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QMATH, University of Copenhagen

8ECM
June 23, 2021



Quantum isomorphism is equivalent to equality of homomorphism counts
from planar graphs.
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Lupini, Mančinska, and Roberson.
Journal of Functional Analysis, 279(5):108592, 2020.

Quantum and non-signalling graph isomorphisms.
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• Nonlocal games provide a general framework for studying
entanglement

• Problem: Entanglement-assisted strategies for arbitrary
nonlocal games are hard to analyze

• Line of attack: Focus on a well-behaved class of games



Overview

Quantum isomorphism = operationally defined noncommutative

variant of graph isomorphism

We will see different yet equivalent ways to think about quantum
isomorphism of graphs

• Nonlocal games

• Matrix formulations

• Homomorphism counts
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Graph isomorphism

∼=

A map f : V(G)→ V(H) is an isomorphism from G to H if

• f is a bijection and

• g ∼ g ′ if and only if f(g) ∼ f(g ′).

If such a map exists, we say that G and H are isomorphic and
write G ∼= H.

Matrix formulation: PAGP
† = AH for some permutation matrix P
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(G,H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G ∼= H.

R

BA

g ′g

h h ′

• To win players must reply h,h ′

such that rel(h,h ′) = rel(g,g ′)

• No communication during game

Fact. G ∼= H ⇔ Classical players can win the game with certainty

Def. (Quantum isomorphism)
We say that G ∼=qc H if quantum1 players can win the game with
certainty.

1We work in the commuting rather than the tensor-product model.
6 / 16



Quantum commuting strategies

G ∼=qc H := Quantum players can win the (G,H)-isomorphism game

R

BA

g ′g

h h ′

ψ

• Alice and Bob share a quantum state ψ
ψ is a unit vector in a Hilbert space H

• Upon receiving g, Alice performs a local
measurement Eg to get h ∈ V(H)
Eg = {Egh ∈ B(H) : h ∈ V(H)} where

Egh � 0,
∑

h Egh = I.

• Bob measures with Fg′

• Egh and Fg′h′ commute

The probability that players respond with h,h ′ on questions g,g ′ is

p(h,h ′|g,g ′) = 〈ψ,
(
EghFg ′h ′

)
ψ〉
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Example: G 6∼= H but G ∼=qc H

x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001

Construction based on reduction from linear system games.
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Quantum isomorphism and quantum groups

Def. A matrix P = (pij) whose entries are elements of a
C∗-algebra is a quantum permutation matrix (QPM), if

• pij is a projection, i.e., p2ij = pij = p
∗
ij for all i, j

•
∑

k pik = 1 =
∑

` p`j for all i, j

Remark. A QPM with entries from C is a permutation matrix.

Thm. (Lupini, M., Roberson)

G ∼=qc H ⇔ PAGP† = AH for some quantum

permutation matrix P
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Can we describe quantum
isomorphism in

combinatorial terms?
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Graph homomorphisms

Def. A map ϕ : V(F)→ V(G) is a homomorphism from F to G if
ϕ(u) ∼ ϕ(v) whenever u ∼ v.

Example

C7 → C5

hom(F,G) := # of homomorphisms from F to G.
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Counting homomorphisms

Theorem. (Lovász, 1967)
Homomorphism counts determine a graph up to isomorphism, i.e.

G ∼= H ⇔ hom(F,G) = hom(F,H) for all graphs F.

Theorem. (M., Roberson)
G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar graphs F.

13 / 16



Context: Homomorphism counting

Thm. (Lovász, 1967)
G ∼= H ⇔ hom(F,G) = hom(F,H) for all graphs F

Thm. (M., Roberson, 2019)
G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar graphs F

Folklore.
G and H cospectral ⇔ hom(F,G) = hom(F,H) for all cycles F

Thm. (Dvǒrák, 2010; Dell, Grohe, Rattan, 2018)
G ∼=f H ⇔ hom(F,G) = hom(F,H) for all trees F
G ∼=k H ⇔ hom(F,G) = hom(F,H) for all F of treewidth 6 k

Complexity: Except for the class of planar graphs, equality of
homomorphism counts from all of the above graph classes can be
tested in at worst quasi-polynomial time.
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Application: Certificate for G 6∼=qc H
Are these two graphs quantum isomorphic?

Rook graph Shrikhande graph

Before: Difficult to prove that they are not quantum isomorphic.

Now: Only one (the Rook graph) contains K4.
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Summary

Graph isomorphism can be formulated in terms of a nonlocal game.

R

BA

g ′g

h h ′

• G ∼=qc H := Quantum players can win the isomorphism game

• Thm. G ∼=qc H ⇔ PAGP† = AH for some quantum
permutation matrix P

• Thm. G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar F

Thank you!
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