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Structured deformations
First order ( Del Piero, Owen )

The model sets a basis to address problems in non-classical
deformations of continua (for instance, study of equilibrium
configurations of crystals with defects) where an analysis at
macroscopic and microscopic levels is required, dividing the study
of deformations in two parts: the part arising from smooth changes
and the part due to slips and separations (disarrangements) at
smaller length scales.
I

S.D. pair(g ,G )

with fn
L∞−→ g , ∇fn

L∞
⇀ G , and with fn injective.

I g accounts for the macroscopic change in geometry.

M := ∇g − G

is attained through slips and separations (disarrangements)
that take place at a smaller length scale.



Example Deck of cards

N = 2, Ω = (0, 1)2,

g(x1, x2) = (x1 + x2, x2), (simple shear) G =

[
1 0
0 1

]

fn(x) = (x1 +
k

n
, x2),

k

n
≤ x2 <

k + 1

n
, k = 0, . . . n − 1

fn
L∞−→ g , ∇fn

L∞−→G , Dfn ⇀∇g =

[
1 1
0 1

]
M =

[
0 1
0 0

]
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Integral representation (SBV framework)

The energy associated with the structured deformation (g ,G ) can
be defined as the most economical way to build up the pair using
approximations in SBV :

IL(g ,G ) = inf
un∈SBV (Ω;Rd )

{
lim inf
n→∞

EL(un), un
L1

−→ g , ∇un
Lp
⇀G

}
(1)

for (g ,G ) ∈ SBV (Ω;Rd)× Lp(Ω;Rd×N), p ≥ 1, with

EL(v) =

∫
Ω
W (x ,∇v) dx +

∫
Sv

ψ(x , [v ], νv ) dHN−1, (2)

v ∈ SBV (Ω;Rd)



Integral representation result in CF

I Under appropriate assumptions (among which linear growth of
ψ), IL(g ,G ) admits an integral representation of the form:

IL(g ,G ) =

∫
Ω
H(x ,∇g ,G ) dx +

∫
S(g)

h(x , [g ], ν(g)] dHN−1,

with H and h defined through appropriate cell formulae.

I The relaxed bulk energy density H depends both on W and ψ.

I In this work we extend the original result in CF, by allowing
explicit dependence on the variable x.



Motivation of our work

The theory of structured deformation in the SBV setting developed
by Chocksi & Fonseca only takes into account the linear
dependance on jumps along the approximating sequences. Del
Piero &Owen proposed a 1-D model toward capturing the
non-linear dependence on the jumps. The idea was to modify the
initial energy as follows: for each r ∈ (0, 1) let

F r (u) =

∫ 1

0
W (u′(x)) dx +

∑
z∈Su

ψ([u](z))

+

∫ 1

0
Ψ

( ∑
z∈Su∩(x−r ,x+r)

[u](z)

2r

)
dx ,

and then undergo a relaxation process in the context of structured
deformations followed by taking the limit as r → 0+.



Framework

The present approach to relaxation of non-local energies rests on
two limiting processes:

1. Start from a submacroscopical level where we have a weighted
average of disarrangements within neighborhoods of fixed size
r > 0 and pass to the macrolevel, permitting disarrangements
to diffuse through such a neighborhood. This limiting process
determines a structured deformation as well as the non-local
dependence of the energy density of such a structured
deformation.

2. Pass to the limit as r → 0, to obtain purely local bulk and
interfacial energy densities for the structured deformation
identified in the first step.
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Averaging processes

Let Ω ⊂ RN a bounded connected open set with Lipschitz
boundary ∂Ω and u ∈ SBV (Ω;Rd). For a continuous function
Ψ: Ω× Rd×N → [0,+∞) and fixed r > 0 we define the non-local
contribution by

Eαr (u) :=

∫
Ωr

Ψ
(
x , (Dsu ∗ αr )(x)

)
dx , (3)

where Ωr := {x ∈ Ω : dist(x ; ∂Ω) > r}.



Averaging processes

In (3)

αr :=
1

rN
α
(x
r

)
,

where
α ∈ C∞c (B1)

with ∫
B1

α(x) dx = 1, α ≥ 0, α(−x) = α(x)

The symbol ∗ denotes the convolution operation.
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Averaging processes

Given (g ,G ) ∈ SD(Ω;Rd), let {un} ⊂ SBV (Ω;Rd) such that

(a) un → g in L1, ∇un ⇀ G in Lp (
∗
⇀ in L1),

(b) Dsun
∗
⇀ (∇g − G )LN + Dsg in M+(Ω),

We will denote by Ad(g ,G ) the class of sequences satisfying (a)
and (b).
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Averaging processes - the limit in n

We take the limit as n→∞ of Eαr (un), obtaining

I rNL(g ,G ) := lim
n→∞

Eαr (un)

= lim
n→∞

∫
Ωr

Ψ
(
x , (Dsun ∗ αr )(x)

)
dx

=

∫
Ωr

Ψ
(
x ,
(
(∇g − G )LN + Dsg) ∗ αr

))
dx

(4)



Averaging processes

We consider now an extension of (g ,G ) to (g̃ , G̃ ) ∈ RN ×Rd×N in
the following sense:

(e1) (g̃ , G̃ )bΩ= (g ,G ),

(e2) |Dg̃ |(RN) ≤ C ||g ||BV (Ω;Rd ),

(e3) |Dg̃ |(∂Ω) = 0.



Averaging processes

For such (g̃ , G̃ ), we extend I rNL(g ,G ) to Ω by defining:

Ĩ rNL(g̃ , G̃ ) :=

∫
Ωr

Ψ
(
x , ((∇g − G )LN + Dsg) ∗ αr

)
dx

+

∫
Ω\Ωr

Ψ
(
x , ((∇g̃ − G̃ )LN + Ds g̃) ∗ αr

)
dx

(5)

In any case, independently of the extension considered, we can
show that the difference between I rNL(g ,G ) and Ĩ rNL(g̃ , G̃ ) goes to
zero as r → 0+.
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The limit as r → 0+

We work with Ĩ rNL(g̃ , G̃ ) where Ψ can be of two types:

E) Ψ ∈ C (Ω× Rd×N) and Ψ∞(x , ξ) := lim x ′→x
ξ′→ξ
t→+∞

Ψ(x ′,tξ′)
t exists

in Ω× Rd×N

L) Ψ ∈ C (Ω×Rd×N), Lipschitz continuous in the second variable

with Ψ∞ defined as Ψ∞(x , ξ) := lim sup x ′→x
ξ′→ξ
t→+∞

Ψ(x ′,tξ′)
t

We address the dependance in x with some modulus of continuity
assumption on the first variable.The proof relies in Reshetnyak
continuity (upper semicontinuity) theorems.



The limit as r → 0+
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The limit as r → 0+

We have that, for any (g ,G ) ∈ SD(Ω;Rd),

INL(g ,G ) := lim
r→0+

Ĩαr
NL(g ,G ) =

∫
Ω

Ψ
(
x , (∇g − G )(x)

)
dx

+

∫
Ω∩S(g)

Ψ∞
(
x ,

dDsg

d |Dsg |
(x)
)
d |Dsg |



Coupling

I I (g ,G ) = IL(g ,G ) + INL(g ,G ) where

IL(g ,G )=

∫
Ω
H(x ,∇g(x),G (x)) dx+

∫
S(g)∩Ω

h(x , [g ](x), ν(g)(x))dHN−1
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dx

+

∫
Ω∩S(g)

Ψ∞
(
x ,

dDsg

d |Dsg |
(x)
)
d |Dsg |

I The proof is a simple consequence of the fact that recovery
sequences for IL(g ,G ) belong to Ad(g ,G ).
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Example from crystal plasticity

I Crystallographic slip: The discontinuity in deformation arises
only across a limited family of slip planes.

I For a single crystal in the reference configuration Ω the data
required for the analysis of crystallographic slip consists of
pairs of orthogonal unit vectors (sa,ma) for a = 1, · · · ,A,
with A the number of potentially active slip systems.

I The unit vector sa provides the direction of slip, while the unit
vector ma is a normal to the slip plane for the ath slip-system
(sa,ma).



Crystallographic structured deformation

Crystallographic structured deformation



Slip-neutral two level shears

Crystallographic slip is physically activated within very thin bands,
(slip-bands) with thickness typically of the order 102 atomic units,
while the separation of active slip-bands is typically of order 104

atomic units. Following [CDPFO1999], for each a = 1, · · · ,A,
there is a number pa > 0 such that a two-level shear (ga

µ,xo ,G
a
ν ) for

which the shear due to slip µ− γ satisfies

µ− γ = mpa with m ∈ Z (6)

and gives rise to submacroscopic slips equal to an integral number
of atomic units in the direction of slip sa.



Special properties for Ψ, under crystallografic splip

I This leads to the conclusion that, the non-local relaxed bulk
density, in the context of crystal plasticity, can have periodicity
properties, provided that it is restricted to each member of a
family of two-dimensional affine subspaces of R3x3, with
(vector) period depending on the corresponding subspace.

I The periodicity stems from the fact that special families of
two-level shears associated with the slip systems of the crystal
are geometrically undetectable.



Thank you for your attention!


