Classification and stability analysis of travelling wave solutions for a model of collective cell migration.

Dietmar Oelz

(University of Queensland, Brisbane, Australia)

- Physiological conditions: tissue morphogenesis, wound healing
- Pathophysiological condition: cancer invasion.
- coordination through cell-cell junctions (mechanosensation).

Migration (model wound) assays

Collective motion of MCF-7 cells. (Shafali Gupta, IMB-UQ)

Mechanosensitive coupling

Cell-cell adhesion

Cortex contractility

From Charras, Yap. Current Biology 2018

Minimal model for motile machinery (polarization) of a single cell

$$\begin{cases} \dot{a} = -\beta a + \gamma \dot{x} \\ \dot{x} = M_n(a) \end{cases}$$

a... polarity,
 \dot{x} ... velocity,
 β ... depolarisation,
 γ ... polarisation

Steady state:
$$\frac{\beta}{\gamma}a = M_n(a)$$

1D toy model for collective cell migration

$$\begin{cases} \dot{x}_{i} = \frac{\kappa}{\eta} \underbrace{(x_{i+1} - x_{i} - l_{0} - (x_{i} - x_{i-1} - l_{0}))}_{x_{i+1} - 2x_{i} + x_{i-1}} + M_{n}(a_{i}) \\ \dot{a}_{i} = -\beta a_{i} + \gamma \dot{x}_{i} \end{cases}$$

 $\mathbf{x}_i \dots$ position of cell i, $a_i \dots$ polarity of cell i η ...drag friction, β ...depolarization, γ ...self-excitation, l_0 ... equilibrium length, κ ...contractility

Numerical results

Polarization wave ($\kappa = 0.1$)

10

20

30

Time

4(

Depolarization wave ($\kappa = 0.1$, $\alpha = 0.8$)

What determines the speed of the polarization wave?

Continuum limit

 $\rho = \rho(t, x) \dots$ cell density $a = a(t, x) \dots$ polarity

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0, \\ \frac{\partial a}{\partial t} + v \frac{\partial a}{\partial x} = -a + v. \end{cases} \qquad v = M_n(a) - \kappa \frac{1}{\rho^3} \frac{\partial \rho}{\partial x}.$$

with parameters κ and α after non-dimensionalisation

Traveling wave ansatz

$$\rho(x,t) = R(x - st) ,$$

$$a(x,t) = A(x - st) .$$

$$\begin{cases} R' = \frac{R^2}{\kappa} \left(R\left(-s + M_n(A)\right) + s \right) ,\\ A' = 1 - R\left(\frac{-1}{s}A + 1\right) . \end{cases}$$

stable steady states: $(R_{-\infty}, A_{-\infty}) = (1, 0)$ $(R_{\infty}, A_{\infty}) = \left(\frac{s}{s-1}, 1\right)$

Travelling wave III: explicit solution

Travelling wave speed

$$s = -\sqrt{\kappa \left(\frac{1}{\alpha} - 1\right)}$$
.

$$A_1(z) = \begin{cases} s_1 \alpha \left(1 - \frac{1}{g^{-1}(G - \frac{zs_1}{\kappa})} \right) , & z < 0\\ 1 + (\alpha - 1)e^{\frac{z}{s_1 - 1}} , & z \ge 0 \end{cases}$$

$$R_1(z) = \begin{cases} g^{-1} \left(G - \frac{zs_1}{\kappa} \right) , & z < 0 \\ \frac{s_1}{s_1 - 1} , & z \ge 0 \end{cases}$$

where
$$g(y) = \frac{1}{y} + \log\left(\frac{1}{y} - 1\right)$$
 and $G = g\left(\frac{s_1}{s_1 - 1}\right)$.

Polarization wave

Treppat e.a., Nat. Phys., 2012

Divergent vs. colliding cell layers

Four types of travelling wave solutions

polarisation wave of departing cell sheets.

polarisation wave of colliding cell sheets.

depolarisation wave of departing cell sheets.

depolarisation wave of colliding cell sheets.

Numerical exploration of stability

Numerical exploration

Stability analysisframework

Linearisation at travelling wave solution (polarisation, departing) in the moving coordinate frame z=x-st:

$$\begin{pmatrix} \partial_t \delta \rho \\ \partial_t \delta a \end{pmatrix} = \mathcal{L} \begin{pmatrix} \delta \rho \\ \delta a \end{pmatrix} = \begin{pmatrix} s \delta \rho' - (V \delta \rho + R \delta v)' \\ s \delta a' - \delta v (A' - 1) - V \delta a' - \delta a \end{pmatrix} ,$$
where $\delta v = M'(A) \delta a - \kappa \left(\frac{1}{R^3} \delta \rho\right)'$

Eigenvalue problem ~ system of linear ODEs

$$\mathcal{T}\begin{pmatrix}\delta\rho\\\delta\nu\\\delta a\end{pmatrix} = \begin{pmatrix}\delta\rho'\\\delta\nu'\\\delta a'\end{pmatrix} - B(z,\lambda)\begin{pmatrix}\delta\rho\\\delta\nu\\\delta a\end{pmatrix} = 0, \text{ where}$$
$$B(z,\lambda) = \begin{pmatrix}\frac{3R'}{R} & \frac{-R^3}{\kappa} & \frac{M'R^3}{\kappa}\\\frac{2R's-R^2\lambda}{R^3} & \frac{-R'}{R} - \frac{Rs}{\kappa} & \frac{M'Rs}{\kappa}\\0 & \frac{(A'-1)R}{s} & \frac{R(\lambda+1)}{s}\end{pmatrix}$$

Essential spectrum – perturbations at $\pm \infty$

Weyl's Essential Spectrum Thm: it is sufficient to consider the essential spectrum

$$\mathcal{T}_{\infty} \begin{pmatrix} \delta \rho \\ \delta v \\ \delta a \end{pmatrix} = \begin{pmatrix} \delta \rho' \\ \delta v' \\ \delta a' \end{pmatrix} - B_{\infty} \begin{pmatrix} \delta \rho \\ \delta v \\ \delta a \end{pmatrix} , \quad \text{where} \quad B_{\infty} = \begin{cases} B_{-}(\lambda) & z < 0 , \\ B_{+}(\lambda) & z \ge 0 . \end{cases}$$

Fredholm borders: dispersion relations of B^- and B^+ for purely imaginary spatial eigenvalues $i\mu$: $\lambda^1 = -1 + i\mu s$ and $\lambda^2 = -\mu^2 \kappa + i\mu s$.

Note that the matrix (spatial) eigenvalues of $B^-(\lambda)$ are given by

$$\mu_1(\lambda) = \frac{\lambda + 1}{s} , \quad \mu_{2,3}(\lambda) = \frac{-s}{2\kappa} \pm \frac{\sqrt{s^2 + 4\kappa\lambda}}{2\kappa}$$
(1)
The matrix (spatial) eigenvalues of $B^+(\lambda)$ are mul-

The matrix (spatial) eigenvalues of $B^+(\lambda)$ are multiples of (1) by $\frac{s}{s-1}$.

Absolute spectrum

as $\operatorname{Re}(\lambda \gg 1)$:

 $\operatorname{Re}(\mu_1) < \operatorname{Re}(\mu_3) < 0 < \operatorname{Re}(\mu_2)$

Absolute spectrum: where the unstable and stable eigenspaces get mixed up (here: where $\operatorname{Re}(\mu_2)$ looses its leading position.

In red: absolute spectrum shown for s = -2, $\kappa = 1$.

- The **branching point** is the right extreme point of absolute spectrum
- Through the introduction of exponentially weighted spaces the **essential spectrum can be shifted** left up to the branching point.
- The Evans function can be extended analytically up to the branching point.

Evans function

- Construct an (integrable) perturbation originating from the unstable eigenspace of B^- and the stable eigenspace of B^+ .
- Simplify B: use that $M'(\alpha) = \delta(\alpha)$ and that $R(z) = \frac{s}{s-1}$ is constant for z > 0.

- 1. $v_2(z = 0^+)$ and $v_3(z = 0^+)$ can be computed exactly (constant coefficients linear system decoupled from 1st order system)
- 2. $v_2(z=0^-)$ and $v_3(z=0^-)$ can be computed exactly (jump at z=0)
- 3. $v_1(z=0^-)$ needs to be computed numerically
- 4. Zeros of the Evan's function $D(\lambda) = \det((v_1|v_2|v_3))$ characterise the point spectrum.

Summary

- A 1D toy model for collective migration of epithelial cells features 4 types of traveling wave solutions
 - · Polarization wave triggered by departing cell sheet
 - Depolarization wave triggered by departing cell sheet
 - · Polarization wave triggered by colliding cell sheet
 - · Depolarization wave triggered by colliding cell sheet
- All four types of traveling wave solutions are linearly stable.
- Practical implications?
 - When moving cells collide or depart, in principle both, gradual polarization and depolarization of all cells, could occur.
 - · Nevertheless, depending on sensitivity a specific scenario will occur preferentially.
- Extension to higher dimension: particle models

Contract of the second second

Thank you

My collaborators: *N. Rahman (UQ), Bob Marangell (USyd), Z. Neufeld (UQ), H. Khataee, (UQ), A. Czirok (U. of Kansas)*