Peano- and Hilbert curve Historical comments

Jan Zeman,
Pilsen, Czech Republic

22nd June 2021

Peano curve

■ Peano curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7
1	1	1	1	\mid	1	8	9

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8	9
	।			1	1	1	\|	1	
								1	

0

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8	9
1	1	1	1	\mid	1				
	1		1	1					

0

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8
1	1	1	1	1			1	
	1		1	1				

0

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8	9
	।	\|	1	1		1	,	1	
			1	1		\|		1	

0

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8	9
	।		1			1	\|		
			1			\|	,		

0

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8
\mid	1						1	

0

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

0	1	2	3	4	5	6	7	8
H	1	1						
$\#$								

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

Jan Zeman，Pilsen，Czech Republic

Peano－and Hilbert curve

Peano curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Peano curve

Jan Zeman, Pilsen, Czech Republic

Peano- and Hilbert curve

Hilbert curve

■ Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Applications

- excercise for recursion in the programming classes
- linearizing a discrete n-D space:
- image rendering
- indexing of n-D data in Geographic Information Systems,
- scheduling of the multimedia server requests

Peano and Hilbert curve - some facts

- mapping functions are piecewise linear
- everywhere continuous, nowhere differentiable
- So Hilbert: "A point in the move can go through all the points of the square in the finite time."
■ not a bijection (only continuous, cannot be also one-to-one):

Peano and Hilbert curve - some facts

- mapping functions are piecewise linear
- everywhere continuous, nowhere differentiable
- So Hilbert: "A point in the move can go through all the points of the square in the finite time."
■ not a bijection (only continuous, cannot be also one-to-one):

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

- So Hilbert: "The inverse mapping assigns to each point of the square 1, 2 or 4 points on the line."

■ Minkowski to Hilbert 22.12.1890: "Are you sure
 that when you move a point in the square, the point passes some places at three different times? It seems to me that it does not go anywhere more than twice."

- Hilbert was right $1 \mathrm{x}, 2 \mathrm{x}, 4 \mathrm{x}$ but also 3 x (proof Sierpinski 1912)

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Historical comments

Giuseppe Peano (1858-1932)

In Turin: 1876-1932

- 1889 Arithmetices principia [Peano axioms]
- 1890 Sur une courbe, qui remplit toute une aire plane [Peano curve]
- 1895-1908 Formulario matematico [Symbolical logic]

David Hilbert (1862-1943)

In Königsberg: 1886-1895,
In Göttingen: 1895-1943

- 1891 Über die stetige Abbildung einer Linie auf ein Flächenstück [Hilbert curve]
- 1900 Mathematische Probleme [Hilbert's problems]
- 1931 Grundlagen der Mathematik [Formal systems (with P. Bernays)]

We must know We shall know

Hilbert's relation to Peano

- no Hilbert-Peano letters
- no mention of Peano in Hilbert's colloquium diary from the concerned period (although Hilbert recommended Peano's works later)
■ Hilbert referred to Peano only in this paper on Hilbert curve, not before and after that

Hilbert's relation to Peano - Hilbert's Problems

- 2nd International Congress of Mathematicians in Paris 1900
- Hilbert's 23 mathematical problems for the 20th century
- Peano in the audience

2nd problem - consistency of arithmetics
Peano objected that Hilbert ommited results of Italians

- Hilbert did not revise his text by this 2nd problem
- so why Hilbert curve?

Minkowski's letter to Hilbert 22.12.1890

I recently once thought about your presentation at the meeting of the scientists [. . .] What do you have against the in principle simpler example, that the time from 0 to 1 is continuously represented as a decimal number and from the even and odd digits alone, two other decimal numbers are formed that should just express the right-angled coordinates of the point in the corresponing time. The continuity of movement is just preserved here in exactly the same sense.

Mapping by decimal development (1)

- $\frac{\sqrt{2}}{2}=0, \underline{7} 0 \underline{7} 1 \underline{0} 6 \underline{7} 8 \ldots$ \Downarrow
$x=0,7707 .$.

Mapping by decimal development (2)

$$
\begin{aligned}
& \frac{\sqrt{2}}{2}=0,7 \underline{0} 7 \underline{1} 0 \underline{6} 7 \underline{8} \ldots \\
& \Downarrow \\
& x=0,7707 \ldots \\
& y=0,0168 \ldots
\end{aligned}
$$

Completed history - Georg Cantor (1845-1918)

■ 1877 1-D to n-D mapping by decimal developments

- 1882 Continuum hypothesis: every subset of real numbers can be bijectively mapped either to the set of natural numbers or to the set of real numbers.

Minkowski-Hilbert letters

Mapping by decimal development (3)

- Problem:
$0,7=0,6 \overline{9}$
\Downarrow
- 0, 699999...
$x=0,6999 \ldots$
$\mathrm{y}=0,9999 .$.
- $0,7 \underline{0} 00000 \ldots$
$x=0,7000 \ldots$
$\mathrm{y}=0,0000 \ldots$

Minkowski-Hilbert letters

Mapping by decimal development (4)

- Problem:
$0,7=0,6 \overline{9}$
- $0,699999 .$.
$*=0,6999 \ldots$
$y=0,9999 .$.

■ $0,7 \underline{0} 0000 \ldots$ $x=0,7000 \ldots$
$\mathrm{y}=0,0000 \ldots$

Minkowski-Hilbert letters

Mapping by decimal development (5)

- Problem:

0, $28 \overline{29}$
\Downarrow
$x=0,22222 \ldots$
$y=0,89999 \ldots=0.9$

- but $0,29 \overline{20}$
\Downarrow
$x=0,22222 \ldots$
$y=0.9$

Completed history - Georg Cantor (1845-1918)

■ 1877 1-D to n-D mapping decimal developments

- 1878 1-D to n-D mapping by continuous fractions
■ 1882 Continuum hypothesis: every subset of real numbers can be bijectively mapped either to the set of natural numbers or to the set of real numbers.

Mapping by continuous fractions - example 1

$$
\begin{aligned}
\sqrt{2}-1 & =[2,2,2,2,2, \ldots]= \\
& =\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}}}
\end{aligned}
$$

Mapping by continuous fractions - example 1

$$
\begin{aligned}
& \sqrt{2}-1=[\underline{2}, 2, \underline{2}, 2, \underline{2}, \ldots]= \\
&=\frac{1}{\underline{2}+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}}} \\
& \Downarrow \\
& x=[2,2,2, \ldots]=\sqrt{2}-1
\end{aligned}
$$

Reason for Hilbert's interest

Mapping by continuous fractions - example 1

$$
\begin{aligned}
& \sqrt{2}-1=[2, \underline{2}, 2, \underline{2}, 2, \ldots]= \\
& =\frac{1}{2+\frac{1}{2}+\frac{1}{2+\frac{1}{2}+\frac{1}{2+\cdots}}}
\end{aligned}
$$

Mapping by continuous fractions - example 2

$$
\begin{aligned}
& \frac{3}{2}-\sqrt{2}=[11, \overline{1,1,1,10}]= \\
& \quad=[\underline{\mathbf{1 1}}, \mathbf{1}, \underline{\mathbf{1}}, \mathbf{1}, \underline{\mathbf{1 0}}, \mathbf{1}, \underline{\mathbf{1}}, \mathbf{1}, \underline{\mathbf{1 0}}, \ldots] \\
& \Downarrow \\
& x=[11, \overline{1,10]=6-\sqrt{35}}
\end{aligned}
$$

Mapping by continuous fractions - example 2

$$
\begin{aligned}
& \frac{3}{2}-\sqrt{2}=[11, \overline{1,1,1,10}]= \\
& \quad=[\mathbf{1 1}, \underline{\mathbf{1}}, \mathbf{1}, \underline{\mathbf{1}}, \mathbf{1 0}, \underline{\mathbf{1}}, \ldots] \\
& \Downarrow \\
& x=[11, \overline{1,10}]=6-\sqrt{35} \\
& y=[1,1,1, \ldots]=\frac{\sqrt{5}-1}{2}
\end{aligned}
$$

Cantor's proof Peano- and Hilbert curve

1:1 mapping \mid continuous X x

Completed history - Karl Weierstrass (1815-1897)

- Hilbert referred only to Peano and Weierstrass:
- Weierstrass's approximation theorem: every continuous function can be approximated by the limit of the sequence of polynomial functions, uniformly convergent on the whole interval
- Hilbert curve is continuous \Rightarrow the analytic expression can be given

Completed history - Georg Cantor (1845-1918)

- 1877 1-D to n-D mapping by decimal developments
- 1878 1-D to n-D mapping by continuous fractions
- 1882 Continuum hypothesis
- 1890 Peano mentioned Cantor's proof by continuous fractions
- 1891 Hilbert did not mention Cantor

Hilbert's reasons for Hilbert curve

- More intuitive version of Peano's continuous mapping?

Hypothesis: Hilbert's affinity to Cantor's set theory

references:

- 1891 Hilbert curve
\Downarrow
■

■
-

■

■

Jan Zeman, Pilsen, Czech Republic
Peano- and Hilbert curve

Hypothesis: Hilbert's affinity to Cantor's set theory

references:

- 1891 Hilbert curve
\Downarrow
■ 1900 Hilbert's 1st problem: Continuum hypothesis
\square
■
■

Hypothesis: Hilbert's affinity to Cantor's set theory

references:

- 1891 Hilbert curve
\Downarrow
■ 1900 Hilbert's 1st problem: Continuum hypothesis
■ 1902 Über die Grundlagen der Geometrie (paper)

Hypothesis: Hilbert's affinity to Cantor's set theory

references:

- 1891 Hilbert curve
\Downarrow
■ 1900 Hilbert's 1st problem: Continuum hypothesis
■ 1902 Über die Grundlagen der Geometrie (paper)
■ 1909 Hilbert's obituary-tribute of Minkowski

Hypothesis: Hilbert's affinity to Cantor's set theory

references:

- 1891 Hilbert curve \Downarrow
- 1900 Hilbert's 1st problem: Continuum hypothesis
- 1902 Über die Grundlagen der Geometrie (paper)
- 1909 Hilbert's obituary-tribute of Minkowski
- 1925 Über das Unendliche :
"No one shall us expell from the paradise that Cantor created for us."

Hypothesis: Hilbert's affinity to Cantor's set theory

references:

- 1891 Hilbert curve
\Downarrow
■ 1900 Hilbert's 1st problem: Continuum hypothesis
- 1902 Über die Grundlagen der Geometrie (paper)
- 1909 Hilbert's obituary-tribute of Minkowski
- 1925 Über das Unendliche :
"No one shall us expell from the paradise that Cantor created for us."
- 1930 Hilbert's biography

Conclusion

■ Hilbert did not find much interest in the research of Peano

- Hilbert created Hilbert curve to support Cantor

Gillispie 1981 Gillispie, Ch. (ed.), Dictionary of Scientific Biography. New York, Charles Scribner's Sons 1981.

Hilbert 1891 Hilbert, D., Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen, 38, 1891, pp. 459-460.
Kline 1972 Kline, M., Mathematical Thought from Ancient to Modern Times, Vol 3. Oxford and New York, Oxford University Press 1972.
Mokbel 2008 Mokbel, M. - Aref, W., Space-filling Curves. In: Shekahr, S. - Xiong, H. (eds.) Encyclopedia of GIS. New York, Springer 2008.

Minkowski 1973 Minkowski, H., Briefe an David Hilbert. Hrsg. L. Rüdenberg, H. Zassenhaus. Berlin, Springer 1973.

Peano 1890 Peano, G., Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen, 36, 1890, pp. 157-160.
Sierpinsky 1912 Sierpinski, W., O krzywych, wypelniajacych kwadrat. Prace matematycno-fyzycne, 23, 1912, pp. 193-219.
Weyl 1944 Weyl, H., David Hilbert and His Mathematical Work. Bulletin of AMS 44 (9), 1944, pp. 83-119.

