Barycentric Configurations in Real Space

Hendrik Van Maldeghem Ghent University Tuesday 22 June 2021

"Configurations" Mini-symposium 8ECM My main interest in (realisable) configurations stems from the theory of Tits-buildings "Which finite buildings can we realise in Euclidean space?"

Point-line buildings: generalised polygons

General observations:

- only small examples are realisable
- small examples have large symmetry groups

The smallest generalised quadrangle

Point set = {pairs from fixed 6-set {1,2,3,4,5,6}}
Line set = {partitions of {1,2,3,4,5,6} in pairs}

The smallest generalised quadrangle

Point set = {pairs from fixed 6-set {1,2,3,4,5,6}}
Line set = {partitions of {1,2,3,4,5,6} in pairs}

The smallest generalised quadrangle

Point set = {pairs from fixed 6-set {1,2,3,4,5,6}}
Line set = {partitions of {1,2,3,4,5,6} in pairs}

Theoretic explicit construction of realisation (over any field k):

In hyperplane $x_1+x_2+x_3+x_4+x_5+x_6=0$ of PG(5,k) take for {i,j} the point $x_i=x_j=-2$, $x_k=1$ for $k\neq i,j$ Theoretic explicit construction of a realisation (over any field k):

In hyperplane $x_1+x_2+x_3+x_4+x_5+x_6=0$ of PG(5,k) take for {i,j} the point $x_i=x_j=-2$, $x_k=1$ for $k\neq i,j$

Example of a line: (-2, -2, 1, 1, 1, 1)(1, 1, -2, -2, 1, 1)(1, 1, 1, 1, -2, -2)Sum of the coordinates = (0, 0, 0, 0, 0, 0)! Sum of the coordinates of the points on a line = (0,0,0,0,0,0)

Let us construct this barycentric representation in another way

Consider a symmetric incidence matrix A

{1,2} \bigcirc \bigcirc \mathbf{O} \bigcirc \mathbf{O} () \mathbf{O} \bigcirc \mathbf{O} ()() $\left(\right)$ {3,4} \bigcirc \mathbf{O} {5,6} \mathbf{O} \mathbf{O} $\left(\right)$ \bigcirc \mathbf{O} \mathbf{O} \bigcirc $\left(\right)$ {3,5} \mathbf{O} \mathbf{O} \mathbf{O} \bigcirc \bigcirc {4,6} \mathbf{O} $\left(\right)$ \bigcirc \mathbf{O} \mathbf{O} {3,6} \mathbf{O} \mathbf{O} {4,5} \mathbf{O} \mathbf{O} \mathbf{O} \bigcirc {1,5} \mathbf{O} \mathbf{O} \mathbf{O} \bigcirc {2,6} \bigcirc \mathbf{O} {1,6} \mathbf{O} \bigcirc {2,5} \mathbf{O} \bigcirc \mathbf{O} \bigcirc {1,3} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \bigcirc $\left(\right)$ {2,4} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} {1,4} \mathbf{O} \mathbf{O} {2,3} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O}

{1,2} \mathbf{O} \bigcirc -2 ()()() \bigcirc () \bigcirc ()() \bigcirc $\left(\right)$ {3,4} 1 1 0 0 0 0 0 0 0 0 0 \mathbf{O} \bigcirc \mathbf{O} 1 {5,6} \mathbf{O} 0 0 \mathbf{O} 0 1 $\left(\right)$ $\left(\right)$ $\left(\right)$ \mathbf{O} \mathbf{O} \bigcirc $\left(\right)$ {3,5} 0 \mathbf{O} 0 \mathbf{O} 1 0 0 0 0 \mathbf{O} \mathbf{O} \bigcirc \bigcirc {4,6} 1 0 \mathbf{O} \mathbf{O} 0 0 0 0 $\left(\right)$ \bigcirc \mathbf{O} 1 $\left(\right)$ {3,6} 0 0 1 \mathbf{O} 0 \bigcirc 0 0 0 0 0 1 1 0 \mathbf{O} {4,5} 1 0 0 0 $\left(\right)$ \mathbf{O} 0 0 0 0 \bigcirc 0 0 1 1 {1,5} 0 \mathbf{O} 0 0 0 0 1 \mathbf{O} 0 \mathbf{O} \bigcirc 1 0 -2 0 {2,6} 0 0 0 0 0 \mathbf{O} \bigcirc 0 1 0 \mathbf{O} 0 1 \bigcirc 17 {1,6} 0 0 \mathbf{O} 1 0 0 0 \bigcirc 0 0 0 0 1 0 -2 1 {2,5} 0 0 0 0 0 \mathbf{O} \mathbf{O} 0 \mathbf{O} \mathbf{O} 1 1 \mathbf{O} ()1 {1,3} 0 \mathbf{O} 0 1 0 \mathbf{O} \mathbf{O} -2 \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} 1 \bigcirc \mathbf{O} {2,4} 0 0 \mathbf{O} 0 \mathbf{O} 1 \mathbf{O} 1 \mathbf{O} 0 0 0 1 \mathbf{O} \mathbf{O} 1 {1,4} 0 0 0 1 0 0 0 0 0 1 1 \mathbf{O} \mathbf{O} -2 0 0 {2,3} 0 0 0 \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} 0 1 0 0 \mathbf{O} $\left(\right)$ 1 1

{1,2} \bigcirc \mathbf{O} \bigcirc -2 \bigcirc () \bigcirc ()()()()()(){3,4} 1 1 1 0 0 0 0 \mathbf{O} 0 0 \mathbf{O} 0 \mathbf{O} \bigcirc \mathbf{O} {5,6} 1 \bigcirc \mathbf{O} \mathbf{O} 0 0 0 0 $\left(\right)$ 1 \mathbf{O} \mathbf{O} $\left(\right)$ \bigcirc 1 {3,5} 0 \mathbf{O} 0 \mathbf{O} 1 \bigcirc 0 \mathbf{O} 0 0 \mathbf{O} \mathbf{O} \bigcirc 1 {4,6} 0 0 0 0 \mathbf{O} 0 \mathbf{O} \mathbf{O} $\left(\right)$ \mathbf{O} \mathbf{O} 1 {3,6} 0 0 1 0 0 \bigcirc 0 0 0 \mathbf{O} 0 1 1 0 \mathbf{O} {4,5} 1 $\left(\right)$ 0 0 0 0 0 0 0 $\left(\right)$ \mathbf{O} \bigcirc \mathbf{O} 1 1 {1,5} 1 0 \mathbf{O} 0 0 0 \bigcirc 0 0 1 0 \mathbf{O} \mathbf{O} 0 -2 {2,6} 0 0 0 0 0 1 0 0 \mathbf{O} 1 \bigcirc 0 0 \mathbf{O} 1 {1,6} 0 0 0 \mathbf{O} 1 0 0 1 0 0 0 0 0 1 -2 1 0 0 {2,5} $\left(\right)$ 0 0 \mathbf{O} \mathbf{O} \mathbf{O} 0 0 1 1 \bigcirc ()1 {1,3} 0 0 0 0 0 \mathbf{O} 0 1 0 1 0 -2 \mathbf{O} \bigcirc \bigcirc {2,4} 1 0 \mathbf{O} \mathbf{O} \mathbf{O} 0 \mathbf{O} 1 0 \mathbf{O} 0 0 1 0 \mathbf{O} 1 {1,4} 1 0 0 0 \mathbf{O} 1 \mathbf{O} 0 0 0 0 0 0 -2 0 1 {2,3} ()0 \mathbf{O} 0 0 \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} 0 \mathbf{O} 1 $\left(\right)$ 1

The kernel of A, as a linear transformation, is generated by

-2 1 1 1 1 1 1 -2 1 -2 1 -2 1 -2 1 -2 1 1 1 1 1 1 1 1 -2 1 -2 1 -2 1 -2 1 -2 $1 - 2 \quad 1 - 2 \quad 1 - 2 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad -2 \quad 1 \quad 1 \quad -2$ 1 -2 1 1 -2 1 -2 1 1 1 1 1 -2 -2 1 1 1 -2 -2 1 1 -2 -2 1 1 -2 1 1 1 1 1 1 -2 1 -2 -2 1 1 -2 -2 1 1 1 1 1 000001000000000 Orthogonal projection of basis vectors onto the kernel

{4,5} 1 -2 1 1 -2 1 -2 1 1 1 1 1 1 -2 -2 1 1 1 -2 -2 1 1 -2 -2 1 1 -2 1 1 1 1 2 -1 -1 -1 -1 2 -4 -1 2 2 -1 2 -1 -1 2 000001000000000 Orthogonal projection of basis vectors onto the kernel

Draw this in the quadrangle:

Draw this in the quadrangle:

Draw this in the quadrangle:

This is a general phenomenon: THEOREM

* Ω is a slim configuration (slim=3points/line)

- * Ω is self polar, flag-transitive and primitive
- * A is a symmetric incidence matrix of Ω

Then orthogonal projection of basis vectors onto Ker A yields the universal barycentric embedding

Projectively: the projection of the base points from Im A onto Ker A is the universal barycentric embedding.

Question: What if A is nonsingular? E.g. Desargues configuration Answer 1: There is no barycentric embedding Still there are "nice" embeddings Is there an Answer 2?

Yes! THEOREM

- * Ω is a slim configuration
- * Ω is self polar, flag-transitive and imprimitive
- * Ω is a double cover of a slim configuration Ω'
- * An incidence matrix of Ω' is nonsingular
- * A is a singular symmetric incidence matrix of Ω

Then orthogonal projection of basis vectors onto Ker A yields a semi-barycentric embedding of Ω'

Semi-barycentric: a±b±c=0 for 3 points on a line

Desargues configuration is covered by the dodecahedron geometry:

Point set = {ordered pairs from fixed 5-set
 {1,2,3,4,5} }
Line set = {domino cycles of length 3}
 (eg. {(1,2),(2,3),(3,1)})
 = {vertex neighbours in dodecahedron}

Note: |Aut(dodecahedron geometry)|= 2|Aut(dodecahedron graph)| A = symmetric incidence matrix = adjacency matrix of dodecahedron graph

O is eigenvalue with multiplicity 4 Ker A has dimension 4 Ker A is determined by inscribed cubes:

The projection of a basis vector e_{ij} is a multiple of the sum of the two cubes through the corresponding vertex (i,j) eg. Projection of $6e_{12}$ is $\sum_{i\neq 1}(e_{1i}-e_{i1}) + \sum_{i\neq 2}(e_{i2}-e_{2i})$

Other example: the projective triangle geometry.

0

2

Point set = {antiflags of PG(2,2)} Line set = {Disjoint antiflags whose union is a triangle} Other example: the projective triangle geometry.

eg.: (6,{2,3,5}) (5,{3,4,6}) (3,{5,6,1})

This is the neighbourhood geometry of the Coxeter graph Other example: The projective triangle geometry. = neighbourhood geometry of the Coxeter graph

Incidence matrix = adjacency matrix A A is nonsingular But 3 double cover and we obtain semibarycentric representation in 7-space. All previous examples have the property that maximal dimension for a real representation maximal dimension for a GF(2)-representation Also true for the two slim generalized hexagons H(2) and its dual

Last example: The Biggs-Smith geometry

- * Neighbourhood geometry of Biggs-Smith graph on 102 vertices, admits PSL(2,17)
- Incidence matrix=adjacency matrix A of Biggs-Smith graph
- * Ker A is 17-dimensional
- * Real barycentric embedding in 16-space
- * Universal embedding over GF(2) in 18-space

Construction: The Biggs-Smith geometry

- * In PG(1,17) given an ordered triple of points (a,b,c) there exist a unique point d and a unique pair {e,f} such that all pairs of {(a,b),(c,d),(e,f)} are harmonic. There are 204 such harmonic triplets with two orbits under PSL(2,17).
- * Point set = one orbit of harmonic triplets
 * Line set = {partition of PG(1,17) into harmonic triplets}

Construction: Barycentric representation of Biggs-Smith geometry

- * Identify each point a of PG(1,17) with a basis vector e_a of \mathbb{R}^{18} .
- Let the harmonic triplet {(u,v),(w,x),(y,z)
 correspond to the vector
 -3(e_u+e_v+e_w+e_x+e_y+e_z)+Σ_ke_k
- * Barycentric representation in hyperplane of $PG(\mathbb{R}^{18})=PG(17,\mathbb{R})$ with equation $\Sigma_k x_k=0$

Some problems:

* What happens if we do not have flagtransitive group?
* What if the configuration is not self-polar?
* What happens with configurations with more than 3 points per line?

Thank you!