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Motivating example

I Consider the PDE

∂tu(t, x) = ∆u(t, x) =
(
∂2

1 + ∂2
2

)
u(t, x),

u(0, x) = u0(x),

where x ∈ Ω ⊂ R2, Ω rectangular domain and t > 0

I Analytic solution:

u(t, ·) = et∆u0 = et∂
2
1 et∂

2
2u0 = et∂

2
2 et∂

2
1u0

I Space discretization of PDE ⇒ ODE system (vector form)

u′(t) = (I2 ⊗ A1 + A2 ⊗ I1)u(t), u(0) = u0,

where A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 .
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Motivating example: matrix formulation

I Vector solution of ODE system

u(t) = et(I2⊗A1+A2⊗I1)u0 = etI2⊗A1etA2⊗I1u0 = etA2⊗I1etI2⊗A1u0

but etA2⊗I1 and etI2⊗A1 are large.

I ODE system (matrix form)

U′(t) = A1 U(t) + U(t)AT
2 , U(0) = U0,

where
U(t)(i1, i2) ≈ u(t, x i11 , x

i2
2 ), i1 = 1, . . . , n1, i2 = 1, . . . , n2.

I Matrix solution of ODE system

U(t) = etA1U0 etA
T
2

Now etA1 and etA
T
2 are small.
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Motivating example: algorithm

I Algorithm to compute U(t) = etA1U0 etA
T
2 :

U(0) = U0,

U(1)(·, i2) = etA1U(0)(·, i2), i2 = 1, . . . , n2,

U(2)(i1, ·) = etA2U(1)(i1, ·), i1 = 1, . . . , n1,

U(t) = U(2).

I Idea: generalize this approach to arbitrary discretizations and dimensions.
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Linear problem in Kronecker form

I Consider the differential equation

u′(t) = Mu(t) =

 d∑
µ=1

A⊗µ

u(t), u(0) = u0,

where
A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗ Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1,

Aµ is an arbitrary small nµ × nµ matrix and Iµ is the identity matrix of size nµ

I We call it linear problem in Kronecker form.
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Linear problem in Kronecker form: tensor formulation

I Vector solution of a linear problem in Kronecker form:

u(t) = etA⊗1 · · · etA⊗du0

I Let U(t) be an order d tensor such that

U(t)(i1, . . . , id) ≈ u(t, x i11 , . . . , x
id
d ),

where 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d

I As in the two-dimensional case, the computation of u(t) just requires the actions
of the matrices etAµ on properly chosen “parts” of U(t).
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Linear problem in Kronecker form

I Algorithm to compute U(t)

U(0) = U0,

U(1)(·, i2, . . . , id) = etA1U(0)(·, i2, . . . , id),

U(2)(i1, ·, i3, . . . , id) = etA2U(1)(i1, ·, i3, . . . , id),

· · ·
U(d)(i1, . . . , id−1, ·) = etAdU(d−1)(i1, . . . , id−1, ·),

U(t) = U(d)

where 1 ≤ iµ ≤ nµ.
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Tensor algebra formulation

I Let U ∈ Cn1×···×nd be an order d tensor. A µ-fiber of U is a vector in Cnµ

obtained by fixing every index of the tensor but the µth, that is

U(i1, . . . , iµ−1, ·, iµ+1, . . . , id)

I In the previous algorithm

U(µ)(i1, . . . , iµ−1, ·, iµ+1, . . . , id) = etAµU(µ−1)(i1, . . . , iµ−1, ·, iµ+1, . . . , id)

is the action of etAµ on the µ-fibers of U(µ−1)
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Tensor algebra formulation: µ-mode product

Let L ∈ Cm×nµ be a matrix. Then the µ-mode product of L with U, denoted by
S = U×µ L, is the tensor S ∈ Cn1×···×nµ−1×m×nµ+1×···×nd obtained by multiplying the
matrix L onto the µ-fibers of U, that is

S(i1, · · · , iµ−1, i , iµ+1, · · · , id) =
nµ∑
j=1

LijU(i1, · · · , iµ−1, j , iµ+1, · · · , id),

where 1 ≤ i ≤ m

Marco Caliari A µ-mode-based integrator for evolution equations in Kronecker form 9
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Tensor algebra formulation

I According to this definition, U(t) = U(d) is the result of d consecutive µ-mode
products with the matrices etAµ , 1 ≤ µ ≤ d , starting on U(0) = U0

I Therefore, we can rewrite the integrator as

U(t) = U0 ×1 etA1 ×2 · · · ×d etAd

I This is the reason why we call the proposed method the µ-mode integrator.
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Computational cost

I The computation of U0 ×1 etA1 ×2 · · · ×d etAd requires the computation of d small
matrix exponentials of sizes n1 × n1, . . . , nd × nd

I Then, the main component of the final cost is the computation of matrix-matrix
products of size nµ × nµ times nµ × (n1 · · · nµ−1nµ+1 · · · nd), which is O(Nnµ),
with N = n1 · · · nd the total number of degrees of freedom

I Matrix-matrix products as required for the µ-mode integrator can be performed
very efficiently on modern computer systems (level-3 BLAS operation)
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Alternative approaches

I Different space discretizazion (diagonal spectral matrices)

I Solution of u′(t) = Mu(t) by directly computing the action of the matrix
exponential etM on the vector u0

I This is possible using iterative schemes such as Krylov projection, Taylor series, or
polynomial interpolation techniques, as the involved matrix M is large and sparse

I It is difficult to predict the cost of such algorithms, as the number (or the cost) of
iterations highly depends on the norm and other properties of the matrix

I Efficient/parallel sparse matrix-vector products may depend on the storage format
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µ-mode integrator as building block

I The µ-mode integrator is exact for linear problems with time-invariant coefficients
in Kronecker form: linear diffusion-advection-absorption equations or linear
Schrödinger equations with a potential in Kronecker form

I The scheme can also be used as a building block for solving nonlinear PDEs. For
example in the context of
I Exponential integrators
I Splitting methods
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Numerical experiments (MATLAB)

I The µ-mode integrator is implemented in MATLAB in any dimension d , using a
clever combination of reshape, mtimes, and permute functions

I We test the proposed integrator either against the following iterative schemes:
I expmv: polynomial method based on Taylor approximation [Al-Mohy–Higham 2011]
I phipm: Krylov method with full orthogonalization [Niesen–Wright 2012]
I kiops: Krylov method with incomplete orthogonalization

[Gaudrealt–Rainwater–Tokman 2018]

or against FFT based techniques, depending on the problem

I As a measure of cost, we consider the computational time
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Introductory test: liner heat equation

I We consider {
∂tu(t, x) = ∆u(t, x), x ∈ [0, 2π)3, t ∈ [0,T ],

u(0, x) = cos x1 + cos x2 + cos x3,

with periodic boundary conditions

I After space discretization (finite differences) we have

u′(t) = Mu(t),

with M = I3 ⊗ I2 ⊗ A1 + I3 ⊗ A2 ⊗ I1 + A3 ⊗ I2 ⊗ I1, Aµ ∈ Rn×n

I Solution:

u(t) = etMu(0) ⇐⇒ U(t) = U(0)×1 etA1 ×2 etA2 ×3 etA3
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Heat equation: results
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Figure: Wall-clock time as a function of n (left), of the order of the finite difference scheme p
(middle), and of the final time T (right). Blue line expmv, red line phipm, orange line kiops

and purple line µ-mode integrator.
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Heat equation: partial CPU times

n 40 55 70 85 100

expm* 0.52 0.71 1.37 3.15 3.54

µ-mode products 0.79 1.71 5.74 10.92 16.89

Total 1.31 2.42 7.11 14.07 20.43

Table: Breakdown of wall-clock time (in ms) for the µ-mode integrator for different values of n.

* We used MATLAB expm (Padé with scaling and squaring), but other methods are
possibile.
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Schrödinger equation with time dependent potential

I We consider
∂tψ(t, x) = H(t, x)ψ(t, x), x ∈ R3, t ∈ [0, 1]

ψ(0, x) = 2−
5
2π−

3
4 (x1 + ix2) exp

(
−x2

1/4− x2
2/4− x2

3/4
)
,

ψ(t,∞) = 0

where the Hamiltonian is given by

H(x, t) =
i

2

(
∆− x2

1 − x2
2 − x2

3 − 2x3 sin2 t
)

I Comparison between:
I TSFMP: Domain truncation, period b.c., splitting in time, FFT for the Laplacian

part, Magnus (order 2) for the potential part
I HKMP: Hermite pseudospectral approach, Magnus (order 2) in time.
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Schrödinger equation with time dependent potential
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Figure: Integration of the Schrödinger equation up to T = 1. The ref. solution has been
computed by the HKMP method with d.o.f. N = 1003 and ts = 2048.
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Nonlinear Schrödinger/Gross–Pitaevskii equation

I We consider

∂tψ(t, x) =
i

2
∆ψ(t, x) +

i

2

(
1− |ψ(t, x)|2

)
ψ(t, x),

with x ∈ R3, t ∈ [0, 25], and initial condition constituted by the superimposition
of two straight vortices in a background density |ψ∞|2 = 1

I Discretization with TSFD method, truncating the unbounded domain to
x ∈ [−20, 20]3 and using nonuniform finite differences with homogeneous
Neumann boundary conditions

I Comparison between:
I Iterative methods for the matrix exponential
I µ-mode integrator
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Nonlinear Schrödinger/Gross–Pitaevskii equation
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Figure: Wall-clock time for the integration of the Schrödinger equation up to T = 25 as a
function of n. A constant time step size τ = 0.1 is employed.
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Conclusions and further research

I The proposed µ-mode integrator can make use of level-3 BLAS operations: this is
good in MATLAB and modern hardware (thanks to batched GEMM routines)

I For problems from quantum mechanics the approach can outperform
well-established integrators in the literature by a significant margin

I µ-mode products can be used to efficiently compute arbitrary d-dimensional
spectral transforms, when no fast transform is available (not shown)

I Extension to ϕ functions for exponential integrators
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µ-mode products to compute spectral transforms

If a function f (x) can be expanded into a series
∑

i fiφi(x), then

fi =

∫
R1×···×Rd

f (x)φi(x)dx⇒ fi ≈ f̂i =
∑
`<m

f (x`)φi(x`)w`, i < k.

Define the matrices Φµ ∈ Ckµ×mµ , 1 ≤ µ ≤ d , with components

(Φµ)i` = φµi (Xµ
` ), x` = (X 1

`1
, · · · ,X d

`d
) ∈ Rd

and denote by FW ∈ Cm1×···×md the tensor with elements f (x`)w` and by
F̂ ∈ Ck1×···×kd the tensor with elements f̂i. Then

F̂ = FW ×1 Φ1 ×2 · · · ×d Φd . (1)
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Schrödinger equation with time independent potential

I We consideri∂tψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x), x ∈ R3, t ∈ [0, 1]

ψ(0, x) = 2−
5
2π−

3
4 (x1 + ix2) exp

(
−x2

1/4− x2
2/4− x2

3/4
)

with potential V (x) = V1(x1) + V2(x2) + V3(x3), where

V1(x1) = cos(2πx1), V2(x2) = x2
2/2, V3(x3) = x2

3/2

I Comparison between:
I TSFP: Splitting in time, FFT for the Laplacian part
I HKP: Hermite pseudospectral approach, exactness in time
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Schrödinger equation with time independent potential
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Figure: Integration of the Schrödinger equation up to T = 1. The ref. solution has been
computed by the HKP method with d.o.f. N = 3003.
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Numerical experiments (CPU/GPU)

I The µ-mode integrator is implemented in C++ for the CPU and uses CUDA for
the GPU

I In both cases, µ-mode products are computed directly on the multi-dimensional
arrays stored in memory using appropriate batched gemm routines

I We measure the performance improvements that we obtain from performing
computations on the GPU with different precisions and problem sizes

I As for the numerical experiments in MATLAB, the measure of cost is the wall-clock
time needed to solve numerically the differential equation under consideration up
to a fixed final time.
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Heat equation

I We consider {
∂tu(t, x) = ∆u(t, x), x ∈ [0, 2π)3, t ∈ [0, 1],

u(0, x) = cos x1 + cos x2 + cos x3

with periodic boundary conditions;

I Space discretization: second order centered finite differences with n3 d.o.f.;

I Time discretization: µ-mode integrator.
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Heat equation

n exp double single half

MKL GPU speedup MKL GPU speedup GPU

200 2.92 38.39 2.66 14.4x 19.48 1.33 14.6x 0.39

300 4.88 136.17 8.90 15.3x 81.65 5.27 15.5x 2.73

400 10.14 310.11 29.88 10.4x 161.97 16.89 9.6x 6.68

500 17.74 711.07 52.86 13.5x 373.36 30.51 12.2x 15.43

Table: Wall-clock time (in ms) for the heat equation. The speedup is the ratio between the
single step performed in MKL and GPU, in double and single precision.
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Heat equation (denormal)

I We consider ∂tu(t, x) = ∆u(t, x), x ∈
[
−11

4 ,
11
4

]3
, t ∈ [0, 1],

u(0, x) =
(
x4

1 + x4
2 + x4

3

)
exp
(
−x4

1 − x4
2 − x4

3

)
with (artificial) Dirichlet boundary conditions;

I Space discretization: second order centered finite differences with n3 d.o.f.;

I Time discretization: µ-mode integrator.
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Heat equation (denormal)

n exp double single scaled single half

MKL GPU MKL GPU MKL GPU

200 2.92 38.80 2.64 92.19 1.34 19.98 0.38

300 6.01 157.41 8.87 385.84 5.22 71.24 2.71

400 13.40 314.96 29.85 1059.78 16.86 154.84 6.67

500 30.19 702.48 52.92 2567.56 30.42 367.34 13.44

Table: Wall-clock time for the heat equation (denormal). The performance degradation of Intel
MKL due to denormal numbers disappears when using the scaling workaround (scaled single).
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Schrödinger equation with time independent potential

I We consideri∂tψ(t, x) = −1

2
∆ψ(t, x) + V (x)ψ(t, x), x ∈ R3, t ∈ [0, 1]

ψ(0, x) = 2−
5
2π−

3
4 (x1 + ix2) exp

(
−x2

1/4− x2
2/4− x2

3/4
)

with potential V (x) = V1(x1) + V2(x2) + V3(x3), where

V1(x1) = cos(2πx1), V2(x2) = x2
2/2, V3(x3) = x2

3/2

I Space discretization: Hermite pseudospectral method;

I Time discretization: µ-mode integrator.
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Schrödinger equation with time independent potential

n double single

exp MKL GPU speedup exp MKL GPU speedup

127 5.56 20.89 1.27 16.4x 4.71 13.71 0.64 21.4x

255 8.31 224.13 16.02 13.9x 5.16 134.21 8.11 16.5x

511 50.79 3121.42 219.13 14.2x 28.01 1824.93 119.46 15.2x

Table: Wall-clock time (in ms) for the Schrödinger equation. The speedup is the ratio between
the single step performed in MKL and GPU, in double and single precision.
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Schrödinger equation with time dependent potential

I We consider∂tψ(t, x) = H(t, x)ψ(t, x), x ∈ R3, t ∈ [0, 1]

ψ(0, x) = 2−
5
2π−

3
4 (x1 + ix2) exp

(
−x2

1/4− x2
2/4− x2

3/4
)
,

where the Hamiltonian is given by

H(x, t) =
i

2

(
∆− x2

1 − x2
2 − x2

3 − 2x3 sin2 t
)

I Space discretization: Hermite pseudospectral method;

I Time discretization: Order 2 Magnus integrator with µ-mode approach.
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Schrödinger equation with time dependent potential

n double

exp (ext) MKL GPU speedup

exp (int) µ-mode exp (int) µ-mode

127 0.02 2.56 19.38 0.37 1.05 15.3x

255 0.05 4.52 200.46 0.66 13.79 14.2x

511 0.07 29.71 3043.88 2.38 213.21 14.3x

n single

exp (ext) MKL GPU speedup

exp (int) µ-mode exp (int) µ-mode

127 0.01 2.16 12.51 0.25 0.54 18.9x

255 0.03 2.88 100.35 0.34 7.01 13.9x

511 0.05 14.25 1600.86 1.09 108.31 14.8x

Table: Wall-clock time (in ms) for the Schrödinger equation. The speedup is the ratio between
the single step performed in MKL and GPU, in double precision (top) and single precision
(bottom).
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Thank you for your attention
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