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Outline

@ A brief introduction to Mean Field Games
@ Definition of networks
@ A MFG problem on networks with control on the velocity

e Work in progress: control on the acceleration (with/without
constraint on the control)
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A brief introduction to Mean Field Games

The Mean Field Games (MFG) theory was proposed by Lasry-Lions, and
independently by Huang-Malhamé-Caines, in 2006 for modelization of
interactions among a very large (“infinite” ) number of agents when
individual actions are related to mass behaviour and vice versa.

Applications: financial markets, fashion trends, pedestrian or vehicular
traffic...
Distinctive features of the model:

@ The agents are influenced only by the average behaviour of all other
players (in analogy with Statistical Mechanics).

@ The agents are rational: they choose a strategy so to minimize a cost.
@ The agents are indistinguishable.

@ The agents are individually neglectable: a single agent by itself cannot
influence the collective behaviour.

v
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Model example J

Consider a game with N players. The i-th player’'s dynamics is
dX! = alds + VovdW!, — X! =x¢eR"

where v >0, W' are independent Brownian motions, while o' is the
control chosen so to minimize the cost functional
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The Nash equilibria are characterized by a system of 2N equations.
Nevertheless, as N — 400, this system reduces to the following one:
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MFG system

—0wu — vAu+ 3|Vul? + 4(t,x) = Flm(t)](x) (t,x) € (0, T) x R"
drm —vAm+div(mVu) =0 (t,x) €(0, T) xR"
u(T,x) = G[m(T)](x) x €R”
m(0, x) = mo(x) x eR"

where myq is the initial distribution of players: mg > 0, fR,, modx = 1.
@ The first equation is a backward-in-time Hamilton-Jacobi(-Bellman)
equation describing the expected value for a generic player.

@ The second equation is a forward-in-time Fokker-Planck/continuity
equation describing the density m of the players.

@ Three couplings occur between the equations.
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Variants / other applications J

@ the costs F and G may depend on m in a local/nonlocal way;

@ infinite horizon problem;

@ dominant single player versus a population of small players;

@ several populations of identical agents;

@ cost depending on the velocity of other players and not on their
positions;

@ penalization of mass concentration;

e all players follow the same feedback law (Mean Field Type Control);

@ the generic agent controls its acceleration (and v = 0);

@ the agents’ positions are constrained in a closed subset of R”.
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First order case, i.e. v =0

(HJ) —0wu+ %|Vul? +£(t,x) = FIm(t)](x) (t.x) € (0, T) x R"

(C) O¢m—+div(mVu)=0 (t,x) € (0, T) x R"
u(T,x) = G[m(T)](x) x € R”
m(0, x) = mg(x) x € R”
Definition
(u, m) € WE([0, T] x R") x C([0, T]; P1(R")) is a solution if:

-) (HJ)-equation is satisfied by v in the viscosity sense
-) (C)-equation is satisfied by m in the sense of distributions.
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Theorem (Cardaliaguet - PL Lions)
@ The MFG system has a solution (u, m);
Q@ m(x,s) = ®(x,0,s)#mo(x), where ® is the flow of the dynamics

(1) x'(s) = —=Vu(x(s), s), x(0) = x.

Ingredients of the proof

i) for a.e. x, optimal trajectories may bifurcate only at initial time;
) the optimal controls are bounded uniformly w.r.t. x;
i) the value function is Lipschitz continuous and semiconcave;

)

for a.e. x, system (1) describes the (unique) optimal trajectory of the
optimal control problem;

v) Schauder fixed point theorem.
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Literature for 1% order MFG

@ MFG on Euclidean spaces
> classical approach

* P.L. Lions' lectures at Collége de France 2012 - Cardaliaguet “Notes on

Mean Field Games”,
* Cardaliaguet, DGA 2013
*  Gomes-Pimentel-Voskanyan, SpringerBrief 2016
» Lagrangian approach
* Benamou-Carlier-Santambrogio, Springer 2016
* Cannarsa-Capuani, Springer-Indam 28, 2018
* Mazanti-Santambrogio, M3AS 2019
@ MFG on discrete sets
» Gomes-Mohr-Souza, JMPA 2010
» Gomes-Mohr-Souza, AMO 2013
» Guéant, AMO 2015
e MFG on networks (all for 2" order case)
» Camilli-M. , SIAM JCO 2016
» Achdou-Dao-Ley-Tchou, NHM 2019
» Achdou-Dao-Ley-Tchou, CVPDE 2020

C. Marchi (Univ. of Padova) 15% order MFGs on networks Portoro?, June 24““, 2021

9/19



Network

A network is a connected, embedded in R”, set A/ and it is formed by a

set of vertices V' := {v;};c; and a set of regular edges E := {¢;};c,. We
assume that the network is compact and without boundary.

(a) An example of network
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Notations J

e /nci:={j e J: gincident tov; € V}.

@ Any edge ¢; is parametrized by a smooth function =; : [0, /;]] — R".
For a function u : N' — R we denote by v; : [0, /] = R its restriction
to e, i.e. u(x) =uj(y) forx € e, y = 7TJ-_1(X).

@ The derivative is considered w.r.t. the parametrization.

@ In v; € V, the oriented derivative of u is

Biu(v;) = { Iimh_>0+[uj(h) — uj(O)]/h, if v = 7Tj(0)
julvi) - |imh40+[uj(/j —h)— ’~{i(/j)]/h7 if v = Wj(/j)

and D u(v;) = (3jU(Vi))jelnc,--
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MFG on networks

Dynamics of a generic player

The state of a generic player is constrained in the network and, when it is
inside an edge ¢;, it obeys to

X'(t) = aft)

where « is the control.

Cost for the generic player

The generic player aims at choosing o € L? so to minimize the cost

T als 2
It a) = / [‘(2)’ — U(x(s), 5) + FIm()](x(s))| ds
T GIm(TY(x(T))

where m(s) is the distribution of the whole population at time s.
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Notations J

o =AC(0, T;N)

o Mxl={yel: ~(0)=x}

e P(I') = {Borel probability measures on I'}

e Vt € [0, T], the evaluation map is e; : [ — N with e;(y) = v(t)
® Pmy(l) ={neP(l): eottn=mo}

o for each 1 € Ppy(lN), we set

sexa) = [ [OE a6 9) ¢ Flectilate] as
+Gler#nl(+(T))
where v(t) = x and v = « and
Mx] = {yelx]: J"0,x,7) < J"0,x,5) VyeTx]}.
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Definition
A measure ) € Py (l) is a MFG equilibrium for mg if

supp(n) ¢ ) M.
x€supp(mo)

Theorem
Assume

e my € P(N)

e (e CON)

o F[],G[]: P(N) — CON) are bounded and continuous.
Then, there exists a MFG equilibrium 7 for mg.
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Proof (sketch)
Following the Lagrangian approach of [Cannarsa-Capuani, '18], we
introduce the multivalued map

E : Pmo(l) = Pmy(l)

E() =41 €Pm(N): swp()c |J M

x€supp(mo)

and we apply Kakutani fixed point Theorem to obtain a MFG equilibrium.
Indeed, there holds

a) Vn € Pmy(T), E(n) is a nonempty set
b) Vn € Pmy(), E(n) is a convex set
c) the map E fulfills the closed graph property.
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Definition
A couple (u, m) is a mild solution to the MFG if there exists a MFG
equilibrium 7 € Pp, () such that

o m(t)=e#n Vte|0,T]

@ u is the the value function associated to 7:

u(t,x) = inf J7(t,x, ).

« adm.

Corollary
There exists a mild solution (u, m) to the MFG.
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Hamilton-Jacobi problem for u

—0pu + 3|0;ul* + € = F[m(t)] (t,x) € (0, T) x ¢
—0ru +jr2lz;1’>c<f{%[(8ju)_]2} +¢=F[m(t)] (t,vi)e(0,T)xV
u(T,x) = G[m(T)](x) xEN.

Definition (viscosity solution)

u is a subsolution (resp., a supersolution) if: for all ¢ € C((0, T) x N)
s.t. u— ¢ has a maximum (resp., a minimum) at (¢, x), there holds

—Orp(t,x) + 2EEIE Lyt %) < (2)F[m(t)](x) if x € ¢
—drp(t,x) + max {8y 4 (2, ) < (2)FIm(D](x) if x € V.
Jé€lnc;

u is a solution when it is both a sub- and a supersolution.

Proposition

u is the viscosity solution to the Hamilton-Jacobi problem.

v
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Work in progress: control on the acceleration

Dynamics of a generic player

Inside an edge e;, the state of a player obeys to

X(t)=v(t), V(t)=a(t)

where the control « is chosen either. Two cases:
@ « is chosen in R

@ « is chosen in [—1,1].

Cost for the generic player

T als 2
Sxov.tia) = | {’”'—ax(s),v(s),swF[m(s)](x(s),v(s)) s
T GIm(TY((T). o(T)).

2

Difficulties. Inertia of dynamics, viability set, ...
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Thank You!
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