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Ergodic averages as a tool to detect recurrent points
A measure-preserving system (X,B(X), µ,T) is a σ-finite measure space
(X,B(X), µ) endowed with a measurable mapping T : X → X, which
preserves the measure µ, i.e. µ(T−1[E]) = µ(E) for all E ∈ B(X).
Question: Can one understand how points in measure-preserving systems
(X,B(X), µ,T) return close to themselves under iteration of the mapping T?
I (Birkhoff’s and von Neumann’s ergodic theorems (1931)) For every

1 ≤ p <∞ and every f ∈ Lp(X) the averages

AN f (x) :=
1
N

N−1∑
n=0

f (Tnx), for x ∈ X.

converge µ-almost everywhere on X and in Lp(X) norms.
I If we set f (x) = 1E(x), then

AN1E(x) =
1
N
#{0 ≤ n < N : Tnx ∈ E}.

I Norm or pointwise convergence of AN f can be used to reprove the
famous Poincaré recurrence theorem: if µ(X) = 1, and µ(E) > 0, then

µ(E ∩ T−n[E]) > 0 for some n ∈ N.
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Szemerédi’s theorem and Furstenberg’s multiple recurrence
Suppose that E ⊆ N has a positive upper Banach density, which means that
lim sup|I|→∞

|E∩I|
|I| > 0, where I ranges over intervals of N.

I Then for any k ≥ 2, there exist infinitely many progressions,

{x, x + n, x + 2n, . . . , x + kn} ⊂ E.

I The k = 2 case {x, x + n, x + 2n} is due to Roth in 1953.

The departure point for the modern theory of multiple ergodic averages is
Furstenberg’s ergodic-theoretic proof of Szemerédi’s theorem.

I Let (X,B, µ,T) be a probability measure-preserving system µ(X) = 1
and E ∈ B(X) with µ(E) > 0 then for every k ∈ N there exists n ∈ N
such that

µ(E ∩ T−n[E] ∩ T−2n[E] ∩ . . . ∩ T−kn[E]) > 0.
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Non-conventional ergodic averages
Let (X,B(X), µ,T) be a σ-finite measure-preserving system with an
invertible map T : X → X. Let P1, . . . ,Pk ∈ Z[n], and f1, . . . , fk ∈ L∞(X).
Define the non-conventional polynomial multiple ergodic average by

AP1,...,Pk
N (f1, . . . , fk)(x) :=

1
N

N∑
n=1

f1(TP1(n)x) . . . fk(TPk(n)x) for x ∈ X.

Norm or pointwise convergence for these multiple averages allows us to
detect polynomial patterns via multiple polynomial recurrence results.
I Given polynomials P1, . . . ,Pk ∈ Z[n] each with zero constant term. Let

(X,B, µ,T) be a probability measure-preserving system and E ∈ B(X)
with µ(E) > 0 then there exists n ∈ N such that

µ(E ∩ T−P1(n)[E] ∩ T−P2(n)[E] ∩ . . . ∩ T−Pk(n)[E]) > 0.

I The latter result was proved by Bergelson and Leibman, and it was used
to deduce that the subsets of integers with nonvanishing Banach density
contain polynomial patterns of the form

x, x + P1(n), x + P2(n), . . . , x + Pk(n).
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The current state of the art
Let (X,B(X), µ,T) be a probability measure-preserving system µ(X) = 1.
Let P1, . . . ,Pk ∈ Z[n], and f1, . . . , fk ∈ L∞(X).

AP1,...,Pk
N (f1, . . . , fk)(x) =

1
N

N∑
n=1

f1(TP1(n)x) . . . fk(TPk(n)x). (1)

I In 1977 Furstenberg established norm convergence of (1) in L2(X) for
k = 2 with P1(n) = an and P2(n) = bn, where a, b ∈ Z.

I In 1996 Furstenberg and Weiss established norm convergence of (1) in
L2(X) for k = 3 with Pi(n) = ain, where ai ∈ Z for i = 1, 2, 3, as well
as in the polynomial case for k = 2 with P1(n) = n and P2(n) = n2.

I Host and Kra (2002) and independently Ziegler (2004) established
norm convergence of (1) in L2(X) for any k ∈ N and arbitrary linear
polynomials Pi(n) = ain with ai ∈ Z for i = 1, . . . , k.

I In 2005 Leibman established norm convergence of (1) in L2(X) for any
k ∈ N and arbitrary polynomials P1, . . . ,Pk ∈ Z[n].

I In 1989 Bouragin showed that Birkhoff’s pointwise ergodic theorem
(P1(n) = n and k = 1) remains true for arbitrary P1 ∈ Z[n] and k = 1.

I In 1990 Bourgain established pointwise convergence of (1) for k = 2
with P1(n) = an and P2(n) = bn, where a, b ∈ Z.
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Bergelson’s conjecture
One of the central open problems in pointwise ergodic theory is a conjecture
of V. Bergelson formulated in the late 1980’s / early 1990’s.

Theorem (Bergelson’s conjecture)
Let G be a nilpotent group of measure preserving transformations of a
probability space (X,B(X), µ). Let Pj,i ∈ Z[n] be polynomials and
T1, . . . ,Td ∈ G and f1, . . . , fm ∈ L∞(X). Does the limit of the averages

1
N

N∑
n=1

m∏
j=1

fj(T
Pj,1(n)
1 · · · TPj,d(n)

d x) (2)

exist µ-almost everywhere on X as N →∞?

I The norm convergence in L2(X) for the averages (2) was established in
the nilpotent setting by M. Walsh in 2012 .

I Bergelson and Leibman showed that L2(X) norm convergence for (2)
may fail if G is solvable.

I Hence, the nilpotent setting is probably the most general setting where
Bergelson’s question about pointwise convergence for (2) might be true.
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I The norm convergence in L2(X) for the averages (2) was established in
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I Bergelson and Leibman showed that L2(X) norm convergence for (2)
may fail if G is solvable.
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Multi-dimensional ergodic theorem

Let (X,B, µ) be a σ-finite measure space with a family of invertible
commuting and measure-preserving transformations T1, . . . ,Td. Let
P = (P1, . . . ,Pd) : Zk → Zd be a polynomial mapping with integer
coefficients. Define

APN f (x) :=
1
|BN |

∑
m∈BN

f
(
TP1(m)

1 TP2(m)
2 . . . TPd(m)

d x
)
,

where BN := {m ∈ Zk : |m| ≤ N} is a discrete Euclidean ball.

Theorem (M., Stein, and Trojan and Zorin–Kranich)
For every p ∈ (1,∞) and every f ∈ Lp(X) there exists f ∗ ∈ Lp(X) such that

lim
N→∞

APN f (x) = f ∗(x)

for µ-almost every x ∈ X, and in Lp(X) norm.
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Recent contribution to the nilpotent setting
In joint project with Alex Ionescu, Ákos Magyar and Tomek Szarek we
proved the following nilpotent result.

Theorem (M., Ionescu, Magyar, and Szarek (2021))
Let (X,B(X), µ) be a σ-finite space and let T1, . . . ,Td : X → X be a family
of invertible and measure preserving transformations satisfying

[[Ti,Tj],Tk] = Id for all 1 ≤ i ≤ j ≤ k ≤ d.

Then for every polynomials P1, . . . ,Pd ∈ Z[n] and every f ∈ Lp(X) with
1 < p <∞ the averages

1
N

N∑
n=1

f (TP1(n)
1 · · · TPd(n)

d x)

converge for µ-almost every x ∈ X and in Lp(X) norm as N →∞.

I One can think that T1, . . . ,Td belong to a nilpotent group of step two of
measure preserving mappings of a σ-finite space (X,B(X), µ).

I We are also working on the extension of this result to nilpotent groups
of step k for any k ≥ 3.
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Progress on An,P(n)
N ( f , g)(x) = 1

N

∑N
n=1 f (Tnx)g(TP(n)x)

Let

An,P(n)
N ( f , g)(x) =

1
N

N∑
n=1

f (Tnx)g(TP(n)x)

Thirty years after Bourgain’s pointwise bilinear ergodic theorem joint with
Ben Kruse and Terry Tao we established the following theorem.

Theorem (M., Krause, and Tao, (2020))
Let (X,B(X), µ,T) be an invertibe σ-finite measure-preserving system, let
P ∈ Z[n] with deg(P) ≥ 2, and let f ∈ Lp1(X) and g ∈ Lp2(X) for some
p1, p2 ∈ (1,∞) with 1

p1
+ 1

p2
= 1

p ≤ 1.

(i) (Mean ergodic theorem) The averages An,P(n)
N (f , g) converge in Lp(X)

norm.

(ii) (Pointwise ergodic theorem) The averages An,P(n)
N (f , g) converge

pointwise almost everywhere.

(iii) (Maximal ergodic theorem) One has

‖ sup
N∈N
|An,P(n)

N (f , g)|‖Lp(X) .p1,p2,P ‖f‖Lp1 (X)‖g‖Lp2 (X).



Key ideas

The proof is quite intricate, and relies on several deep results in the
literature, including:

I the Ionescu–Wainger multiplier theorem (discrete Littlewood–Paley
theory and paraproduct theory)

I the inverse theory of Peluse and Prendeville;
I Hahn–Banach separation theorem;
I Lp-improving estimates of Han–Kovač–Lacey–Madrid–Yang (derived

from the Vinogradov mean value theorem).
I Rademacher–Menshov argument combined with Khinchine’s

inequality;
I Lp(R) bounds for a shifted square function;
I bounded metric entropy argument from Banach space theory;
I van der Corput type estimates in the p-adic fields.



Inverse theorem of Peluse and Prendiville
An important ingredient in the proof is the inverse theorem of Peluse, which
can be thought of as a counterpart of Weyl’s inequality:

Theorem (Peluse, (2019/2020))
Let m ≥ 2 and P1, . . . ,Pm ∈ Z[n] each having zero constant term such that
degP1 < . . . < degPm. Let N ∈ N and δ ∈ (0, 1) and assume that functions
f0, f1, . . . , fm : Z→ C are supported on [−N0,N0] for some N0 ' NdegPm ,
and ‖f0‖L∞(Z), ‖f1‖L∞(Z), . . . , ‖fm‖L∞(Z) ≤ 1, and suppose that

∥∥∥ 1
N

N∑
n=1

f0(x)f1(x− P1(n)) · · · fm(x− Pm(n))
∥∥∥

L1
x(Z)
≥ δNdegPm .

Then there are q,N′ ∈ N satisfying 1 ≤ q . δ−O(1) and
δO(1)NdegP1 . N′ ≤ NdegP1 such that

∥∥∥ 1
N′

N′∑
y=1

f1(x + qy)
∥∥∥

L1
x(Z)

& δO(1)NdegPm

provided that N & δ−O(1).



Quantitative polynomial Szemerédi’s
I Let rP1,...,Pm(N) denote the size of the largest subset of {1, . . . ,N}

containing no configuration of the form x, x + P1(n), . . . , x + Pm(n)
with n 6= 0. Berglson and Leibman showed proving polynomial
multiple recurrence theorem that

rP1,...,Pm(N) = oP1,...,Pm(N),

whenever P1, . . . ,Pm ∈ Z[n] and each having zero constant term.

I While quantitative bounds in Szemerédi’s theorem for all m ∈ N are
known due to work of Gowers, no bounds were known in general for
the polynomial Szemerédi’s theorem until a series of papers of Peluse
and Prendiville.

I Peluse showed that there is a constant γP1,...,Pm > 0 such that

rP1,...,Pm(N) .P1,...,Pm

N
(log logN)γP1,...,Pm

answering a question posed by Gowers.
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Bergelson’s conjecture for commuting transformations
With Ben Krause and Sarah Peluse and Jim Wright we are also trying to
understand the following problem:

Ultimate goal
Let (X,B(X), µ) be a probability space equipped with commuting invertible
measure-preserving maps T1, . . . ,Tk : X → X. Consider P1, . . . ,Pk ∈ Z[n]
with distinct degrees and f1, . . . , fk ∈ L∞(X). It is expected that the averages

AP1,...,Pk
N (f1, . . . , fk)(x) =

1
N

N∑
n=1

f1(T
P1(n)
1 x) . . . fk(T

Pk(n)
k x)

converge for µ-almost every x ∈ X.

I There is some hope in the case when T1 = . . . = Tk = T .
I We also have some promising thoughts for the following averages

1
N

N∑
n=1

f (Tn
1 x)g(Tn2

2 x)

that correspond to the configurations: (x, y), (x + n, y), (x, y + n2) ∈ Z2.
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Thank You!


