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History of protein knots

= 1994: existence of knotted proteins proposed (Mansfield)
= 1994: first knotted protein found (Liang, Mislow)
= 2000: first deep knot found, 3 in 4; (Taylor)

= 2014: knotted protein database knotprot.cent.uw.edu.pl

Protein Tp0642, deepest knot found
up to date (Lim, Jackson, 2015)

Protein UCHL3 contains the knot 5,


knotprot.cent.uw.edu.pl

Questio Problems

= Why are proteins knotted (evolutionary advantages)?
= How do protein form knots in microbiological processes?

= How do we distinguish/classify/analyse such structures?

Hypothesised (biological) advantages of knotted

proteins: 4

= increases thermal stability
Target protein

threaded inte
proteasome

= increases kinetic stability
= increases chemical stability

J Short
“ = peptides

(/} i )

= prevention to being pulled into the proteasome



Bonds & Orientation

The three-dimensional protein structure also consists of bonds tying parts
of the peptide backbone. These bonds have both a structural and
functional role and can be of several types.

Hydrophobic effect/
van der Waals forces

Hydrogen B’ond

covalent bonds: 200-1000 kJ/mol
non-covalent bonds: 1-40 kJ/mol
(can have a strong combined effect)
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has a natural orientation
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Spatial graphs

We can model a protein with bonds as:

3-valent spatial graph bonded knot

We distinguish between non-rigid graphs and rigid graphs.
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non-rigid vertex rigid vertex inequivant rigid-vertex spatial graphs

Rigid bonded knots are easier to study, but non-rigid knots better reflect
spatial isotopy.



Non-rigid bonded knots (G., 2019)

A (non-rigid) colored bonded knot is the triple (K, B, ¢), where:

s K < R3is an oriented knot,

» B={by, by,...,b,} is the set of bonds neatly embedded into
(R3, K),

= c: B — Nis the coloring function.

Two bonded knots are equivalent if they are ambient isotopic.



Reidemeister moves

A diagram of a bonded knots K is a regular projection of K to a plane.

Forbidden positions: > >/ X >’< ><

Reidemeister moves:
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Theorem

Two non-rigid bonded knot diagrams represent isotopic knots iff they
are connected though a finite sequence of moves |-V.

In order to study rigid isotopy, we replace move V by
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Rigid bonded knots

Let D be the set of all colored bonded knot diagrams.
Rigid (colored) bonded knots are equivalence classes
£-D)~,

where Dy ~ D, iff thy are connected through planar isotopy and a finite
sequence of moves -1V and RV.



The HOMFLYPT polynomial

The HOMFLYPT polynomial of classical knots
P:L£(S%) — Z[IF, 24

is defined using skein relations:

PO =1 and 1P+ P(X) +mP() () =

In the case of bonded knots P is not well defined:

"(9)=re(5) el K)

We will form am R-module in which it holds
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The HOMFLYPT skein module of bonded knots

Let

= [ be the set of all non-rigid bonded links,

* R be a commitative ring with units / in m (also let /> + 1 and
I? & ml + 1 be invertible in R),

= R|[L] be the free R-modul generated by £,

= S(R, I, m) be the submodule generated by expressions

AN A
A+ X+ m[2C]
B B B
The non-rigid HOMFLYPT skein module is the quotient module

H(R, 1, m) = R[L]/S(R, I, m)

By taking L to be the set of rigid bonded knots, we similarly define the
rigid HOMFLYPT skein module H(R, I, m)
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The HOMFLYPT skein module

We define the following elementary bonded knots with color i:

@i:@7 éi:fg7 Hi:g I:/i:g7

Theorems (G., 2020)
1. The H.S.M. of rigid bonded knots 7 is freely generated by

k
CERE ) CHEREAT w77 e N§\ O} u{u}.

i=1

2. The H.S.M. of non-rigid bonded knots # is freely generated by
k

B:{He,"fmeNg\@}u{U}.
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Idea of proof (generating set)

First, we show that B is the generating set taking these steps:

1. isolate the bond,

2. show that this bond can be “cut out” and expressed as a linear
combination of knots and ©'s and H's,

3. repeat the process until no bonds left.

Using the HOMFLYPT relation, we can compute:
(P+im+1)(2 —im+ 1), = Pm? (- Hi+ ) (@) + P (o +) (Hi).

and

(/2+/m+1)(/2—/m+1)>|j:/2m2(z~FI,-+X-é,-)+ ’f:}i (z-éﬁXﬂ;).
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Example (non-rigid case)

We can associate three bonded knots to the theta-curve ©3;.

&~ & E &

(], =(2m =22 =190

Ehl=e
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CN29 toxin (Mexican Nayarit Scorpion) ADWX-1 toxin (Chinese scorpion)

1
6 4 2 4 6 22 42
K ]_: /m(7173/73/—/+/m+2/m)egg
[ N9 15 (14 12)2(12 + ml + 1)2(12 — ml + 1)2 (
—6Pm? —6tm2 — Om? + P +3/4m4)688
w2 (=1 — P+ Pm 868 Pmd(—1— 2/2+/2m2)egg
P OmA 122 — A~ Pm? AP /2m4)ggg+ Pmd(—1 =3P —2/* + Pm? + 14"72)888)
[KADWXI] - ! /6m4(—1—2127/4+l4m2)98g
1B (14 2)2(2 4 mi+1)2(2 — ml +1)2
1 m®(—4 — 4P + 2P m? 688“’" —14 4 8&8”"’ 272/2+/2m2)838
A 22+ = 2Pm? = 3t m? 4 At 688+/6 4 74/272/4+2/4m2)888)

F P32 13+ O m?
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SR =

CN29 toxin (Mexican Nayarit Scorpion) ~ ADWX-1 toxin (Chinese scorpion)

1
6 4 2 4 6,22 42
K ]_: /m(7173l—3/7/+/m+2/m)6g8
[ N9 15 (14 12)2(12 + ml + 1)2(12 — ml + 1)2 (
FPm3+32 434 + 0 — m? — 6Pm? — 6/ m? — O+ Pm* + 3/%“)688
w2 (=1 — P+ Pm 868 Pmd(—1— 272 +/2m2)egg
P OmA 122 — A~ Pm? AP /2m4)ggg+ Pmd(—1 =3P —2/* + Pm? + 14"72)888)
[KADWX 1] = ! Bmt—1—22 — 4 I4m2)98g
1B (12202 £ mi+1)2(2 — ml+1)2
1 m®(—4 — 4P + 2P m? 688+/ mo(—1+1* 8&8“ m 272/2+/2m2)ggg
A 2P 4 = 2Pm? — 3t m? 4 /4m4)6 88 +Omt (2 —a” — 2 ¢ 2/%%888)

Thank you! 14




