Sum-of-squares proofs for logarithmic Sobolev inequalities

Hamza Fawzi
Joint work with Oisín Faust
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
8th European Congress in Mathematics, June 2021
Minisymposium on Computational aspects of commutative and noncommutative positive polynomials

Markov chains

- $K: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ transition matrix

$$
K_{i j} \geq 0, \quad \sum_{j \in \mathcal{S}} K_{i j}=1 \quad \forall i \in \mathcal{S}
$$

- Invariant distribution $\pi \in \mathbb{R}^{\mathcal{S}}: \sum_{i \in \mathcal{S}} K_{i j} \pi_{i}=\pi_{j}$ (i.e., $\pi K=\pi$).

Markov chains

- $K: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ transition matrix

$$
K_{i j} \geq 0, \quad \sum_{j \in \mathcal{S}} K_{i j}=1 \quad \forall i \in \mathcal{S}
$$

- Invariant distribution $\pi \in \mathbb{R}^{\mathcal{S}}: \sum_{i \in \mathcal{S}} K_{i j} \pi_{i}=\pi_{j}$ (i.e., $\pi K=\pi$).
- Continuous-time Markov process ("heat equation")

$$
\frac{d p(t)}{d t}=-p(t) L
$$

where $L=I-K$ is Laplacian. $p(t) \in \mathbb{R}^{\mathcal{S}}$ distribution at time t

- Q: How fast does $p(t)$ converge to π ?

Spectral theory / Poincaré inequality

$$
\mathcal{E}(x, y)=\langle x, L y\rangle_{\pi} \quad(\text { "Dirichlet form" })
$$

Spectral gap/Poincaré inequality:

$$
\mathcal{E}(x, x) \geq \lambda\|x\|_{\pi}^{2} \quad \forall x: \mathbf{E}_{\pi}[x]=0 .
$$

Convergence based on spectral gap:

$$
\operatorname{Var}(x(t)) \leq \operatorname{Var}(x(0)) e^{-2 \lambda t}
$$

where

- $x(t)=p(t) / \pi$ density of $p(t)$ wrt π
- $\operatorname{Var}(x)=\mathbf{E}_{\pi}\left[\left(x-\mathbf{E}_{\pi} x\right)^{2}\right]$

Functional inequalities

- Logarithmic-Sobolev inequality:

$$
\mathcal{E}(x, x) \geq \alpha \sum_{i} \pi_{i} x_{i}^{2} \log \left(x_{i}^{2}\right) \quad \forall x: \sum_{i} \pi_{i} x_{i}^{2}=1
$$

- Largest α for which this inequality holds is the logarithmic Sobolev constant
- Controls convergence of $p(t)$ to π in the relative entropy sense

$$
D(p(t) \| \pi) \leq D(p(0) \| \pi) e^{-4 \alpha t} \text { where } D(p \| q):=\sum_{i \in \mathcal{S}} p_{i} \log \left(p_{i} / q_{i}\right)
$$

Functional inequalities

- Logarithmic-Sobolev inequality:

$$
\mathcal{E}(x, x) \geq \alpha \sum_{i} \pi_{i} x_{i}^{2} \log \left(x_{i}^{2}\right) \quad \forall x: \sum_{i} \pi_{i} x_{i}^{2}=1
$$

- Largest α for which this inequality holds is the logarithmic Sobolev constant
- Controls convergence of $p(t)$ to π in the relative entropy sense

$$
D(p(t) \| \pi) \leq D(p(0) \| \pi) e^{-4 \alpha t} \text { where } D(p \| q):=\sum_{i \in \mathcal{S}} p_{i} \log \left(p_{i} / q_{i}\right)
$$

- Advantage is that $D(p(0) \| \pi) \ll \operatorname{Var}(x(0))$

Example: if $p(0)=\delta_{i}$ and $\pi=\mathbf{1} /|\mathcal{S}|$ (uniform) then $D(p(0) \| \pi)=\log (|\mathcal{S}|)$ and $\operatorname{Var}(\times(0)) \approx|\mathcal{S}|$

- Compared to λ (Poincaré constant), α is much harder to compute

Computing α

Lectures on finite Markov chains

Laurent Saloff-Coste
CNRS \& Université Paul Sabatier, UMR 55830

École d'été de probabilités de St Flour 1996

This result shows that α is closely related to the quantity we want to bound, namely the "time to equilbrium" T_{2} (more generally T_{p}) of the chain (K, π). The natural question now is:
can one compute or estimate the constant α ?
Unfortunately, the present answer is that it seems to be a very difficult problem to estimate α. To illustrate this point we now present what, in some sense, is the only example of finite Markov chain for which α is known explicitely.

Computing α

Lectures on finite Markov chains

Laurent Saloff-Coste
CNRS \& Université Paul Sabatier, UMR 55830

École d'été de probabilités de St Flour 1996

This result shows that α is closely related to the quantity we want to bound, namely the "time to equilbrium" T_{2} (more generally T_{p}) of the chain (K, π). The natural question now is:
can one compute or estimate the constant α ?
Unfortunately, the present answer is that it seems to be a very difficult problem to estimate α. To illustrate this point we now present what, in some sense, is the only example of finite Markov chain for which α is known explicitely.

This talk: Computational method to produce formal lower bounds on α

Log-Sobolev inequality and sums of squares

$$
\mathcal{E}(x, x)-\alpha B(x) \geq 0 \quad \forall x \in \mathbb{R}^{n}: S(x)=0
$$

where

- $\mathcal{E}(x, x)=\frac{1}{2} \sum_{i j} \pi_{i} K_{i j}\left(x_{i}-x_{j}\right)^{2}$
- $B(x)=\sum_{i} \pi_{i} x_{i}^{2} \log \left(x_{i}^{2}\right)$
- $S(x)=\sum_{i} \pi_{i} x_{i}^{2}-1$.

Main problem: $B(x)$ is not a polynomial.

Log-Sobolev inequality and sums of squares

$$
\mathcal{E}(x, x)-\alpha B(x) \geq 0 \quad \forall x \in \mathbb{R}^{n}: S(x)=0
$$

where

- $\mathcal{E}(x, x)=\frac{1}{2} \sum_{i j} \pi_{i} K_{i j}\left(x_{i}-x_{j}\right)^{2}$
- $B(x)=\sum_{i} \pi_{i} x_{i}^{2} \log \left(x_{i}^{2}\right)$
- $S(x)=\sum_{i} \pi_{i} x_{i}^{2}-1$.

Main problem: $B(x)$ is not a polynomial.

Approach: Find $\hat{B}(x)$ polynomial such that $B(x) \leq \hat{B}(x)$ and attempt to prove instead

$$
\mathcal{E}(x, x)-\alpha \hat{B}(x) \geq 0 \quad \forall x: S(x)=0
$$

using sums of squares. How to choose $\hat{B}(x)$?

Approach 1: Taylor bound

Simple fact: Let $p_{2 d-1}^{\text {Taylor }}$ be the degree $2 d-1$ Taylor expansion of $t^{2} \log (t)$ at $t=1$. Then

$$
p^{\text {Taylor }}(t) \geq t^{2} \log (t) \quad \forall t \geq 0
$$

Consequence

$$
\hat{B}(x)=2 \sum_{i} \pi_{i} p^{\text {Taylor }}\left(x_{i}\right) \geq B(x)
$$

Approach 1: Taylor bound

Simple fact: Let $p_{2 d-1}^{\text {Taylor }}$ be the degree $2 d-1$ Taylor expansion of $t^{2} \log (t)$ at $t=1$. Then

$$
p^{\text {Taylor }}(t) \geq t^{2} \log (t) \forall t \geq 0
$$

Consequence

$$
\hat{B}(x)=2 \sum_{i} \pi_{i} p^{\text {Taylor }}\left(x_{i}\right) \geq B(x)
$$

Semidefinite programming lower bound on α :

$$
\begin{array}{ll}
\max _{\hat{\alpha}, s(x), h(x)} & \hat{\alpha} \\
\text { s.t. } & \mathcal{E}(x, x)-2 \hat{\alpha} \sum_{i} \pi_{i} p^{\operatorname{Taylor}}\left(x_{i}\right)=s(x)+h(x)\left(\sum_{i} \pi_{i} x_{i}^{2}-1\right) \\
& s \text { sum of squares, } \operatorname{deg}(s)=2 k \\
& h \text { arbitrary polynomial, } \operatorname{deg}(h)=2 k-2
\end{array}
$$

- Solution of SDP gives formal lower bound on α
- Simple approach already gives nontrivial results, e.g., for two-point space

Approach 2: Searching for the best polynomial bound

- We want the optimization program to search for the best polynomial upper bound on $B(x)$, i.e., we want to solve:

$\max _{\hat{\alpha}, s(x), h(x), \hat{p}}$	$\hat{\alpha}$
s.t.	$\mathcal{E}(x, x)-2 \hat{\alpha} \sum_{i} \pi_{i} \hat{p}\left(x_{i}\right)=s(x)+h(x)\left(\sum_{i} \pi_{i} x_{i}^{2}-1\right)$
	s sum of squares, $\operatorname{deg}(s)=2 k$
	h arbitrary polynomial, $\operatorname{deg}(h)=2 k-2$
	$\hat{p}(t) \geq t^{2} \log (t) \forall t \geq 0, \operatorname{deg}(\hat{p})=\ell$.

- Need a tractable formulation of the convex set

$$
\left\{\hat{p} \in \mathbb{R}[t], \operatorname{deg}(\hat{p})=\ell \text { s.t. } \hat{p}(t) \geq t^{2} \log (t) \forall t>0\right\}
$$

- We use rational approximations of log

Padé approximations

- The (m, n) Padé approximation of $f(t)$ at $t=t_{0}$ is a rational function P / Q with $\operatorname{deg} P=m, \operatorname{deg} Q=n$ so that around $t=t_{0}$

$$
f(t)-P(t) / Q(t)=O\left(\left(t-t_{0}\right)^{m+n+1}\right)
$$

Padé $(4,3)$ vs Taylor of order 7 of \log around $t=1$

Padé upper bound on log

Proposition: For any integer m, the ($m+1, m$) Padé approximant P_{m} / Q_{m} of \log at $t=1$ is an upper bound on log. Furthermore $Q_{m}(t)>0$ for all $t>0$

Thus a sufficient condition for $\hat{p}(t) \geq t^{2} \log (t)$ is $\hat{p} \geq t^{2} P_{m} / Q_{m}$, which we can impose via sum-of-squares as

$$
Q_{m} \hat{P}-t^{2} P_{m} \text { is a sum-of-squares }
$$

Padé upper bound on log

Proposition: For any integer m, the ($m+1, m$) Padé approximant P_{m} / Q_{m} of \log at $t=1$ is an upper bound on log. Furthermore $Q_{m}(t)>0$ for all $t>0$

Thus a sufficient condition for $\hat{p}(t) \geq t^{2} \log (t)$ is $\hat{p} \geq t^{2} P_{m} / Q_{m}$, which we can impose via sum-of-squares as

$$
Q_{m} \hat{P}-t^{2} P_{m} \text { is a sum-of-squares }
$$

Theorem: The solution of the following sum-of-squares program is a lower bound on the log-Sobolev constant of (K, π) :

$\max _{\hat{\alpha}, s(x), h(x), \hat{p}}$	$\hat{\alpha}$
s.t.	$\mathcal{E}(x, x)-2 \hat{\alpha} \sum_{i} \pi_{i} \hat{p}\left(x_{i}\right)=s(x)+h(x)\left(\sum_{i} \pi_{i} x_{i}^{2}-1\right)$
	s sum of squares, $\operatorname{deg}(s)=2 k$
	h arbitrary polynomial, $\operatorname{deg}(h)=2 k-2$
	$Q_{m}(t) \hat{p}(t)-t^{2} P_{m}$ sum-of-squares, $\operatorname{deg}(\hat{p})=\ell$.

Implementation

- Formal proofs from floating-point solutions: Semidefinite programs are solved with floating-point arithmetic
\rightarrow To obtain formal proofs, we have to round the solution of the SDP to the rationals, while ensuring exact feasibility, and positivity of the Gram matrix [Peyrl-Parrilo]
- Solve slightly perturbed SDP, and round the solution of the perturbed SDP
- All of this implemented in the Julia language, available at
https://github.com/oisinfaust/LogSobolevRelaxations

Examples

- Simple walk on the complete graph K_{n}
- Exact value known $\alpha=\frac{n-2}{(n-1) \log (n-1)}$ [Diaconis-Saloff-Coste]

n	$\hat{\alpha}$	$\epsilon_{\text {rel }}$
3	0.72134751987	7.96×10^{-10}
4	0.6068261485	4.25×10^{-9}
5	0.541010629	2.16×10^{-8}
6	0.497067908	7.95×10^{-8}
7	0.46509209	2.22×10^{-7}
8	0.44048407	5.06×10^{-7}
9	0.4207856	1.02×10^{-6}
10	0.4045500	1.85×10^{-6}
11	0.3908638	3.13×10^{-6}
12	0.3791184	5.06×10^{-6}
13	0.3688909	7.81×10^{-6}

Using Padé approach with $m=5$

3-point stick

The cycle

- Simple walk on $\mathbb{Z}_{n}: K_{i, i \pm 1}=1 / 2$ for $i \in \mathbb{Z}_{n}$.
- It is known that $\alpha=\frac{\lambda}{2}=\frac{1}{2}(1-\cos (2 \pi / n))$ for all even n and $n=5$. [Chen-Sheu], [Chen-Liu-Saloff-Coste]
- Open question: is $\alpha=\lambda / 2$ for all odd $n \geq 5$?
- We give formal proofs that

$$
\alpha=\frac{1}{2}(1-\cos (2 \pi / n)) \quad \forall n \in\{5,7,9, \ldots, 21\}
$$

Several ingredients:

- Relaxation based on the Taylor upper bound of degree 5
- Symmetry reduction reduces SDP from a large block of size $\sim 3 n^{2} / 2$ to smaller blocks of size $\sim 3 n / 2$
- Rounding in $\mathbb{Q}[\cos (2 \pi / n)]$ (instead of just \mathbb{Q})

Conclusion

Paper at arXiv:2101.04988

Open directions

- Fastest Mixing Markov Chain: can use the relaxation to search for a Markov chain with the largest log-Sobolev constant. Compare with Markov chains with largest Poincaré constant [Boyd-Diaconis-Xiao].
- Modified log-Sobolev constant
- Quantum (modified) log-Sobolev constant?

Thank you!

