit form $A(s)=\sum_{j=1}^{m} C_{j} g_{j}(s)$.
- As matrix vector products $v^{*} A(s) u$ as test points required.
- We found that g_{j} are not always well approximated, although the linear combination

$$
\sum_{j=1}^{m}\left(v^{*} C_{j} u\right) g_{j}(s)
$$

is. (Typically lower degree for $v^{*} A(s) u$.)

Example

(1) 2D model of a semiconductor device
(2) 81 functions: $g_{j}=e^{i \sqrt{s-\alpha_{j}}}$ for $j=0, \ldots, 80$.
(3) interval $\left[\alpha_{0}, \alpha_{1}\right]$ was discretized with 1000 equidistant interior points.
(1) With tolerance 10^{-12} this led
 to a rational approximation with $d=45$.

‘Real' formulation

- Symmetry along the real axis:

$$
g_{j}(\bar{s})=\overline{g_{j}(s)}
$$

- Obtain a real valued function for real s.
- Two complex conjugate support points $z_{1}, z_{2}=\overline{z_{2}}$ (add in pairs):
$\frac{g\left(z_{1}\right) \omega_{1}}{s-z_{1}}+\frac{\overline{g\left(z_{1}\right)} \omega_{1}}{s-\overline{z_{1}}} / \frac{g\left(z_{1}\right) \omega_{1}}{s-z_{1}}+\frac{\overline{g\left(z_{1}\right)} \omega_{1}}{s-\overline{z_{1}}}$
- Real weights ω_{1} en ω_{2}.
- Also see [Hochman, 2018], but without linearization.

- Make linearization real valued by linear combination of rows/columns.

Rational Krylov method

Optimal choice of interpolation points

- IRKA (Iterative Rational Krylov) [Gugercin, Antoulas, Beattie, 2008]
- Iteratively determine interpolation points that guarantee, on convergence, minimal \mathcal{H}_{2} error
- Expensive procedure: each iteration, an order k model has to be constructed
- Greedy optimization [Druskin, Simoncini, 2008] [Druskin, Lieberman, Zaslavsky, 2010]
- On each iteration, add one interpolation point
- Choose interpolation point based on an error estimation
- The easiest is to choose the residual norm of the linear system (cheap and accurate)
- Does not produce an optimal reduction
- Combination: SPARK [Panzer, Jaensch, Wolf, and Lohmann, 2013].
- Computational improvement: keep the shift during a small number of iterations.

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Greedy algorithm

- Build a reduced model of dimension $k \times k$ by projection of the linear model on a subspace
- At iteration k, add state vector $x\left(\sigma_{k}\right)$ with σ_{k} chosen so that the residual $r(s)$, with $s \in \imath \mathbb{R}$ has largest norm for $s=\sigma_{k}$.
- Higher order interpolation: build a small Krylov space for the shift:

$$
\left(\sigma_{k} E-A\right)^{-1} f, \ldots,\left(\left(\sigma_{k} E-A\right)^{-1} E\right)^{m-1}\left(\sigma_{k} E-A\right)^{-1} f
$$

Fast frequency sweeping: plate

- The problem $(n=28,087)(0-500 \mathrm{~Hz})$

$$
\begin{aligned}
& \left(K_{e}+G_{v}(\omega) K_{v}-\omega^{2} M\right) x=f \\
& G_{v}=G_{0}+\sum_{k=1}^{m} G_{k} \frac{\imath \omega \tau_{k}}{1+\imath \omega \tau_{k}}
\end{aligned}
$$

- Results for Greedy method with multiple shifts:

solves per shift	LU factorizations	subspace dimension	time
1	30	65	251.9
20	4	141	48.1

Time integration

- Linearization in Laplace domain has state vector

$$
\left(\begin{array}{c}
x \\
\phi_{1} x \\
\vdots \\
\phi_{d} x
\end{array}\right)
$$

with ϕ_{j} barycentric rational basis functions.

- In the time domain:

$$
\left(\begin{array}{c}
\tilde{x} \\
\tilde{y}_{1} \\
\vdots \\
\tilde{y}_{d}
\end{array}\right) \quad \text { with } \quad \tilde{y}_{j}(t)=\beta_{j, 0} \tilde{x}(t)+\sum_{i=1}^{d} \beta_{j, i} \int_{0}^{\infty} \tilde{x}(t-s) e^{\alpha_{i} s} d s
$$

- Initial values: $\tilde{y}_{j}(0)=0$ if $x(t)=0$ for $t \leq 0$ (system in rest position).

Example of the clamped beam

$$
\left(K_{e}+\frac{G_{0}+G_{\infty}(s \tau)^{\alpha}}{1+(s \tau)^{\alpha}} K_{v}+s^{2} M\right) x=0
$$

- right-hand side $f(t)=f_{0} \cdot \sin (\omega t)$ with $\omega=2 \pi \cdot 10$.
- Two selections of approximations:
(1) 1000 sample points (log scale) in $\left[10,10^{3}\right] \mathrm{Hz}: d=33$
(2) 1000 sample points (log scale) in $\left[10,10^{5}\right] \mathrm{Hz}: d=47$
- Amplitude corresponds to modulus of transfer function for $s=\imath \omega$.

Conclusions

- Linearizations by AAA leads to fast methods for frequency sweeping and time integration
- Choosing a large frequency range is essential for stability of the ODE/DAE
- Downside: problems with many g_{j} 's to approximate may annihilate the disadvantages.
- Work on going with Simon Dirckx, Daan Huybrechs en Elke Deckers to improve for other situations including BEM.

