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Introduction
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e 01,0,...,0p vertices, wi, . ..,wy C R bounded open sets such

that (0,0,0) € wy.
e For me {1,..., M}, define the edge e, = [O;,,, Ox,,] of length In,.
@ R, displacements such that R,(0,0,0) = O;,,, Rm(/m,0,0) = Ok,
@ 01,...,01 C R? bounded open sets.
Assume that Q = UM_ R (10, In[xe0m) UUN_ (O, + cw,) is smooth for
small ¢ except at the ends of unconnected tubes.
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Navier-Stokes equations

u=0 on walls of tubes and junctions
u = gl&) on unconnected end of tube ¢;
divu=0 on Q
%—l—(u-V)u—yAu:% on Q
u(,,0)=0 on Q

Assumptions:

The graph scales as 1.
The width of the pipes scales as «.
The time scales as ¢
The norms in W2>2[2 WLOHL [©°H2 of the velocity at the
extremities of the network scale as 5"2;1, 5"2;3, 5"2;5.
Studied in:
@ Panasenko & Pileckas 2014, 2015, 2015
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Flow in an infinite thin tube Q = R x o (Pileckas 2006)
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Let us seek solution in the form u(x,y,z,t) = V(y, z,t)é and
p(x,y,z,t) = q(t)x + r(t).
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Problem in the tube cross-section

Pressure gradient - flux operator

Let 1) - L2(0,00) — H§ (0, 00)
N LDg=d=[ V= [ KO(t—7)g(r)dt

connecting the pressure gradient to the flux through the pipe, where:

U —vA,,U=0 ono
U(.,O):pl—0 ono
U:0 on do

= [ U(

Spesd profile at t—0.77344 Pressure drop Flux
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Problem on the graph

Flow in a web of thin tubes

O Oy
J} €2 €5
€ U7 €7
O3 o Osg Os
€3 €6
O Os

o B=UM_ e, =UM_ [0, O ]is a graph with Lebesgue measure.
o [2(B) = {u| [, |u]* < +o0} and
Y(B) = {f] [5IfI* + \(;[2 < 400, f(01) = 0} where -2 5% s the
0,0
directionnal derivative along ==—*= on |O; Ok, |-
e WV, : [0, T] — R be the flux of fIU|d at O, coming from outside €.
o f:Bx[0,T] — R be a forcing along the pipes.
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Problem on the graph

Flow in a net of tubes

Assumptions:
o Ve HL(0, T)V and f € H},(0, T, L2(B)). (The subscript 00 means
that W, f are zero at initial time)
The fluid in the net of tubes can be approximated by:

Vo(t)+ > (""’)D—>p(0n, t) =0 (Kirchoff condition)
[Onyoﬁ]:em Im

—%L("m)%p =f on en

p continuous on B

p(ol, t) =0

where D denotes the directionnal derivative along v and

(LEmg)(t) = fy KOm)(t —7)q(r)dt

KirchofF condltlon expresses that the sum of the fluxes arriving from tube
m at a junction n should be zero.
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Graph discretization

O1 Oy
e €5
o es Xl( €1 ) X2( €1 ) X3( €L ) er o
’ o7 =|x{) T og =|x{) ’
7 —|No 8 —| N4
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0, Os

o Take a subdivision of [0, T] of step k:
tt=0<ti<t<..<tg=T,ty=qgk Q=1L

.
e For ej € {e1,..., ey}, take a subdivision into 5(&) segments of step
. e; e; (ef) _
hlei) = sl(i,-‘)' Let us denote Xs( i) szej)sO,'j + @ij the nodes of

this subdivision for s € {0,1..., S(&)}.
o Let h= maxi <j<m (e,
Numerics for a fluid on a graph June 2021, Portoroz 9/26



Finite difference scheme

Let Ps(,eq) be an approximation of P(X(e)7 ty +

Wf(thrl):Z
1<j<M

Xs(ej): O € ¢,
ls—3 =1,0<35< s

NI x

). Consider:
—hle)

9 ﬂ) P@) 2<I<N
F( s 7tq+1 kZK (TJ) sq > if o 9
=0 0<gqg

—q

q P( &) 2P(el) + P(ej) 1<;j<M
(o7) s+1 g -1, . .
F(Xs atq+1 kz Ky (h ej))2 if {0<s< S
g=0 0<g<@
' =x®lo<qg<q,

—Ofﬂ@ 01,0<q<Q,
tg+1
whereK k/q KE(t)dt for0<g<Q,1<j< M.
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Accuracy of the kernel approximation

In order to measure the accuracy of the approximation of the discretized
kernel (Kég))q, let us introduce:

o) L [%
o(k):lsmi%,yKé ,)_% : K@D (t)dt|
Q-1 ¢
g g; 1 +1 . .
+ 31K »_K;_fg_k/t" KOD(t) — K@D (t — k)dt|
q=1 q

Notice that it is a kind of discrete W11 norm.
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Weak form

o Let p,9p € L2(0, T, H'(B)). Let us denote:

@)
a(p, 1) = /[ P(Lp) 09

O,T]XB BXOT aX

bw) = /[o TIxB 87 /

Then, the weak form for the continuous asymptotic problem is, find
p € L2(0, T, HY(B)) such that:

vy € L2(0, T,H'(B)), a(p, ) = b(¥)

n )

Lax-Milgram theorem can be used to prove the existence and unicity of a
solution.
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Discrete weak form (Galerkin method)

o Let P}(B) be a the subspace of H(B) of continuous functions which
are piecewise linear over the subdivision of 5.

o Let Vj, =P9(0, T,P}(B)) be the set of piecewise constant functions
over the subdivision of [0, T] with values in P}(B).

@ Let us take K(ga) = 0 when ¢ < 0. For p,9 € Vp, let us denote:

QR-1Q-1
; op ty + tg+1 c‘sz tg + tg+1
/kng% )8x( 2 )8x(’ 2 )

o Let Phk € Vh,k such that ph7k(Xs(ej)7 tq*#) = Ps(’eé)

Then pp, i is a solution to:
Vi) € Vag,  3(phks ) = b(v)

where b is a good approximation of b. Besides || — a|| < (k).
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Stability condition

A sufficient condition for existence and uniqueness for the discrete solution
is the continuity and coercivity of the discrete form, uniformly when

(h, k) — (0,0).

Let et be coercivity constant of a.

Here are two sufficient criterions:

o If (k) < u < aT, then 3 is aT — p-coercive.
o If there exists C,E, T, € R™ and (Kéa))qez such that:
e 0L K < Cifg>0,

o K7 —2k{ + K7, >0if g1,
(o) _ (o) 1 (0
o E< fan™ e e ip 7 < gk < 2T,

then, for k < min{Tn,, T}, s %—coercive, with C independent of
T,h k.
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Error estimate

According to Céa’s lemma:

C
IPak — Plli2(0, 7,11 (8)) < - wérc/f 1P =l 7,1 (8))
0(k
n (k)

ﬁ“P”Lz(O T,H1(B)) Tlb— b”]

If W, € H3,(0, T) and f € HZ,(0, T, H3.(B)), then:

C

ey UGB EL)

IPnk — Pllezo, 7,11 (8)) <

If we replace P by its interpolant of Py, and if P is C*:

C

m(e(k) + h? + K log(T/K))

IPak — Phllz,7,H1(8)) <
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Numerical results Numerical order

Test case

We built two test cases such that:
@ The kernel for the cross-section is known (disk).

@ One with a smooth pressure which vanishes and initial time and the
other one such that is nonzero at initial time.

o W, f(&) are smooth.
We used the scheme with:
(0) _ 1 [ta+1 pe(o)
o the exact kernel Kg™/ = ¢ ftq K@)(t)dt.
@ a numerical approximation obtained with finite P?-elements and BDF2
integrator in the cross-section

@ the same numerical approximation, corrected with an asympotic
expansion of K(?) for small times.

(See Eric Canon'’s talk for the details)
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Numerical results Numerical order

Numerical order
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Numerical results Numerical order

Numerical order

Numerical ap- | Corrected ap- | Exact
proximation proximation
h |2 2 2
B=0,P(-,0)#0 | kK | 0.5 ~ 1.4 3
B=1,P(-,0)=0| k | ~1.6 ~18 2
f=0,P(-0)#0 | H |1 ~ 1.6
B=1,P(-0)=0|H|~17 ~ 1.7
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Numerical results Comparison with Navier-Stokes

Test-case for the comparison with full Navier-Stokes
equation

Let Q° be the interior of
Ozl +cosf.3.00g {McR33i,0ce,OMLe,|OM| <c}.
Tez Let us take the following boundary conditions:
e p=0 and v(M,t) colinear to e; at the
beginning O; of e;.
o v(M,t) =
es —%Vg sin (672401“) (1 — 4572”02/\4”2) at
the beginning O of ;. The flux through
this tube is then $mvoe? sin (7240t);
o v(M,t) =
es 2|:—§|v0 sin (€7240¢) (1 — 4c72||OsM|?) at
i the beginning O3 of e3. The flux through
this tube is then Tvpe?sin (e7240t);
@ v = 0 on the rest of the boundary.
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Numerical results Comparison with Navier-Stokes

Comparison between Navier-Stokes and the asymptotic
model

Velocity magnitude

Arc-length

Comparison between the asymptotic model (dashed lines) and the
Navier-Stokes numerical solution (blue lines) for the multiply connected
geometry when T = 0.0875¢2, £ = 0.1. On the left, the pressure along
tubes. On the right, the velocity magnitude across the middle of the six
tubes with respect to the distance to the axis of the tube.
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Numerical results Comparison with Navier-Stokes

Comparison between the 3D Navier-Stokes numerical
solution and the asymptotic model. T = 0.875¢2.

pc, P is the pressure on the graph for the NS numerical solution on the
graph and for the asymptotic model.

g° is the orthogonal projection of p® on functions affine on each edge.
@2, ®; is the flux accross the j-th tube according to Navier-Stokes
numerical solution and the asymptotic model,

£ 0.2 0.1 0.05 0.025
1P=p"l20, 711125 0.144626 0.103521 0.080028 0.062730

1P=llL2(0. .11 ()
Pis
” f'““”‘(m) 0.036639 0.021016 0.031650 0.028022
19°1l 20, 7. 111.23))

0.035878 0.030196 0.056603 0.053661

.....

Remark: The Navier-Stokes simulation accuracy decreases when ¢ — 0
because we were limited by computationnal cost.
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Numerical results Comparison with Navier-Stokes

Two-dimensionnal case

4
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Numerical results Comparison with Navier-Stokes

Comparison between the 2D Navier-Stokes and the
asymptotic model

10
//*/*
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10 F — 4
L2H‘rerrcr onp €
L2H'rerror onq ¢
. ) ) L-error on fluxes
10
10° 102 10" 10°
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Numerical results Comparison with Navier-Stokes

Conclusion

We got:
o Fast approximation of the asymptotic model.
e Good agreement with full Navier-Stokes equations.

Next talk by Eric Canon: Accurate approximation of the kernel K.

Thank you for your attention!
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Numerical results Comparison with Navier-Stokes
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Numerical results Comparison with Navier-Stokes

Asymptotic analysis of the non-steady Navier-Stokes equations in a
tube structure. |. The case without boundary-layer-in-time.
Nonlinear Anal., 122:125-168, 2015.

[§ Grigory Panasenko and Konstantin Pileckas.
Asymptotic analysis of the non-steady Navier-Stokes equations in a
tube structure. 1. General case.
Nonlinear Anal., 125:582-607, 2015.

[§ Grigory Panasenko and Konstantin Pileckas.
Divergence equation in thin-tube structures.
Appl. Anal., 94(7):1450-1459, 2015.

[] M Umar Qureshi, Gareth DA Vaughan, Christopher Sainsbury, Martin
Johnson, Charles S Peskin, Mette S Olufsen, and NA Hill.
Numerical simulation of blood flow and pressure drop in the pulmonary
arterial and venous circulation.
Biomechanics and modeling in mechanobiology, 13(5):1137-1154,
2014.

[4 Vidar Thomée.
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Numerical results Comparison with Navier-Stokes

Galerkin finite element methods for parabolic problems, volume 25 of
Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, second edition, 2006. x
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Numerical results Comparison with Navier-Stokes

Test case

We consider the case of a single tube (M = 1) of length 1 with two
extremities O; = (0,0), 0, = (0,1) (N = N = 2). Let the cross-section of
the tube be 0 = {x € R?; ||x|» < 1, }.

Let us take P((ﬁ,x3(e)), t) = p(x:.ge)7 t) = exp ((1 - t)x3(e) — %) where
B €{0,1}. When 8 =1, P and all its time derivatives are zero when
t— 0.

Then, the flow at the left extremity O; of the pipe is given by:

Wy (t) = —/Ot K@ (s)(1 = (t—s))exp (-t f S) ds.

At the right extremity O, of the pipe, it is given by:

Wo(t) = — /Ot K@ (s)(1— (¢t — 5)) exp (1 - tﬁ) ds.

The force applied along the pipe is:
F((0,9), £) = — [T KO)(s)(1—(t—s))? 1-(t—s)® = L) d
((0,x37),t) = = Jo K'(s)(1—(t=s))?exp ((1 = (t = 5))x3" — = ) ds
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