Barycentric Configurations in Real Space

Hendrik Van Maldeghem Ghent University
Tuesday 22 June 2021

"Configurations" Mini-symposium 8ECM

My main interest in (realisable) configurations stems from the theory of Tits-buildings
"Which finite buildings can we realise
in Euclidean space?"
Point-line buildings: generalised polygons

General observations:

- only small examples are realisable
- small examples have large symmetry groups

Example

The smallest generalised quadrangle
Point set $=$ \{pairs from fixed 6 -set $\{1,2,3,4,5,6\}\}$ Line set $=\{$ partitions of $\{1,2,3,4,5,6\}$ in pairs $\}$ Doily

Example

The smallest generalised quadrangle

Point set $=$ \{pairs from fixed 6 -set $\{1,2,3,4,5,6\}\}$ Line set $=\{$ partitions of $\{1,2,3,4,5,6\}$ in pairs $\}$

Example

The smallest generalised quadrangle
Point set $=\{$ pairs from fixed 6 -set $\{1,2,3,4,5,6\}\}$
Line set $=$ \{partitions of $\{1,2,3,4,5,6\}$ in pairs $\}$

Theoretic explicit construction of realisation (over any field k):

In hyperplane $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0$ of $\operatorname{PG}(5, k)$ take for $\{i, j\}$ the point $x_{i}=x_{j}=-2, x_{k}=1$ for $k \neq i, j$

Theoretic explicit construction of a realisation (over any field k):

In hyperplane $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=0$ of $\operatorname{PG}(5, k)$ take for $\{i, j\}$ the point $x_{i}=x_{j}=-2, x_{k}=1$ for $k \neq i, j$

Example of a line: $(-2,-2,1,1,1,1)$

$$
\begin{aligned}
& (1,1,-2,-2,1,1) \\
& (1,1,1,1,-2,-2)
\end{aligned}
$$

Sum of the coordinates $=(0,0,0,0,0,0)$!

Sum of the coordinates of the points on a line =

\longrightarrow Barycentric realisation
\longrightarrow Barycentric configuration

Let us construct this barycentric representation in another way

Consider a symmetric incidence matrix A
$\begin{array}{llllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \{1,2\}\end{array}$

 $\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \{3,5\}\end{array}$
$0 \begin{array}{lllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\{4,6\}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \{3,6\}\end{array}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\{4,5\}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\{1,5\}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\{2,6\}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\{1,6\}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & \{2,5\}\end{array}$
$0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}\{1,3\}$
$0 \begin{array}{llllllllllllllll} & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \{2,4\}\end{array}$
$0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \{1,4\}\end{array}$

$\begin{array}{llllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \{1,2\}\end{array}-2$ $\begin{array}{lllllllllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\{3,4\}$
 $\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \{3,5\} \\ 0 & 1 & & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lllllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \{4,6\} & 1\end{array}$ $\begin{array}{lllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \{3,6\} & 1\end{array}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \{4,5\} \\ 0 & 1\end{array}$ $\begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \{1,5\} \\ 0 & -2\end{array}$
 $\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \{1,6\} & -2\end{array}$ $0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\end{array}\{2,5\} \quad 1$ $0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \{1,3\} & -2\end{array}$

 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $\{1,4\}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \{1,2\} & -2\end{array}$ $1 \begin{array}{llllllllllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \{3,4\} \\ 1\end{array}$ 100 $\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \{3,5\} \\ 0 & 1\end{array}$ $\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \{4,6\} \\ & 1\end{array}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \{3,6\} \\ & 1\end{array}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \{4,5\} \\ 1\end{array}$ $0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & \{1,5\} & -2\end{array}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \{2,6\}\end{array} 1$
 $0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & \{2,5\} & 1\end{array}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \{1,3\}\end{array}-2$ $0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \{2,4\} \\ 1\end{array}$ $0 \begin{array}{llllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \{1,4\} \\ -2\end{array}$

$\begin{array}{lllllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \{1,2\} & -2\end{array}$ $\begin{array}{lllllllllllllll}1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\{3,4\}$
 $\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \{3,5\} \\ 0 & 1\end{array}$ $\begin{array}{lllllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & \{4,6\} & 1\end{array}$ $\begin{array}{lllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \{3,6\} & 1\end{array}$ $0 \begin{array}{lllllllllllllllll}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \{4,5\} & 1\end{array}$ $\begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0\end{array}\{1,5\}-2$ $0 \begin{array}{llllllllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \{2,6\} & 1\end{array}$ $\begin{array}{lllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & \{1,6\}\end{array}-2$
 $0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & \{1,3\} & -2\end{array}$ $000010 \begin{array}{llllllllllll}0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\{2,4\} \quad 1$ $0 \begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \{1,4\} & -2\end{array}$

The kernel of A, as a linear transformation, is generated by

$$
\begin{array}{cccccccccccccccc}
-2 & 1 & 1 & 1 & 1 & 1 & 1 & -2 & 1 & -2 & 1 & -2 & 1 & -2 & 1 \\
-2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -2 & 1 & -2 & 1 & -2 & 1 & -2 \\
1 & -2 & 1 & -2 & 1 & -2 & 1 & 1 & 1 & 1 & 1 & -2 & 1 & 1 & -2 \\
1 & -2 & 1 & 1 & -2 & 1 & & 1 & 1 & 1 & 1 & 1 & -2 & -2 & 1 \\
1 & 1 & -2 & -2 & 1 & 1 & & -2 & 1 & 1 & -2 & 1 & 1 & 1 & 1 \\
1 & 1 & -2 & 1 & -2 & -2 & 1 & 1 & -2 & -2 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Orthogonal projection of basis vectors onto the kernel

$$
\begin{aligned}
& \{4,5\} \\
& \left.\begin{array}{rrrrrr}
1 & -2 & 1 & 1 & -2 & 1 \\
1 & 1 & -2 & -2 & 1 & 1
\end{array} \begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & -2 & -2 & 1 \\
-2 & 1 & 1 & -2 & 1 & 1 & 1 & 1
\end{array}\right]+ \\
& 000000100000000
\end{aligned}
$$

Orthogonal projection of basis vectors onto the kernel

Draw this in the quadrangle:

Draw this in the quadrangle:

Draw this in the quadrangle:

$$
\{4,5\}
$$

This is a general phenomenon:
THEOREM

* Ω is a slim configuration (slim=3points/line)
* Ω is self polar, flag-transitive and primitive * A is a symmetric incidence matrix of Ω

Then orthogonal projection of onto Ker A yields the universal barycentric embedding

Projectively: the projection of the base points from $\operatorname{Im} A$ onto $\operatorname{Ker} A$ is the universal barycentric embedding.

Question: What if A is nonsingular?

E.g. Desargues configuration

Answer 1: There is no barycentric embedding

Still there are "nice" embeddings

Is there an Answer 2 ?

Yes!
THEOREM

* Ω is a slim configuration
* Ω is self polar, flag-transitive and imprimitive
* Ω is a double cover of a slim configuration Ω^{\prime}
* An incidence matrix of Ω^{\prime} is nonsingular
* A is a singular symmetric incidence matrix of Ω
Then orthogonal projection of onto Ker A yields a semi-barycentric embedding of Ω^{\prime}

Semi-barycentric: $a \pm b \pm c=0$ for 3 points on a line

Example

Desargues configuration is covered by the

 dodecahedron geometPoint set $=\{$ ordered pairs from fixed 5 -set $\{1,2,3,4,5\}\}$
Line set $=\{$ domino cycles of length 3$\}$ (eg. $\{(1,2),(2,3),(3,1)\})$
$=$ \{vertex neighbours in dodecahedron\}
Nole: \mid Aut(dodecahedron geometry)|= 2|Aut(dodecahedron graph)|

$\begin{aligned} A & =\text { symmetric incidence matrix } \\ & =\text { adjacency matrix of dodecahedron graph }\end{aligned}$

0 is eigenvalue with multiplicity 4
\rightarrow Ker A has dimension 4
$\operatorname{Ker} A$ is determined by inscribed cubes:

The projection of a basis vector $e_{i j}$ is a multiple of the sum of the two cubes through the corresponding vertex (i, j) eg. Projection of $6 e_{12}$ is

$$
\sum_{i \neq 1}\left(e_{i i}-e_{i 1}\right)+\sum_{i \neq 2}\left(e_{i 2}-e_{2 i}\right)
$$

Other example: the projective triangle geometry.

Point set $=$ \{antiflags of PG $(2,2)\}$ Line set $=\{$ Disjoint antiflags whose union is a triangle\}

Other example: the projective triangle geometry.

Point set $=$ \{antiflags of PG $(2,2)\}$ Line set $=\{$ Disjoint antiflags whose union is a triangle\}

eg.: $(6,\{2,3,5\})$

$(5,\{3,4,6\})$
$(3,\{5,6,1\})$
This is the neighbourhood geomelry of the Coxeter graph

Other example:
The projective triangle geometry.
= neighbourhood geometry of the Coxeter graph
Incidence matrix = ad acency mat A
A is nonsingular
But \exists double cover and we obtain semibarycentric representation in 7-space.

All previous examples have the property that maximal dimension for a real representation maximal dimension for a GF(2)-representation

Also true for the two slim generalized hexagons $H(2)$ and its dual

Last example: The Biggs

* Neighbourhood geometry of Biggs-Smith graph on 102 vertices, admits PSL $(2,17)$
* Incidence matrix=adjacency matrix A of Biggs-Smith graph
* Ker A is 17-dimensional
* Real barycentric embedding in 16-space
* Universal embedding over GF(2) in 18-space

Construction: The

* In PG(1,17) given an ordered triple of points (a, b, c) there exist a unique point d and a unique pair $\{e, f\}$ such that all pairs of $\{(a, b),(c, d),(e, f)\}$ are harmonic. There are 204 such harmonic triplets with two orbits under PSL(2,17).
* Point set $=$ one orbit of harmonic triplets
* Line set $=$ \{partition of PG(1,17) into harmonic triplets\}

Construction: Barycentric representation of

Biggs-Smith geometry

* Identify each point a of $\operatorname{PG}(1,17)$ with a e_{a} of \mathbb{R}^{18}.
* Let the harmonic triplet $\{(u, v),(w, x),(y, z)$ correspond to the vector
$-3\left(e_{u}+e_{v}+e_{w}+e_{x}+e_{y}+e_{z}\right)+\sum_{k} e_{k}$
* Barycentric representation in hyperplane of $\operatorname{PG}\left(\mathbb{R}^{18}\right)=P G(17, \mathbb{R})$ with equation $\Sigma_{k} x_{k}=0$

Some problems:

* What happens if we do not have transitive group?
* What if the configuration is not self-polar?
* What happens with configurations with more than 3 points per line?

Te end

Thank you.

