Characterizing isomorphism classes of Latin squares by fractal dimensions of image patterns

Raúl M．Falcón

Department of Applied Maths I．
Universidad de Sevilla． rafalgan＠us．es

Portorož，Slovenia． June 24， 2021.

CONTENTS

© Preliminaries.
c Standard sets of image patterns.

- The mean fractal dimension.
- Some computations.

CONTENTS

© Preliminaries.
c Standard sets of image patterns.

- The mean fractal dimension.
- Some computations.

Quasigroups and Latin squares.

A quasigroup of order n is a pair (Q, \cdot) formed by

- a finite set Q of n elements
- a product.
such that both equations

$$
a \cdot x=b \text { and } y \cdot a=b
$$

have unique solutions $x, y \in S$, for all $a, b \in S$.

- Its multiplication table is a Latin square.

$$
L=\left(l_{i j}\right) \equiv \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 3 \\
\hline 2 & 3
\end{array} 1.1 .\left[\mathrm{LS}_{3}\right.
$$

Entry set: $\operatorname{Ent}(L):=\{($ row, column, symbol $)\}=\left\{\left(i, j, \iota_{i j}\right)\right\}$.

$$
\begin{aligned}
\operatorname{Ent}(L)= & \{(1,1,1),(1,2,2),(1,3,3) \\
& (2,1,2),(2,2,3),(2,3,1), \\
& (3,1,2),(3,2,3),(3,3,1)\} .
\end{aligned}
$$

Latin square isomorphism.

$S_{n} \equiv$ Symmetric group on $\{1, \ldots, n\}$.

Isomorphism:

$$
\left\{\begin{array}{l}
f \in S_{n} \\
L \in \operatorname{LS}_{n}
\end{array} \quad \Rightarrow \operatorname{Ent}\left(L^{f}\right)=\{(f(i), f(j), f(k)) \mid(i, j, k) \in \operatorname{Ent}(L)\} .\right.
$$

Row-permutations (f), column-permutations (f), symbol-permutations (f).

Latin squares as scramblers in Cryptography.

[V. Dimitrova V., S. Markovski, 2007] Classification of quasigroups by image patterns. Proc. 5th CIIT, 152-160.

Vesna Dimitrova

- A quasigroup (Q, \cdot)
- A plaintext $T=t_{1} \ldots t_{m}$, with $t_{i} \in Q$
- A leader symbol $s \in Q$

Encryption: $E_{s}(T)=e_{1} \ldots e_{m}$

$$
e_{i}:= \begin{cases}s \cdot t_{1}, & \text { if } i=1 \\ e_{i-1} \cdot t_{i}, & \text { otherwise }\end{cases}
$$

Smile Markovski

$$
\left\{\begin{array}{l}
Q \equiv \begin{array}{l|l|l|}
\hline & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array} \quad \Rightarrow\left\{\begin{array}{l}
E_{1}(T)=123213312132 \\
E_{2}(T)=231321123213 \\
E_{3}(T)=312132231321
\end{array}\right. \text { }
\end{array}\right.
$$

Image patterns arising from Latin squares.

[V. Dimitrova V., S. Markovski, 2007] Classification of quasigroups by image patterns. Proc. 5th CIIT, 152-160.

Vesna Dimitrova

Smile Markovski

- A quasigroup (Q, \cdot)
- A plaintext $T=t_{1} \ldots t_{m}$
- A tuple of leader symbols $S=\left(s_{1}, \ldots, s_{r-1}\right)$

Image pattern: $\mathcal{P}_{S, T}=\left(p_{i j}\right)$

$$
p_{i j}:= \begin{cases}t_{j}, & \text { if } i=1 \\ s_{i-1} \cdot p_{i-1,1}, & \text { if } i>1 \text { and } j=1, \\ p_{i, j-1} \cdot p_{i-1, j}, & \text { otherwise }\end{cases}
$$

$\Rightarrow \mathcal{P}_{S, T}=$| 1 | 2 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 3 | 3 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 2 | 1 | 3 | 3 | 1 | 2 | 1 | 3 | 2 |
| 2 | 3 | 2 | 3 | 3 | 2 | 1 | 1 | 2 | 2 | 1 | 2 |
| 1 | 3 | 1 | 3 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 3 |
| 1 | 3 | 3 | 2 | 3 | 2 | 1 | 3 | 3 | 1 | 2 | 1 |
| 2 | 1 | 3 | 1 | 3 | 1 | 1 | 3 | 2 | 2 | 3 | 3 |
| 1 | 1 | 3 | 3 | 2 | 2 | 2 | 1 | 2 | 3 | 2 | 1 |

Image patterns arising from Latin squares.

[V. Dimitrova V., S. Markovski, 2007] Classification of quasigroups by image patterns. Proc. 5th CIIT, 152-160.

Vesna Dimitrova

Smile Markovski

- A quasigroup (Q, \cdot)
- A plaintext $T=t_{1} \ldots t_{m}$
- A tuple of leader symbols $S=\left(s_{1}, \ldots, s_{r-1}\right)$

Image pattern: $\mathcal{P}_{S, T}=\left(p_{i j}\right)$

$$
p_{i j}:= \begin{cases}t_{j}, & \text { if } i=1 \\ s_{i-1} \cdot p_{i-1,1}, & \text { if } i>1 \text { and } j=1, \\ p_{i, j-1} \cdot p_{i-1, j}, & \text { otherwise }\end{cases}
$$

Image patterns arising from Latin squares.

$$
\left\{\begin{array}{l}
Q \equiv \begin{array}{l|ll|}
\hline 1 & 2 & 3 \\
2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}=111111111111 \\
S=2 \ldots 2
\end{array}\right.
$$

1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2
3	1	2	3	1	2	3	1	2	3	1	2
1	1	2	1	1	2	1	1	2	1	1	2
2	2	3	3	3	1	1	1	2	2	2	3
3	1	3	2	1	1	1	1	2	3	1	3
1	1	3	1	1	1	1	1	2	1	1	3
2	2	1	1	1	1	1	1	2	2	2	1
3	1	1	1	1	1	1	1	2	3	1	1
1	1	1	1	1	1	1	1	2	1	1	1
2	2	2	2	2	2	2	2	3	3	3	3
3	1	2	3	1	2	3	1	3	2	1	3
1	1	2	1	1	2	1	1	3	1	1	3
2	2	3	3	3	1	1	1	3	3	3	2
3	1	3	2	1	1	1	1	3	2	1	2
1	1	3	1	1	1	1	1	3	1	1	2
2	2	1	1	1	1	1	1	3	3	3	1
3	1	1	1	1	1	1	1	3	2	1	1
1	1	1	1	1	1	1	1	3	1	1	1
2	2	2	2	2	2	2	2	1	1	1	1
3	1	2	3	1	2	3	1	1	1	1	1
1	1	2	1	1	2	1	1	1	1	1	1
2	2	3	3	3	1	1	1	1	1	1	1
3	1	3	2	1	1	1	1	1	1	1	1
1	1	3	1	1	1	1	1	1	1	1	1
2	2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1

Image patterns arising from Latin squares.

7×5 collage of image patterns arising from 35 Latin squares

Image patterns arising from Latin squares.

Fractal quasigroups
 Designing error detecting codes.

Non-fractal quasigroups

Designing cryptographic primitives.

Open problem: A comprehensive analysis of their fractal dimensions.

Image patterns arising from Latin squares.

There is an interesting relation with Latin square isomorphisms:

Lemma (F., Álvarez, Gudiel, 2019)

- Two isomorphic Latin squares L_{1} and L_{2} by means of isomorphism f
- A plaintext T
- A tuple of leader symbols S

Then, $\mathcal{P}_{S, T}\left(L_{1}\right)$ and $\mathcal{P}_{f(S), f(T)}\left(L_{2}\right)$ coincide up to permutation f of their symbols.

Main question: Can we use image patterns for distinguishing non-isomorphic Latin squares?

CONTENTS

© Preliminaries.
(2 Standard sets of image patterns.

- The mean fractal dimension.
- Some computations.

Standard sets of $r \times m$ image patterns.

- Four positive integers m, n, r and s such that $s \leq n$.
- A Latin square $L \in \mathcal{L} \mathcal{S}_{n}$.
- A plaintext $T=s \ldots s$ of length m.
- An $(r-1)$-tuple of leader symbols $S=(s, \ldots, s)$.
s-standard $r \times m$ image pattern: $\mathcal{P}_{r, m ; s}(L)=\mathcal{P}_{S, T}(L)$.
Standard sets of $r \times m$ image patterns of L :

$$
\left\{\mathcal{P}_{r, m ; s}(L): s \in\{1, \ldots, n\}\right\}
$$

$$
\begin{gathered}
n=4 \\
r=m=90
\end{gathered}
$$

1	2	3	4
2	1	4	3
4	3	1	2
3	4	2	1

Standard sets of $r \times m$ image patterns.

Proposition

The $r \times m$ standard sets of two isomorphic Latin squares coincide, up to permutation of colors.

1	2	3	4
2	1	4	3
4	3	1	2
3	4	2	1

3	1	4	2
4	3	2	1
1	2	3	4
2	4	1	3

Standard sets of $r \times m$ image patterns.

Standard sets of 90×90 image patterns arising from the
35 isomorphism classes of Latin squares of order 4 .

Standard sets of $r \times m$ image patterns.

\mathbf{i}	$\sharp \mathrm{cs}_{i}$	$\sharp \mathrm{fs}_{i}$	\mathbf{i}	$\sharp \mathrm{cs}_{\boldsymbol{i}}$	$\sharp \mathrm{fs}_{i}$	\mathbf{i}	$\sharp \mathrm{cs}_{\boldsymbol{i}}$	$\sharp \mathrm{fs}_{\boldsymbol{i}}$
1	1	3	13	1	0	25	0	0
2	1	3	14	2	1	26	0	0
3	1	0	15	2	2	27	0	0
4	1	1	16	1	0	28	0	4
5	1	3	17	3	0	29	0	0
6	1	3	18	2	2	30	0	0
7	1	3	19	1	1	31	0	4
8	1	3	20	1	0	32	0	4
9	1	3	21	1	3	33	0	4
10	1	0	22	2	2	34	1	3
11	2	0	23	1	3	35	1	3
12	2	1	24	4	0			

Number of constant and fractal 90×90 standard image patterns of the 35 isomorphism classes of Latin squares of order 4.

Standard sets of $r \times m$ image patterns.

i	$\sharp \mathrm{cs}_{\boldsymbol{i}}$	$\sharp \mathrm{fs}_{\boldsymbol{i}}$	i	$\sharp \mathrm{cs}_{\boldsymbol{i}}$	$\sharp \mathrm{fs}_{\boldsymbol{i}}$	i	$\sharp \mathrm{cs}_{\boldsymbol{i}}$	$\sharp \mathrm{fs}_{\boldsymbol{i}}$
1	1	3	13	1	0	25	0	0
2	1	3	14	2	1	26	0	0
3	1	0	15	2	2	27	0	0
4	1	1	16	1	0	28	0	4
5	1	3	17	3	0	29	0	0
6	1	3	18	2	2	30	0	0
7	1	3	19	1	1	31	0	4
8	1	3	20	1	0	32	0	4
9	1	3	21	1	3	33	0	4
10	1	0	22	2	2	34	1	3
11	2	0	23	1	3	35	1	3
12	2	1	24	4	0			

Number of constant and fractal 90×90 standard image patterns of the 35 isomorphism classes of Latin squares of order 4.

Standard sets of $r \times m$ image patterns.

1	2	4	3
2	3	1	4
4	1	3	2
3	4	2	1

1	2	3	4
2	1	4	3
4	3	2	1
3	4	1	2
L4,2			
1	2	4	3
2	1	3	4
3	4	2	1
4	3	1	2
$L_{4.7}$			

1	2	4	3
3	1	2	4
2	4	3	1
4	3	1	2
$L_{4.12}$			

$$
\Rightarrow
$$

1-standard image patterns

3-standard image patterns

2-standard image patterns

4-standard image patterns

Standard sets of 90×90 image patterns arising from the
35 isomorphism classes of Latin squares of order 4.

Standard sets of $r \times m$ image patterns.

Standard 3×3 image patterns of five distinct isomorphism classes
Can we find an efficient method for distinguishing standard sets?

CONTENTS

© Preliminaries.
c Standard sets of image patterns.

- The mean fractal dimension.
- Some computations.

Homogenized standard sets.

$\mathfrak{P}_{n}=\left\{c_{1}, \ldots, c_{n}\right\} \equiv$ Grayscale palette such that $\operatorname{Intensity}\left(c_{i}\right)=\frac{i}{n}$.
A standard set of image patterns of a Latin square of order n is said to be homogenized if the colors of \mathfrak{P}_{n} appear in natural order (according to their intensity) when the image pixels are read row by row then column by column.
$\mathcal{H}_{r, m}(L) \equiv$ Set of homogenized standard sets of $L \in \operatorname{LS}_{n}$.

1	2	3	4
2	1	4	3
4	3	1	2
3	4	2	1

Homogenized standard sets.

$\mathfrak{P}_{n}=\left\{c_{1}, \ldots, c_{n}\right\} \equiv$ Grayscale palette such that $\operatorname{Intensity}\left(c_{i}\right)=\frac{i}{n}$.
A standard set of image patterns of a Latin square of order n is said to be homogenized if the colors of \mathfrak{P}_{n} appear in natural order (according to their intensity) when the image pixels are read row by row then column by column.
$\mathcal{H}_{r, m}(L) \equiv$ Set of homogenized standard sets of $L \in \mathrm{LS}_{n}$.

1	2	3	4
2	1	4	3
4	3	1	2
3	4	2	1

1	2	4	3
2	1	3	4
3	4	1	2
4	3	2	1

1	2	3	4
3	1	4	2
4	3	2	1
2	4	1	3

Differential box-counting fractal dimension.

- $L \in L_{n}$.
- $\operatorname{Div}(r, m) \equiv$ Set of common divisors of r and m.
- For each $k \in \operatorname{Div}(r, m): I_{i, j, k}\left(\mathcal{P}_{r, m ; s}(L)\right) \equiv$ Range of gray-level intensities within the region of $\mathcal{P}_{r, m ; s}(L)$ that is bounded by the (i, j)-cell of the $\frac{r}{k} \times \frac{m}{k}$ grid formed by two-dimensional boxes of side length k.

$$
I_{k}\left(\mathcal{P}_{r, m ; s}(L)\right):=\sum_{(i, j) \in\left[\frac{r}{k}\right] \times\left[\frac{m}{k}\right]}\left(1+I_{i, j, k}\left(\mathcal{P}_{r, m ; s}(L)\right)\right) .
$$

Based on the differential box-counting method, we define the differential box-counting fractal dimension $D_{B}\left(\mathcal{P}_{r, m ; s}(L)\right)$ of $\mathcal{P}_{r, m ; s}(L)$ as the slope of the linear regression line of the set of points

$$
\left\{\left(\ln \left(I_{k}\left(\mathcal{P}_{r, m ; s}(L)\right)\right), \ln (1 / k)\right): k \in \operatorname{Div}(r, m)\right\}
$$

Mean fractal dimension.

The mean value of the n differential box-counting fractal dimensions, averaged over $\operatorname{Div}(r, m)$, is the mean fractal dimension $D_{B}\left(\mathcal{H}_{r, m}(L)\right)$.

Theorem

- $L_{1}, L_{2} \in L_{n}$.

If L_{1} and L_{2} are isomorphic, then $D_{B}\left(\mathcal{H}_{r, m}\left(L_{1}\right)\right)=D_{B}\left(\mathcal{H}_{r, m}\left(L_{2}\right)\right)$.

		12	3	4	1	1	4	3	1	2	3	
	2	21	4	3	2	1	3		3	1	4	
		43	1	2	3	4	1	2	4	3	2	
		34	2	1	4	3	2	1	2	4	1	
$D_{B}\left(\mathcal{P}_{90 ; 1}(L)\right)$	2.00000				2.00000				2.00000			
$D_{B}\left(\mathcal{P}_{90 ; 2}(L)\right)$	1.95165				1.95165				1.92136			
$D_{B}\left(\mathcal{P}_{90 ; 3}(L)\right)$	1.8877				1.88873				1.92331			
$D_{B}\left(\mathcal{P}_{90 ; 4}(L)\right)$	1.8877				1.88873				1.90088			
$D_{B}\left(\mathcal{H}_{90}(L)\right)$	1.9317625				1.9322775				1.9363875			

Mean fractal dimension.

The mean value of the differential box-counting fractal dimension, averaged over $\operatorname{Div}(r, m)$, is the mean fractal dimension $D_{B}\left(\mathcal{H}_{r, m}(L)\right)$.

Theorem

- $L_{1}, L_{2} \in L_{n}$.

If L_{1} and L_{2} are isomorphic, then $D_{B}\left(\mathcal{H}_{r, m}\left(L_{1}\right)\right)=D_{B}\left(\mathcal{H}_{r, m}\left(L_{2}\right)\right)$.

	1		$1{ }^{1} 2$	$4{ }^{4} 3$	1		4
	2	43	21	34	3	4	2
	+	12	3	12	43	2	
	3	21	4	2	2		3
$D_{B}\left(\mathcal{P}_{90}\right.$ [$\left.(L)\right)$	2.00000		2.00000		2.00000		
$D_{B}\left(\mathcal{P}_{90 ; 2}(L)\right)$	1.95165		1.95165		1.92136		
$D_{B}\left(\mathcal{P}_{90 ; 3}(L)\right)$	1.8877		1.88873		1.92331		
$D_{B}\left(\mathcal{P}_{90 ; 4}(L)\right)$	1.8877		1.88873		1.90088		
$D_{B}\left(\mathcal{H}_{90}(L)\right)$	1.9317625		1.9322775		1.9363875		

Mean fractal dimension.

Proposition

The mean fractal dimension of the homogenized standard set of image patterns based on idempotent Latin squares is 2 .

1	3	2	5	4
4	2	5	1	3
5	4	3	2	1
3	5	1	4	2
2	1	4	3	5

1	3	2	5	4
5	2	4	1	3
4	5	3	2	1
3	1	5	4	2
2	4	1	3	5

1	3	4	5	2
3	2	5	4	1
2	5	3	1	4
5	1	2	4	3
4	3	1	2	5

1	3	4	5	2
4	2	5	3	1
5	1	3	2	4
2	5	1	4	3
3	4	2	1	5

1	3	4	5	2
3	2	5	1	4
4	5	3	2	1
5	1	2	4	3
2	4	1	3	5

CONTENTS

© Preliminaries.
c Standard sets of image patterns.

- The mean fractal dimension.
- Some computations.

Some computations.

$$
n \in\{3,4\} \quad(r=m=90)
$$

n	i	$D_{B}(n, i)$									
3	1	1.9285267	4	30	1.9212575	4	35	1.9338325	4	23	1.9428575
	5	1.9335900		29	1.9213650		19	1.9357400		15	1.9472450
	2	1.9524867		27	1.9215325	21	1.9359200	12	1.9476600		
	3	1.9527467	25	1.9216950	4	1.9363875		22	1.9495350		
	4	2.0000000		7	1.9230125	5	1.9366250	18	1.9504400		
4	32	1.9072150		8	1.9274475	20	1.9411800	14	1.9511850		
	28	1.9099250		9	1.9285825	13	1.9411950	11	1.9606500		
	33	1.9137400		2	1.9296225	16	1.9413250	34	1.9637375		
	31	1.9139600		1	1.9317625	10	1.9413500	17	1.9807250		
	26	1.9210725		6	1.9322775	3	1.9413775	24	2.0000000		

Run time of each computation: <1 s in an Intel Core i7-8750H CPU (6 cores), with a 2.2 GHz processor and 8 GB of RAM.

Some computations.

$$
n=5 \quad(r=m=90)
$$

Run time of each computation: < 1 s in an Intel Core i7-8750H CPU (6 cores), with a 2.2 GHz processor and 8 GB of RAM.

Some computations.

$$
n=256 \quad(r=m=90)
$$

Mean fractal dimension ($r=m=90$): 1.88926
Run time: 81.63 s in an Intel Core i7-8750H CPU (6 cores), with a 2.2 GHz processor and 8 GB of RAM.

REFERENCES

- Dimitrova, V., Markovski, S. Classification of quasigroups by image patterns. In: Proceedings of the Fifth International Conference for Informatics and Information Technology, Bitola, Macedonia, 2007; 152-160.
- Falcón, R.M. Recognition and analysis of image patterns based on Latin squares by means of Computational Algebraic Geometry, Mathematics 9 (2021), paper 666, 26 pp.
- Falcón, R.M., Álvarez, V., Gudiel, F. A Computational Algebraic Geometry approach to analyze pseudo-random sequences based on Latin squares, Adv. Comput. Math. 45 (2019), 1769-1792.
- Hulpke2011 Hulpke, A., Kaski, P., Östergård, P.R.J. The number of Latin squares of order 11, Math. Comp. 80 (2011) no. 274, 1197-1219.
- McKay, B.D., Meynert, A., Myrvold, W. Small Latin Squares, Quasigroups and Loops. J. Combin. Des. 15 (2007), 98-119.
- Sarkar, N., Chaudhuri, B.B., An efficient differential box-counting approach to compute fractal dimension of image, IEEE Trans. Syst. Man Cybern. 24 (1994), 115-120.

Many thanks!

Characterizing isomorphism classes of Latin squares by fractal dimensions of image patterns

Raúl M. Falcón

Department of Applied Maths I.
Universidad de Sevilla.
rafalgan@us.es

Portorož, Slovenia. June 24, 2021.

