Numerical scheme for an equation on a graph for a flow

 in a tube structureÉ.Canon ${ }^{a}$, F.Chardard ${ }^{a}$, G.Panasenko ${ }^{a}$, O.Stikoniene ${ }^{b}$

$8^{\text {th }}$ European Congress of Mathematics, June 2021, Portoroz
${ }^{\text {a }}$ Institute Camille Jordan UMR CNRS 5208 and SFR MODMAD FED 4169, Univ. Lyon, UJM, F-42023, Saint-Étienne, France
${ }^{b}$ Faculty of Mathematics and Informatics, Vilnius University, Lithuania

Fluid in a network of thin tubes

- $O_{1}, O_{2}, \ldots, O_{N}$ vertices, $\omega_{1}, \ldots, \omega_{N} \subset \mathbb{R}^{3}$ bounded open sets such that $(0,0,0) \in \omega_{n}$.
- For $m \in\{1, \ldots, M\}$, define the edge $e_{m}=\left[O_{i_{m}}, O_{k_{m}}\right]$ of length I_{m}.
- \mathcal{R}_{m} displacements such that $\mathcal{R}_{m}(0,0,0)=O_{i_{m}}, \mathcal{R}_{m}\left(I_{m}, 0,0\right)=O_{k_{m}}$.
- $\sigma_{1}, \ldots, \sigma_{M} \subset \mathbb{R}^{2}$ bounded open sets.

Assume that $\Omega=\cup_{m=1}^{M} \mathcal{R}_{m}(] 0, I_{m}\left[\times \varepsilon \sigma_{m}\right) \cup \cup_{n=1}^{N}\left(O_{n}+\varepsilon \omega_{n}\right)$ is smooth for small ε except at the ends of unconnected tubes.

Navier-Stokes equations

$$
\begin{cases}u=0 & \text { on walls of tubes and junctions } \\ u=g^{\left(e_{i}\right)} & \text { on unconnected end of tube } e_{i} \tag{1}\\ \operatorname{div} u=0 & \text { on } \Omega \\ \frac{\partial u}{\partial t}+(u \cdot \nabla) u-\nu \Delta u=\frac{f-\nabla p}{\rho_{0}} & \text { on } \Omega \\ u(., 0)=0 & \text { on } \Omega\end{cases}
$$

Assumptions:

- The graph scales as 1 .
- The width of the pipes scales as ε.
- The time scales as ε
- The norms in $W^{2, \infty} L^{2}, W^{1, \infty} H^{1}, L^{\infty} H^{2}$ of the velocity at the extremities of the network scale as $\varepsilon^{\frac{n-1}{2}}, \varepsilon^{\frac{n-3}{2}}, \varepsilon^{\frac{n-5}{2}}$.
Studied in:
- Panasenko \& Pileckas 2014, 2015, 2015

Flow in an infinite thin tube $\Omega=\mathbb{R} \times \sigma$ (Pileckas 2006)

Let us seek solution in the form $u(x, y, z, t)=V(y, z, t) \vec{e}_{x}$ and $p(x, y, z, t)=q(t) x+r(t)$.

Pressure gradient - flux operator

$$
\text { Let } L^{(\sigma)}:\left\{\begin{array}{l}
L^{2}(0, \infty) \rightarrow H_{0}^{1}(0, \infty) \\
L^{(\sigma)} q=\Phi=\int_{\sigma} V=\int_{0}^{t} K^{(\sigma)}(t-\tau) q(\tau) \mathrm{d} t \quad \text { be the operator }
\end{array}\right.
$$ connecting the pressure gradient to the flux through the pipe, where:

$$
\begin{cases}\frac{\partial U}{\partial t}-\nu \Delta_{y, z} U=0 & \text { on } \sigma \\ U(., 0)=\frac{1}{\rho_{0}} & \text { on } \sigma \\ U=0 & \text { on } \partial \sigma \\ K(t)=\int_{\sigma} U(., t) & \end{cases}
$$

Flow in a web of thin tubes

- $\mathcal{B}=\cup_{m=1}^{M} e_{m}=\cup_{m=1}^{M}\left[O_{i_{m}} O_{k_{m}}\right]$ is a graph with Lebesgue measure.
- $L^{2}(\mathcal{B})=\left\{\left.u\left|\int_{\mathcal{B}}\right| u\right|^{2}<+\infty\right\}$ and $H^{1}(\mathcal{B})=\left\{\left.f\left|\int_{\mathcal{B}}\right| f\right|^{2}+\left|\frac{\partial f}{\partial x}\right|^{2}<+\infty, f\left(O_{1}\right)=0\right\}$ where $\frac{\partial}{\partial x}$ is the directionnal derivative along $\frac{\overrightarrow{O_{i m} O_{k_{m}}}}{I_{m}}$ on $] O_{i_{m}} O_{k_{m}}[$.
- $\Psi_{n}:[0, T] \rightarrow \mathbb{R}$ be the flux of fluid at O_{n} coming from outside Ω.
- $f: \mathcal{B} \times[0, T] \rightarrow \mathbb{R}$ be a forcing along the pipes.

Flow in a net of tubes

Assumptions:

- $\Psi \in H_{00}^{1}(0, T)^{N}$ and $f \in H_{00}^{1}\left(0, T, L^{2}(\mathcal{B})\right)$. (The subscript 00 means that Ψ, f are zero at initial time)
- $\int_{\mathcal{B}} f+\sum_{l=1}^{N} \Psi_{l}=0$

The fluid in the net of tubes can be approximated by:

$$
\left\{\begin{array}{l}
\Psi_{n}(t)+\sum_{\left[O_{n}, O_{\tilde{n}}\right]=e_{m}} L^{\left(\sigma_{m}\right)} D_{\frac{O_{n} O_{\dot{n}}}{I_{m}}} p\left(O_{n}, t\right)=0 \quad \text { (Kirchoff condition) } \\
-\frac{\partial}{\partial x} L^{\left(\sigma_{m}\right)} \frac{\partial}{\partial x} p=f \text { on } e_{m} \\
p \text { continuous on } \mathcal{B} \\
p\left(O_{1}, t\right)=0
\end{array}\right.
$$

where $D_{\vec{v}}$ denotes the directionnal derivative along \vec{v} and $\left(L^{\left(\sigma_{m}\right)} q\right)(t)=\int_{0}^{t} K^{\left(\sigma_{m}\right)}(t-\tau) q(\tau) \mathrm{d} t$.
Kirchoff condition expresses that the sum of the fluxes arriving from tube m at a junction n should be zero.

Graph discretization

- Take a subdivision of $[0, T]$ of step k :

$$
t_{0}=0<t_{1}<t_{2}<\ldots<t_{Q}=T, t_{q}=q k, Q=\frac{T}{n} .
$$

- For $e_{j} \in\left\{e_{1}, \ldots, e_{M}\right\}$, take a subdivision into $S^{\left(e_{j}\right)}$ segments of step $h^{\left(e_{j}\right)}=\frac{\left|e_{j}\right|}{S^{\left(e_{j}\right)}}$. Let us denote $X_{s}^{\left(e_{j}\right)}=\frac{S^{\left(e_{j}\right)}-s}{S^{\left(e_{j}\right)}} O_{i_{j}}+\frac{s}{S^{\left(e_{j}\right)}} O_{k_{j}}$ the nodes of this subdivision for $s \in\left\{0,1 \ldots, S^{\left(e_{j}\right)}\right\}$.
- Let $h=\max _{1 \leq j \leq M} h^{\left(e_{j}\right)}$.

Finite difference scheme

Let $P_{s, q}^{(e)}$ be an approximation of $P\left(X_{s}^{(e)}, t_{q}+\frac{k}{2}\right)$. Consider:

$$
\Psi_{\ell}\left(t_{q+1}\right)=\sum_{\substack{1 \leq j \leq M \\
(\rho \cdot)}}\left[\frac{-h^{\left(e_{j}\right)}}{2} F\left(X_{s}^{\left(e_{j}\right)} t_{q+1}\right)-k \sum_{\tilde{q}=0}^{q} K_{q-\tilde{q}}^{\left(\sigma_{j}\right)} \frac{P_{\tilde{s}, \tilde{q}}^{\left(e_{j}\right)}-P_{s, \tilde{q}}^{\left(e_{j}\right)}}{h^{\left(e_{j}\right)}}\right] \text { if }\left\{\begin{array}{l}
2 \leq \ell \leq N \\
0 \leq q<Q
\end{array},\right.
$$

$$
x_{s}^{\left(e_{j}\right)}=O_{\ell} \in e_{j},
$$

$$
|s-\tilde{s}|=1,0 \leq \tilde{s} \leq S^{\left(\boldsymbol{e}_{\boldsymbol{j}}\right)}
$$

$$
F\left(X_{s}^{\left(e_{j}\right)} t_{q+1}\right)=-k \sum_{\tilde{q}=0}^{q} K_{q-\tilde{q}}^{\left(\sigma_{j}\right)} \frac{P_{s+1, \tilde{q}}^{\left(e_{j}\right)}-2 P_{s, \tilde{q}}^{\left(e_{j}\right)}+P_{s-1, \tilde{q}}^{\left(e_{j}\right)}}{\left(h^{\left(e_{j}\right)}\right)^{2}} \text { if }\left\{\begin{array}{l}
1 \leq j \leq M \\
0<s<S^{\left(e_{j}\right)} \\
0 \leq q<Q
\end{array}\right.
$$

$$
P_{s, q}^{(e)}=P_{\tilde{5}, q}^{(\tilde{e})} \text { if } X_{s}^{(e)}=X_{\tilde{s}}^{(\tilde{e})}, 0 \leq q \leq Q,
$$

$$
P_{0, q}^{(e)}=0 \text { if } X_{0}^{(e)}=O_{1}, 0 \leq q \leq Q \text {, }
$$

where $K_{q}^{\left(\sigma_{j}\right)} \simeq \frac{1}{k} \int_{t_{q}}^{t_{q+1}} K^{\left(\sigma_{j}\right)}(t) \mathrm{d} t$ for $0 \leq q \leq Q, 1 \leq j \leq M$.

Accuracy of the kernel approximation

In order to measure the accuracy of the approximation of the discretized kernel $\left(K_{q}^{(\sigma)}\right)_{q}$, let us introduce:

$$
\begin{array}{r}
\theta(k)=\max _{1 \leq j \leq M}\left|K_{0}^{\left(\sigma_{j}\right)}-\frac{1}{k} \int_{0}^{k} K^{\left(\sigma_{j}\right)}(t) \mathrm{d} t\right| \\
+\sum_{q=1}^{Q-1}\left|K_{q}^{\left(\sigma_{j}\right)}-K_{q-1}^{\left(\sigma_{j}\right)}-\frac{1}{k} \int_{t_{q}}^{t_{q+1}} K^{\left(\sigma_{j}\right)}(t)-K^{\left(\sigma_{j}\right)}(t-k) \mathrm{d} t\right|
\end{array}
$$

Notice that it is a kind of discrete $W^{1,1}$ norm.

Weak form

- Let $p, \psi \in L^{2}\left(0, T, H^{1}(\mathcal{B})\right)$. Let us denote:

$$
\begin{gathered}
a(p, \psi)=\int_{[0, T] \times \mathcal{B}} \frac{\partial^{2}\left(L^{(\bar{\sigma})} p\right)}{\partial x \partial \tau} \frac{\partial \psi}{\partial x} \\
b(\psi)=\int_{[0, T] \times \mathcal{B}} \frac{\partial f}{\partial \tau} \psi+\int_{0}^{T} \sum_{n=1}^{N} \frac{\partial \Psi_{n}}{\partial \tau} \psi\left(O_{n}, .\right)
\end{gathered}
$$

Then, the weak form for the continuous asymptotic problem is, find $p \in L^{2}\left(0, T, H^{1}(\mathcal{B})\right)$ such that:

$$
\forall \psi \in L^{2}\left(0, T, H^{1}(\mathcal{B})\right), \quad a(p, \psi)=b(\psi)
$$

Lax-Milgram theorem can be used to prove the existence and unicity of a solution.

Discrete weak form (Galerkin method)

- Let $\mathbb{P}_{h}^{1}(\mathcal{B})$ be a the subspace of $H^{1}(\mathcal{B})$ of continuous functions which are piecewise linear over the subdivision of \mathcal{B}.
- Let $V_{h, k}=\mathbb{P}_{k}^{0}\left(0, T, \mathbb{P}_{h}^{1}(\mathcal{B})\right)$ be the set of piecewise constant functions over the subdivision of $[0, T]$ with values in $\mathbb{P}_{h}^{1}(\mathcal{B})$.
- Let us take $K_{q}^{(\sigma)}=0$ when $q<0$. For $p, \psi \in V_{h, k}$, let us denote:

$$
\tilde{a}(p, \psi)=\int_{\mathcal{B}} k \sum_{q=0}^{Q-1} \sum_{\tilde{q}=0}^{Q-1}\left(K_{q-\tilde{q}}-K_{q-\tilde{q}-1}\right) \frac{\partial p}{\partial x}\left(\cdot, \frac{t_{\tilde{q}}+t_{\tilde{q}+1}}{2}\right) \frac{\partial \psi}{\partial x}\left(\cdot, \frac{t_{q}+t_{q+1}}{2}\right)
$$

- Let $p_{h, k} \in \mathbb{V}_{h, k}$ such that $p_{h, k}\left(X_{s}^{\left(e_{j}\right)}, \frac{t_{q}+t_{q+1}}{2}\right)=P_{s, q}^{\left(e_{j}\right)}$.

Then $p_{h, k}$ is a solution to:

$$
\forall \psi \in V_{h, k}, \quad \tilde{a}\left(p_{h, k}, \psi\right)=\tilde{b}(\psi)
$$

where \tilde{b} is a good approximation of b. Besides $\|\tilde{a}-a\| \leq \theta(k)$.

Stability condition

A sufficient condition for existence and uniqueness for the discrete solution is the continuity and coercivity of the discrete form, uniformly when $(h, k) \rightarrow(0,0)$.
Let α_{T} be coercivity constant of a. Here are two sufficient criterions:

- If $\theta(k)<\mu<\alpha_{T}$, then \tilde{a} is $\alpha_{T}-\mu$-coercive.
- If there exists $C, E, T_{m} \in \mathbb{R}^{+*}$ and $\left(K_{q}^{(\sigma)}\right)_{q \in \mathbb{Z}}$ such that:
- $0 \leq K_{q}^{(\sigma)} \leq C$ if $q \geq 0$,
- $K_{q+1}^{(\sigma)}-2 K_{q}^{(\sigma)}+K_{q-1}^{(\sigma)} \geq 0$ if $q \geq 1$,
- $E \leq \frac{K_{q+1}^{(\sigma)}-2 K_{q}^{(\sigma)}+K_{q-1}^{(\sigma)}}{k^{2}}$ if $T_{m} \leq q k \leq 2 T_{m}$.
then, for $k<\min \left\{T_{m}, T\right\}$, \tilde{a} is $\frac{\tilde{C}}{T^{2}}$-coercive, with \tilde{C} independent of T, h, k.

Error estimate

According to Céa's lemma:

$$
\begin{aligned}
\left\|p_{h, k}-P\right\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)} \leq \frac{C}{\alpha_{T}} & {\left[\inf _{\psi \in V_{h, k}}\|P-\psi\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)}\right.} \\
& \left.+\frac{\theta(k)}{\alpha_{T}-\theta(k)}\|P\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)}+\|b-\tilde{b}\|\right]
\end{aligned}
$$

If $\Psi_{I} \in H_{00}^{2}(0, T)$ and $f \in H_{00}^{2}\left(0, T, H_{d c}^{2}(\mathcal{B})\right)$, then:

$$
\left\|p_{h, k}-P\right\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)} \leq \frac{C}{\alpha_{T}-\theta(k)}(\theta(k)+h+k)
$$

If we replace P by its interpolant of $P_{h, k}$, and if P is C^{4} :

$$
\left\|p_{h, k}-P_{h, k}\right\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)} \leq \frac{C}{\alpha_{T}-\theta(k)}\left(\theta(k)+h^{2}+k^{2} \log (T / K)\right)
$$

Test case

We built two test cases such that:

- The kernel for the cross-section is known (disk).
- One with a smooth pressure which vanishes and initial time and the other one such that is nonzero at initial time.
- $\Psi_{\ell}, f^{\left(e_{i}\right)}$ are smooth.

We used the scheme with:

- the exact kernel $K_{q}^{(\sigma)}=\frac{1}{k} \int_{t_{q}}^{t_{q+1}} K^{(\sigma)}(t) \mathrm{d} t$.
- a numerical approximation obtained with finite \mathbb{P}^{2}-elements and BDF2 integrator in the cross-section
- the same numerical approximation, corrected with an asympotic expansion of $K^{(\sigma)}$ for small times.
(See Éric Canon's talk for the details)

Numerical order

$P(\cdot, 0) \neq 0$

$$
P(\cdot, 0)=0
$$

ℓ^{∞}-error on $\frac{\partial P}{\partial x^{(e)}}$ curves. On each graph, only one parameter varies, the two others are set by default to $h=2^{-10}, k=0.1 \cdot 2^{-14}, H=\pi 2^{-10}$.

Numerical order

		Numerical ap- proximation	Corrected ap- proximation	Exact
	h	2	2	2
$\beta=0, P(\cdot, 0) \neq 0$	k	0.5	~ 1.4	$\frac{3}{2}$
$\beta=1, P(\cdot, 0)=0$	k	~ 1.6	~ 1.8	2
$\beta=0, P(\cdot, 0) \neq 0$	H	1	~ 1.6	
$\beta=1, P(\cdot, 0)=0$	H	~ 1.7	~ 1.7	

Test-case for the comparison with full Navier-Stokes

 equationLet Ω^{ε} be the interior of
$O_{2}\left(1+\cos \frac{\pi}{4}, \frac{3}{2}, 0\right) \bullet\left\{\begin{array}{l}\left\{M \in \mathbb{R}^{3} \mid \exists i, O \in e_{i}, O M \perp e_{i},\|O M\|<\varepsilon\right\} . \\ e_{2} \text { Let us take the following boundary conditions: }\end{array}\right.$

$$
O_{3}\left(1+\cos \frac{\pi}{4},-\frac{3}{2}, 0\right)
$$

- $p=0$ and $v(M, t)$ colinear to e_{1} at the beginning O_{1} of e_{1}.
- $v(M, t)=$ $-\frac{e_{2}}{\left|e_{2}\right|} v_{0} \sin \left(\varepsilon^{-2} 40 t\right)\left(1-4 \varepsilon^{-2}\left\|O_{2} M\right\|^{2}\right)$ at the beginning O_{2} of e_{2}. The flux through this tube is then $\frac{1}{8} \pi v_{0} \varepsilon^{2} \sin \left(\varepsilon^{-2} 40 t\right)$;
- $v(M, t)=$
$2 \frac{e_{3}}{\left|e_{3}\right|} v_{0} \sin \left(\varepsilon^{-2} 40 t\right)\left(1-4 \varepsilon^{-2}\left\|O_{3} M\right\|^{2}\right)$ at the beginning O_{3} of e_{3}. The flux through this tube is then $\frac{\pi}{4} v_{0} \varepsilon^{2} \sin \left(\varepsilon^{-2} 40 t\right)$;
- $v=0$ on the rest of the boundary.

Pressure

Velocity magnitude

Comparison between Navier-Stokes and the asymptotic model

Comparison between the asymptotic model (dashed lines) and the Navier-Stokes numerical solution (blue lines) for the multiply connected geometry when $T=0.0875 \varepsilon^{2}, \varepsilon=0.1$. On the left, the pressure along tubes. On the right, the velocity magnitude across the middle of the six tubes with respect to the distance to the axis of the tube.

Comparison between the 3D Navier-Stokes numerical solution and the asymptotic model. $T=0.875 \varepsilon^{2}$.

p^{ϵ}, P is the pressure on the graph for the NS numerical solution on the graph and for the asymptotic model.
q^{ε} is the orthogonal projection of p^{ε} on functions affine on each edge. $\Phi_{j}^{\varepsilon}, \Phi_{j}$ is the flux accross the j-th tube according to Navier-Stokes numerical solution and the asymptotic model,

ε	0.2	0.1	0.05	0.025				
$\frac{\left\\|P-p^{\varepsilon}\right\\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)}}{\left\\|p^{\varepsilon}\right\\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)}} 0.144626$	0.103521	0.080028	0.062730					
$\frac{\left\\|P-q^{\varepsilon}\right\\|_{L^{2}}\left(0, T, H^{1}(\mathcal{B})\right)}{\left\\|q^{\varepsilon}\right\\|_{L^{2}\left(0, T, H^{1}(\mathcal{B})\right)}} 0.036639$	0.021016	0.031650	0.028022					
$\frac{\left\\|\left(\Phi_{j}-\Phi_{j}^{\varepsilon}\right)^{\prime}\right\\|_{L^{2}(\{1, \ldots, M\} \times[0, T])}}{\left\\|\left(\Phi_{j}^{\varepsilon}\right)_{j}\right\\|_{L^{2}(\{1, \ldots, M\} \times[0, T])}}$	0.035878	0.030196	0.056603	0.053661				

Remark: The Navier-Stokes simulation accuracy decreases when $\varepsilon \rightarrow 0$ because we were limited by computationnal cost.

Two-dimensionnal case

$$
\varepsilon=0.1
$$

Comparison between the 2D Navier-Stokes and the asymptotic model

Conclusion

We got:

- Fast approximation of the asymptotic model.
- Good agreement with full Navier-Stokes equations.

Next talk by Éric Canon: Accurate approximation of the kernel K.

Thank you for your attention!

Frédéric Chardard, Éric Canon, Grigori Panasenko, Olga Stikoniene. Numerical solution of the viscous flows in a network of thin tubes: Equations on the graph. Journal of Computational Physics, 435(15):110262, 2021.

Rung-Min Gie, Chang-Yeol Jung, and Roger Temam.
Recent progresses in boundary layer theory. Discrete Contin. Dyn. Syst., 36(5):2521-2583, 2016.

R Mette S Olufsen, Charles S Peskin, Won Yong Kim, Erik M Pedersen, Ali Nadim, and Jesper Larsen.
Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions.
Annals of biomedical engineering, 28(11):1281-1299, 2000.
Grigory Panasenko and Konstantin Pileckas.
Flows in a tube structure: equation on the graph.
J. Math. Phys., 55(8):081505, 11, 2014.

Grigory Panasenko and Konstantin Pileckas.

Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without boundary-layer-in-time.

Nonlinear Anal., 122:125-168, 2015.

Grigory Panasenko and Konstantin Pileckas.
Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case.
Nonlinear Anal., 125:582-607, 2015.
Grigory Panasenko and Konstantin Pileckas.
Divergence equation in thin-tube structures.
Appl. Anal., 94(7):1450-1459, 2015.
(1) M Umar Qureshi, Gareth DA Vaughan, Christopher Sainsbury, Martin Johnson, Charles S Peskin, Mette S Olufsen, and NA Hill.
Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation.
Biomechanics and modeling in mechanobiology, 13(5):1137-1154, 2014.

围 Vidar Thomée.

Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006. x

Test case

We consider the case of a single tube $(M=1)$ of length 1 with two extremities $O_{1}=(\hat{0}, 0), O_{2}=(\hat{0}, 1)\left(N_{1}=N=2\right)$. Let the cross-section of the tube be $\sigma=\left\{x \in \mathbb{R}^{2} ;\|x\|_{2}<1,\right\}$.
Let us take $P\left(\left(\hat{0}, x_{3}^{(e)}\right), t\right)=p\left(x_{3}^{(e)}, t\right)=\exp \left((1-t) x_{3}^{(e)}-\frac{\beta}{t}\right)$ where $\beta \in\{0,1\}$. When $\beta=1, P$ and all its time derivatives are zero when $t \rightarrow 0$.
Then, the flow at the left extremity O_{1} of the pipe is given by:

$$
\Psi_{1}(t)=-\int_{0}^{t} K^{(\sigma)}(s)(1-(t-s)) \exp \left(-\frac{\beta}{t-s}\right) \mathrm{d} s
$$

At the right extremity O_{2} of the pipe, it is given by:

$$
\Psi_{2}(t)=-\int_{0}^{t} K^{(\sigma)}(s)(1-(t-s)) \exp \left(1-\frac{\beta}{t-s}\right) \mathrm{d} s
$$

The force applied along the pipe is:
$F\left(\left(\hat{0}, x_{3}^{(e)}\right), t\right)=-\int_{0}^{t} K^{(\sigma)}(s)(1-(t-s))^{2} \exp \left((1-(t-s)) x_{3}^{(e)}-\frac{\beta}{t-\underline{s}}\right) d s$

