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Outline

This talk will be divided into three sections:

Problem description

Existence result

Regularity results

The first two parts are a joint work with:

Sunčica Čanić, University of California, Berkeley,

Boris Muha, Faculty of Science, University of Zagreb,

Josip Tambača, Faculty of Science, University of Zagreb.

Matko Ljulj and Yifan Wang did the numerical simulations of the FSI
problem considered in this talk.
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Introduction

We consider a linear fluid-structure interaction problem between an
incompressible, viscous, Newtonian fluid and the motion of an elastic
structure.

The fluid flow is modeled by the time-dependent Stokes equations
while the structure is modeled as a linearly elastic cylindrical Koiter
shell coupled with a net made of elastic rods.

fluid 3D Stokes equations

shell 2D linear Koiter shell

mesh 1D net made of elastic rods
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Main assumptions of the model

The problem is set on a cylindrical domain in 3D, and is driven by the
time-dependent inlet and outlet pressure data.

The flow is assumed to be laminar, and the structure displacement is
assumed to be small allowing displacement in all three spatial
directions.

No smallness on the structure velocity is assumed.

The fluid and the mesh-supported structure are coupled via the
kinematic and dynamic coupling conditions describing continuity of
velocity and balance of contact forces.
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Motivation

This problem was motivated by a study of blood flow through
medium-to-large human arteries, such as the aorta or coronary
arteries, treated with vascular stents.

The vascular stent is a thin, metallic mesh tube which is inserted at
the location of the narrowing of a diseased coronary artery in order to
prop the artery open.

The procedure of inserting the stent inside the artery is called
coronary angioplasty.
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Model description - the fluid

We consider the flow of an incompressible, viscous fluid through a
cylindrical domain, denoted by Ω:

Ω = {(z, x, y) ∈ R3 : z ∈ (0, L),
√
x2 + y2 ≤ R}.

The fluid domain boundary consists of three parts: the lateral boundary Γ,
which is a cylinder of radius R, the inlet boundary Γin and the outlet
boundary Γout. The time-dependent Stokes equations are used to model
the flow in Ω:

Fluid

ρF∂tu = ∇ · σ,
∇ · u = 0,

}
in Ω, t ∈ (0, T ). (1)
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Model description - the fluid

At the inlet and outlet we prescribe the pressure, with the tangential fluid
velocity equal to zero:

p = Pin/out(t),

u× ez = 0,

}
on Γin/out,

where Pin/out are given.

The fluid velocity will be assumed to belong to the following classical
function space:

Fluid space

VF = {u ∈ H1(Ω;R3) : ∇ · u = 0,u× ez = 0 on Γin/out}.
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Model description - the shell

The lateral boundary of the fluid domain will be assumed elastic, and
modeled as a clamped cylindrical Koiter shell of thickness h, length L, and
reference radius of the middle surface R. This reference configuration,
which we denote by Γ, can be defined via parameterization

ϕ : ω → R3, ϕ(z, θ) = (z,R cos θ,R sin θ),

where ω = (0, L)× (0, 2π), and R > 0. Under loading, the Koiter shell is
displaced from its reference configuration Γ by a displacement
η = η(t, z, θ) = (ηz, ηr, ηθ). Let VK denote the following function space:

Shell space

VK = {η = (ηz, ηr, ηθ) ∈ H1(ω)×H2(ω)×H1(ω) :

η(t, z, θ) = ∂zηr(t, z, θ) = 0, z ∈ {0, L}, θ ∈ (0, 2π),

η(t, z, 0) = η(t, z, 2π), ∂θηr(t, z, 0) = ∂θηr(t, z, 2π), z ∈ (0, L)}.
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Model description - the shell

The displacement η(t, z, θ) = (ηz, ηr, ηθ) of the deformed shell from the
reference configuration Γ is a solution to the following elastodynamics
problem, written in weak form:

Koiter shell

find η ∈ VK such that

ρKh

∫
ω
∂2
t η ·ψR+ 〈Lη,ψ〉 =

∫
ω
f ·ψR, ∀ψ ∈ VK . (2)

Here, ρK is the shell density and f is the force density acting on the shell.
L is an operator that describes elastic properties (change of metric tensor
and change of curvature tensor) of the shell. We emphasize that we have
the coercivity of the operator L, i.e. 〈Lη,η〉 ≥ c‖η‖2, ∀η ∈ VK .
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Model description - the mesh

An elastic mesh is a three-dimensional elastic body defined as a union of
three-dimensional slender components called struts. Since each strut is
”thin”, meaning that its two dimensions are small comparing to the third
one, we approximate it with one-dimensional curved rod model. For the
i−th curved rod, the middle line is parameterized via

Pi : [0, li]→ ϕ(ω), i = 1, . . . , nE ,

and on each rod we have next family of equations:

Mesh

ρSAi∂
2
t di = ∂spi + fi,

ρSMi∂
2
twi = ∂sqi + ti × pi,

0 = ∂swi −QiH−1
i QTi qi,

0 = ∂sdi + ti ×wi.

(3)
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Model description - the mesh

Here, di is the displacement of the middle line of the i−th rod, wi is the
infinitesimal rotation of the cross-section of the i−th rod, qi is the contact
moment, and pi is the contact force.

At each vertex of the mesh we need to prescribe coupling conditions:

kinematic ... continuity of displacements and infinitesimal rotations

dynamic ... balance of contact forces and contact moments
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Model description - the mesh

We first introduce a function space consisting of all the H1-functions
(d,w) defined on the entire net N , such that they satisfy the kinematic
coupling conditions at each vertex:

H1(N ;R6) = {(d,w) = ((d1,w1), . . . , (dnE ,wnE )) ∈
nE∏
i=1

H1(0, li;R6) :

di(P
−1
i (V )) = dj(P

−1
j (V )),wi(P

−1
i (V )) = wj(P

−1
j (V )),

∀V ∈ V, V = ei ∩ ej , i, j = 1, . . . , nE}.
The solution space is defined to contain the conditions of inextensibility
and unshearability as follows:

Mesh space

VS = {(d,w) ∈ H1(N ;R6) : ∂sdi + ti ×wi = 0, i = 1, . . . , nE}.
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Coupling between the shell and the mesh

The elastic mesh is fixed to the shell
nE⋃
i=1

Pi([0, li]) ⊂ Γ = ϕ(ω).

Since ϕ is injective on ω, functions πi, denoting the reparameterizations
of the mesh struts:

πi = ϕ−1 ◦Pi : [0, li]→ ω, i = 1, . . . , nE

are well defined.

The elastic mesh and the shell are coupled through the following coupling
conditions:

kinematic: η(t,πi(si)) = di(t, si),∀si ∈ [0, li] such that
πi(si) = (z, θ) ∈ ω,

dynamic: fR = −
nE∑
i=1

fi ◦ π−1
i

‖π′i ◦ π
−1
i ‖

δJi ,∀(z, θ) ∈ ω, where

Ji = πi([0, li]).
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Parameterization of the mesh struts
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Coupling between the fluid and the structure

The coupling between the fluid and the structure is defined by two sets of
coupling conditions: the kinematic and dynamic coupling conditions,
satisfied at the fixed, lateral boundary Γ, giving rise to a linear
fluid-structure coupling:

kinematic: ∂tη = u|Γ ◦ϕ on (0, T )× ω,
dynamic:

ρKh∂
2
t ηR+Lη+

nE∑
i=1

fi ◦ π−1
i

‖π′i ◦ π
−1
i ‖

δJi = −J(σ◦ϕ)(n◦ϕ) on (0, T )×ω,

where J denotes the Jacobian of the transformation from cylindrical to
Cartesian coordinates, and n denotes the outer unit normal on Γ.
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The fluid-mesh-shell problem

In summary, we study the following fluid-structure interaction problem.
Problem 1. Find (u, p,η,d,w) such that

ρF∂tu = ∇ · σ
∇ · u = 0

}
in (0, T )× Ω, (4)

∂tη = u ◦ϕ

ρKh∂
2
t ηR+ Lη +

nE∑
i=1

fi ◦ π−1
i

||π′i ◦ π
−1
i ||

δJi = −J(σ ◦ϕ)(n ◦ϕ)

 on (0, T )× ω,

(5)

ρSAi∂
2
t di = ∂spi + fi

ρSMi∂
2
twi = ∂sqi + ti × pi

0 = ∂swi −QiH−1
i QTi qi

0 = ∂sdi + ti ×wi

 on (0, T )× (0, li). (6)
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The fluid-mesh-shell problem

Problem (4)-(6) is supplemented with the following set of boundary and
initial conditions:

p = Pin/out(t), on (0, T )× Γin/out,

u× ez = 0, on (0, T )× Γin/out,

η(t, 0, θ) = η(t, L, θ) = 0, on (0, T )× (0, 2π),
∂zηr(t, 0, θ) = ∂zηr(t, L, θ) = 0, on (0, T )× (0, 2π),
η(t, z, 0) = η(t, z, 2π), on (0, T )× (0, L),

∂θηr(t, z, 0) = ∂θηr(t, z, 2π), on (0, T )× (0, L),

(7)

u(0) = u0, η(0) = η0, ∂tη(0) = v0,
di(0) = d0i, ∂tdi(0) = k0i, wi(0) = w0i, ∂twi(0) = z0i.

(8)
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Energy inequality

The formal energy estimate shows that the total energy E(t) of the
problem is bounded by the data of the problem

d

dt
E(t) +D(t) ≤ C(Pin(t), Pout(t)), (9)

where E(t) denotes the total energy of the coupled problem (the sum of
the kinetic and elastic energy), D(t) denotes dissipation due to fluid
viscosity, and C(Pin(t), Pout(t)) is a constant which depends only on the
L2-norms of the inlet and outlet pressure data.
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Definition of a weak solution

We define the following evolution spaces associated with the fluid problem,
the Koiter shell problem, the mesh problem and the coupled mesh-shell
problem:

VF (0, T ) = L∞(0, T ;L2(Ω)) ∩ L2(0, T ;VF ),

VK(0, T ) = W 1,∞(0, T ;L2(R;ω)) ∩ L∞(0, T ;VK),

VS(0, T ) = W 1,∞(0, T ;L2(N )) ∩ L∞(0, T ;VS),

VKS(0, T ) = {(η,d,w) ∈ VK(0, T )× VS(0, T ) : η ◦ π =
d on

∏nE
i=1(0, li)}.
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Definition of a weak solution

The solution space for the coupled fluid-mesh-shell interaction problem
involves the kinematic coupling condition, which is, thus, enforced in a
strong way:

V(0, T ) = {(u,η,d,w) ∈ VF (0, T )× VKS(0, T ) : u ◦ϕ = ∂tη on ω}.

The associated test space is given by:

Q(0, T ) = {(υ,ψ, ξ, ζ) ∈ C1
c ([0, T );VF × VKS) : υ ◦ϕ = ψ on ω}.
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Definition of a weak solution

We say that (u,η,d,w) ∈ V(0, T ) is a weak solution of Problem 1 if for
all test functions (υ,ψ, ξ, ζ) ∈ Q(0, T ) the following equality holds:

− ρF
∫ T

0

∫
Ω

u · ∂tυ + 2µF

∫ T

0

∫
Ω

D(u) : D(υ)− ρKh
∫ T

0

∫
ω

∂tη · ∂tψR

+

∫ T

0

aK(η,ψ)− ρS
nE∑
i=1

Ai

∫ T

0

∫ li

0

∂tdi · ∂tξi − ρS
nE∑
i=1

∫ T

0

∫ li

0

Mi∂twi · ∂tζi

+

∫ T

0

aS(w, ζ) =

∫ T

0

〈F (t),υ〉Γin/out
+ ρF

∫
Ω

u0 · υ(0) + ρKh

∫
ω

v0 ·ψ(0)R

+ ρS

nE∑
i=1

Ai

∫ li

0

k0i · ξi(0) + ρS

nE∑
i=1

∫ li

0

Miz0i · ζi(0),

(10)
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Existence of the weak solution

Theorem

Let u0 ∈ L2(Ω), η0 ∈ H1(ω), v0 ∈ L2(R;ω), (d0,w0) ∈ VS ,
(k0, z0) ∈ L2(N ;R6) be such that

∇ · u0 = 0, (u0|Γ ◦ϕ) · er = (v0)r, u0|Γin/out
× ez = 0, η0 ◦ π = d0.

Furthermore, let all the physical constants be positive:
ρK , ρS , ρF , λ, µ, µF > 0 and Ai > 0, ∀i = 1, . . . , nE , and let
Pin/out ∈ L2

loc(0,∞). Then for every T > 0 there exists a weak solution to
Problem 1.
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Existence of the weak solution

In order to prove the existence of the weak solution to Problem 1, we
proceed as follows:

Use the Lie operator splitting scheme to split the problem into two
subproblems, the fluid and the structure subproblem.

Semi-discretize the subproblems (in time) using the Backward Euler
scheme.

Define approximate solutions, show its uniform boundedness and
extract weak and weak* converging subsequences.

Pass to the limit to see that the limiting functions satisfy the weak
form of Problem 1.
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Regularity of the weak solution

Formal energy estimates show that taking (u, ∂tη, ∂td, ∂tw) as a test
function in the full, coupled problem, leads to the following regularity of
the solution:

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;VF ),

η ∈W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;VK),

(d,w) ∈W 1,∞(0, T ;L2(N )) ∩ L∞(0, T ;H1(N )).

Marija Galić (University of Zagreb) 3D fluid-composite structure interaction 23.6.2021. 24 / 31



Time regularity - motivation

One could take (∂tu, ∂ttη, ∂ttd, ∂ttw) as a test function.

The problem that appears is that we do not get the ”right sign”in
front of the elastic terms in structure equation.

This is due to parabolic-hyperbolic-hyperbolic nature of the coupling
between the fluid and composite structure.

Taking (∂ttu, ∂tttη, ∂tttd, ∂tttw) solves this mismatch!
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Time regularity - estimates

We define the time difference quotients in the following way:

D∆tu(t,x) =
u(t+ ∆t,x)− u(t,x)

∆t
,

and define the test functions for our fluid-composite structure interaction
problem as follows:

υ = −D−∆t(D∆tu), ψ = −D−∆t(D∆t∂tη),

ξ = −D−∆t(D∆t∂td), ζ = −D−∆t(D∆t∂tw),
(11)
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Time regularity - estimates

The weak solution (u,η,d,w) of Problem 1 belongs to the following
function spaces:

u ∈W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;VF ),

η ∈W 2,∞(0, T ;L2(R;ω)) ∩W 1,∞(0, T ;VK),

(d,w) ∈W 2,∞(0, T ;L2(N )) ∩W 1,∞(0, T ;VS)

provided that initial data satisfy:

u0 ∈ H2(Ω), η0 ∈ VK , v0 ∈ VK , (d0,w0) ∈ VS , (k0, z0) ∈ VS

together with the compatibility conditions:

∇ · u0 = 0, (u0|Γ ◦ϕ) · er = (v0)r, u0|Γin/out
× ez = 0, η0 ◦ π = d0.

For the inlet and outlet pressure we demand Pin/out ∈ H1
loc(0,∞).
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Space regularity - formal estimates

One could naively take (−∆u,−∆∂tη,−∆∂td,−∆∂tw) as a test
function, where

∆u(z, r, θ) = (∆uz(z, r, θ),∆ur(z, r, θ),∆uθ(z, r, θ))

= (∂zzuz + ∂rruz + ∂θθuz, ∂zzur + ∂rrur + ∂θθur,

∂zzuθ + ∂rruθ + ∂θθuθ)

and

∆∂tη(z, θ) = (∆∂tηz(z, θ),∆∂tηr(z, θ),∆∂tηθ(z, θ))

= (∂zz∂tηz + ∂θθ∂tηz, ∂zz∂tηr + ∂θθ∂tηr, ∂zz∂tηθ + ∂θθ∂tηθ).

The problem that we encounter here is non-compatibility of the test
functions, i.e. ∆u 6= ∆∂tη on Γ.
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Fluid interior regularity

For the fluid test function we take −χ∆u, where χ is a smooth
cut-off function which has support in the interior of the fluid domain.

For the shell + mesh part we take zero test functions.

The fluid test function is not divergence-free!

One obtains an additional fluid interior regularity

u ∈ L∞(0, T ;H1(Ω0)) and u ∈ L2(0, T ;H2(Ω0)),

where Ω0 ⊂⊂ Ω.
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Shell interior regularity

We now exclude the mesh from calculations.

Take
υ = −χ̃∆u and ψ = −χ∆∂tη

as a test function for the fluid ans shell equations, respectively.

As we already noticed these two test functions are non-compatible, so
we have to take slightly modified test function for the fluid part,
namely:

υ = χ̃(−∂zzuzz − ∂θθuzz,−∂zzurr − ∂θθurr,−∂zzuθθ − ∂θθuθθ).

For the fluid velocity, we obtain an additional regularity in z-direction
and in θ-direction.

An additional regularity of the fluid velocity in radial direction is
obtained by using the Stokes equation.

For the shell displacement, an additional regularity is obtained up to
the boundary.

Marija Galić (University of Zagreb) 3D fluid-composite structure interaction 23.6.2021. 30 / 31



Mesh interior regularity

In this step we calculate mesh interior regularity (by excluding the
mesh vertices).

Again we have to multiply the test functions with appropriate smooth
cut-off functions.

For the mesh, we take the following test functions

(−∆∂tdi,−∆∂twi) = (−∂ss∂tdi,−∂ss∂twi).

For the fluid and the shell, we take

−∂ssu and − ∂ss∂tη.

We obtain an additional fluid velocity and shell displacement
regularity in s-direction.

For the mesh, we obtain an additional regularity up to mesh vertices.
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