Rigidity of Roe algebras

Kang Li (KU Leuven)

joint work with Ján Špakula and Jiawen Zhang

22.06.2021

Minisymposia-8th European Congress of Mathematics

► Let (X, d) be a countable and discrete metric space with **bounded geometry** (i.e. $\sup_{x \in X} |B(x, R)| < \infty$ for all R > 0, where B(x, R)denotes the **closed ball**). E.g. fin. gen. groups Γ with word metrics.

► Let (X, d) be a countable and discrete metric space with **bounded geometry** (i.e. $\sup_{x \in X} |B(x, R)| < \infty$ for all R > 0, where B(x, R)denotes the **closed ball**). E.g. fin. gen. groups Γ with word metrics. ► A bounded linear operator $T \in \mathfrak{B}(\ell^2(X, \ell^2(\mathbb{N})))$ can be written in the matrix form $\{T_{x,y}\}_{x,y \in X}$ where $T_{x,y} \in \mathfrak{B}(\ell^2(\mathbb{N}))$ defined by $T_{x,y}\xi = (T(\delta_y \otimes \xi))(x)$ for $\xi \in \ell^2(\mathbb{N})$.

► Let (X, d) be a countable and discrete metric space with **bounded geometry** (i.e. $\sup_{x \in X} |B(x, R)| < \infty$ for all R > 0, where B(x, R)denotes the **closed ball**). E.g. fin. gen. groups Γ with word metrics. ► A bounded linear operator $T \in \mathfrak{B}(\ell^2(X, \ell^2(\mathbb{N})))$ can be written in the matrix form $\{T_{x,y}\}_{x,y \in X}$ where $T_{x,y} \in \mathfrak{B}(\ell^2(\mathbb{N}))$ defined by $T_{x,y}\xi = (T(\delta_y \otimes \xi))(x)$ for $\xi \in \ell^2(\mathbb{N})$.

• Say that *T* has finite propagation if $\exists R > 0$ such that $\forall x, y \in X$ with d(x, y) > R then $T_{x,y} = 0$;

► Let (X, d) be a countable and discrete metric space with **bounded geometry** (i.e. $\sup_{x \in X} |B(x, R)| < \infty$ for all R > 0, where B(x, R)denotes the **closed ball**). E.g. fin. gen. groups Γ with word metrics. ► A bounded linear operator $T \in \mathfrak{B}(\ell^2(X, \ell^2(\mathbb{N})))$ can be written in the matrix form $\{T_{x,y}\}_{x,y \in X}$ where $T_{x,y} \in \mathfrak{B}(\ell^2(\mathbb{N}))$ defined by $T_{x,y}\xi = (T(\delta_y \otimes \xi))(x)$ for $\xi \in \ell^2(\mathbb{N})$.

• Say that *T* has **finite propagation** if $\exists R > 0$ such that $\forall x, y \in X$ with d(x, y) > R then $T_{x,y} = 0$;

• Say that *T* is **locally compact** if each $T_{x,y}$ is compact.

► Let (X, d) be a countable and discrete metric space with **bounded geometry** (i.e. $\sup_{x \in X} |B(x, R)| < \infty$ for all R > 0, where B(x, R)denotes the **closed ball**). E.g. fin. gen. groups Γ with word metrics. ► A bounded linear operator $T \in \mathfrak{B}(\ell^2(X, \ell^2(\mathbb{N})))$ can be written in the matrix form $\{T_{x,y}\}_{x,y \in X}$ where $T_{x,y} \in \mathfrak{B}(\ell^2(\mathbb{N}))$ defined by $T_{x,y}\xi = (T(\delta_y \otimes \xi))(x)$ for $\xi \in \ell^2(\mathbb{N})$.

• Say that *T* has finite propagation if $\exists R > 0$ such that $\forall x, y \in X$ with d(x, y) > R then $T_{x,y} = 0$;

• Say that *T* is **locally compact** if each $T_{x,y}$ is compact.

Definition

The **Roe algebra** $C^*(X)$ is the norm closure of all finite propagation and locally compact operators in $\mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$. E.g. $C^*(\Gamma) \cong \ell^{\infty}(\Gamma, \mathfrak{K}(\ell^2(\mathbb{N}))) \rtimes_r \Gamma$.

► Let (X, d) be a countable and discrete metric space with **bounded geometry** (i.e. $\sup_{x \in X} |B(x, R)| < \infty$ for all R > 0, where B(x, R)denotes the **closed ball**). E.g. fin. gen. groups Γ with word metrics. ► A bounded linear operator $T \in \mathfrak{B}(\ell^2(X, \ell^2(\mathbb{N})))$ can be written in the matrix form $\{T_{x,y}\}_{x,y \in X}$ where $T_{x,y} \in \mathfrak{B}(\ell^2(\mathbb{N}))$ defined by $T_{x,y}\xi = (T(\delta_y \otimes \xi))(x)$ for $\xi \in \ell^2(\mathbb{N})$.

• Say that *T* has finite propagation if $\exists R > 0$ such that $\forall x, y \in X$ with d(x, y) > R then $T_{x,y} = 0$;

• Say that *T* is **locally compact** if each $T_{x,y}$ is compact.

Definition

The **Roe algebra** $C^*(X)$ is the norm closure of all finite propagation and locally compact operators in $\mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$. E.g. $C^*(\Gamma) \cong \ell^{\infty}(\Gamma, \mathfrak{K}(\ell^2(\mathbb{N}))) \rtimes_r \Gamma$.

► Application in Index Theory such as coarse Baum-Connes conjecture and Novikov conjecture.

► A map $f : (X, d_X) \longrightarrow (Y, d_Y)$ is a coarse equivalence $(X \sim_c Y)$ if

- ► A map $f : (X, d_X) \longrightarrow (Y, d_Y)$ is a coarse equivalence $(X \sim_c Y)$ if
 - f coarse embedding from X into $Y: \exists \rho_+, \rho_- : [0, \infty) \to [0, \infty)$ with $\lim_{t \to \infty} \rho_{\pm}(t) = +\infty$ s.t. $\forall x_1, x_2 \in X$ we have

$$\rho_{-}(d_X(x_1, x_2)) \le d_Y(f(x_1), f(x_2)) \le \rho_{+}(d_X(x_1, x_2));$$

- ► A map $f : (X, d_X) \longrightarrow (Y, d_Y)$ is a coarse equivalence $(X \sim_c Y)$ if
 - f coarse embedding from X into $Y: \exists \rho_+, \rho_- : [0, \infty) \to [0, \infty)$ with $\lim_{t \to \infty} \rho_{\pm}(t) = +\infty$ s.t. $\forall x_1, x_2 \in X$ we have

$$\rho_{-}(d_X(x_1, x_2)) \le d_Y(f(x_1), f(x_2)) \le \rho_{+}(d_X(x_1, x_2));$$

• f(X) is co-bounded in $Y: \exists C > 0$ such that $\forall y \in Y, \exists x \in X$ with $d_Y(y, f(x)) \leq C$.

- ► A map $f : (X, d_X) \longrightarrow (Y, d_Y)$ is a coarse equivalence $(X \sim_c Y)$ if
 - f coarse embedding from X into $Y: \exists \rho_+, \rho_- : [0, \infty) \to [0, \infty)$ with $\lim_{t \to \infty} \rho_{\pm}(t) = +\infty$ s.t. $\forall x_1, x_2 \in X$ we have

$$\rho_{-}(d_X(x_1, x_2)) \le d_Y(f(x_1), f(x_2)) \le \rho_{+}(d_X(x_1, x_2));$$

- f(X) is co-bounded in $Y: \exists C > 0$ such that $\forall y \in Y, \exists x \in X$ with $d_Y(y, f(x)) \leq C$.
- ► E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

- ► A map $f : (X, d_X) \longrightarrow (Y, d_Y)$ is a coarse equivalence $(X \sim_c Y)$ if
 - f coarse embedding from X into $Y: \exists \rho_+, \rho_- : [0, \infty) \to [0, \infty)$ with $\lim_{t \to \infty} \rho_{\pm}(t) = +\infty$ s.t. $\forall x_1, x_2 \in X$ we have

$$\rho_{-}(d_X(x_1, x_2)) \le d_Y(f(x_1), f(x_2)) \le \rho_{+}(d_X(x_1, x_2));$$

- f(X) is co-bounded in Y: $\exists C > 0$ such that $\forall y \in Y, \exists x \in X$ with $d_Y(y, f(x)) \le C$.
- ► E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition

If $X \sim_c Y$, then $C^*(X) \cong C^*(Y)$.

- ► A map $f : (X, d_X) \longrightarrow (Y, d_Y)$ is a coarse equivalence $(X \sim_c Y)$ if
 - f coarse embedding from X into $Y: \exists \rho_+, \rho_- : [0, \infty) \to [0, \infty)$ with $\lim_{t \to \infty} \rho_{\pm}(t) = +\infty$ s.t. $\forall x_1, x_2 \in X$ we have

$$\rho_{-}(d_X(x_1, x_2)) \leq d_Y(f(x_1), f(x_2)) \leq \rho_{+}(d_X(x_1, x_2));$$

- f(X) is co-bounded in $Y: \exists C > 0$ such that $\forall y \in Y, \exists x \in X$ with $d_Y(y, f(x)) \leq C$.
- ► E.g. coarse equivalence=quasi-isometry on fin. gen. groups.

Proposition

If $X \sim_c Y$, then $C^*(X) \cong C^*(Y)$.

► Roe algebras are coarsely invariant: they contain coarse geometric information of the underlying spaces. ► The rigidity problems concern the opposite direction, *i.e.*, to what extent can Roe algebras determine the coarse geometry of the underlying spaces.

Question

When $C^*(X) \cong C^*(Y) \Rightarrow X \sim_c Y$?

Question

```
When C^*(X) \cong C^*(Y) \Longrightarrow X \sim_c Y?
```

• Špakula-Willett (2013): If either *X* or *Y* has **Yu's property A**, then the rigidity holds.

Question

```
When C^*(X) \cong C^*(Y) \Longrightarrow X \sim_c Y?
```

• Špakula-Willett (2013): If either *X* or *Y* has **Yu's property A**, then the rigidity holds.

• Braga-Farah (2018), Braga-Farah-Vignati (2019), Braga-Chung-L (2019): If all sparse subspaces of *X* (or *Y*) yield only compact ghost projections in their Roe algebras, then the rigidity holds.

Question

```
When C^*(X) \cong C^*(Y) \Longrightarrow X \sim_c Y?
```

• Špakula-Willett (2013): If either *X* or *Y* has **Yu's property A**, then the rigidity holds.

• Braga-Farah (2018), Braga-Farah-Vignati (2019), Braga-Chung-L (2019): If all sparse subspaces of *X* (or *Y*) yield only compact ghost projections in their Roe algebras, then the rigidity holds.

▶ A subspace *Y* in a metric space (X, d) is **sparse** if $Y = \bigsqcup_n Y_n$ where each Y_n is finite and $d(Y_n, Y_m) \to \infty$ as $n + m \to \infty$ and $n \neq m$.

Question

When $C^*(X) \cong C^*(Y) \Longrightarrow X \sim_c Y$?

• Špakula-Willett (2013): If either *X* or *Y* has **Yu's property A**, then the rigidity holds.

• Braga-Farah (2018), Braga-Farah-Vignati (2019), Braga-Chung-L (2019): If all sparse subspaces of *X* (or *Y*) yield only compact ghost projections in their Roe algebras, then the rigidity holds.

▶ A subspace *Y* in a metric space (X, d) is **sparse** if $Y = \bigsqcup_n Y_n$ where each Y_n is finite and $d(Y_n, Y_m) \to \infty$ as $n + m \to \infty$ and $n \neq m$. ▶ $T \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ is a **ghost** if $||T_{x,y}||_{\mathfrak{B}(\ell^2(\mathbb{N}))} \to 0$ as $x, y \to \infty$.

Definition

Let $(X, d) = \bigsqcup_n (X_n, d_n)$ be a sparse space. A projection $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ is called a **block-rank-one** projection if

$$P=\bigoplus_n P_n,$$

where $P_n = (\cdot, \xi_n)\xi_n$ is a rank-one projection in $\mathfrak{B}(\ell^2(X_n; \ell^2(\mathbb{N})))$.

Definition

Let $(X, d) = \bigsqcup_n (X_n, d_n)$ be a sparse space. A projection $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ is called a **block-rank-one** projection if

$$P=\bigoplus_n P_n,$$

where $P_n = (\cdot, \xi_n)\xi_n$ is a rank-one projection in $\mathfrak{B}(\ell^2(X_n; \ell^2(\mathbb{N})))$.

► The associated probability measure m_n on X_n given by $m_n(\{x\}) := ||\xi_n(x)||^2_{\ell^2(\mathbb{N})}$ for each $x \in X_n$. Hence we obtain a sequence of finite probability metric spaces $\{(X_n, d_n, m_n)\}_n$.

Definition

Let $(X, d) = \bigsqcup_n (X_n, d_n)$ be a sparse space. A projection $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ is called a **block-rank-one** projection if

$$P=\bigoplus_n P_n,$$

where $P_n = (\cdot, \xi_n)\xi_n$ is a rank-one projection in $\mathfrak{B}(\ell^2(X_n; \ell^2(\mathbb{N})))$.

► The associated probability measure m_n on X_n given by $m_n(\{x\}) := \|\xi_n(x)\|_{\ell^2(\mathbb{N})}^2$ for each $x \in X_n$. Hence we obtain a sequence of finite probability metric spaces $\{(X_n, d_n, m_n)\}_n$.

► *P* is a ghost iff $\{(X_n, d_n, m_n)\}_n$ is **ghostly** (i.e. $\lim_n \sup_{x \in X_n} m_n(x) = 0$).

Let $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ be a block-rank-one projection and m_n the associated measure on X_n . Then $P \in C^*(X)$ iff $\{(X_n, d_n, m_n)\}_n$ is a sequence of **measured asymptotic expanders**.

Let $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ be a block-rank-one projection and m_n the associated measure on X_n . Then $P \in C^*(X)$ iff $\{(X_n, d_n, m_n)\}_n$ is a sequence of **measured asymptotic expanders**.

Definition (L-Vigolo-Zhang, 2019)

A sequence of finite probability metric spaces $\{(X_n, d_n, m_n)\}_n$ is called **measured asymptotic expanders** if $\forall \alpha \in (0, \frac{1}{2}], \exists c_\alpha > 0$ and $R_\alpha > 0$ such that $\forall n$ and $\forall A \subset X_n$ with $\alpha \leq m_n(A) \leq \frac{1}{2}$, then $m_n(\partial_{R_\alpha}A) > c_\alpha m_n(A)$ (where $\partial_{R_\alpha}A = \{x \in X_n \setminus A : d_n(x, A) \leq R_\alpha\}$).

Let $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ be a block-rank-one projection and m_n the associated measure on X_n . Then $P \in C^*(X)$ iff $\{(X_n, d_n, m_n)\}_n$ is a sequence of **measured asymptotic expanders**.

Definition (L-Vigolo-Zhang, 2019)

A sequence of finite probability metric spaces $\{(X_n, d_n, m_n)\}_n$ is called **measured asymptotic expanders** if $\forall \alpha \in (0, \frac{1}{2}], \exists c_\alpha > 0$ and $R_\alpha > 0$ such that $\forall n$ and $\forall A \subset X_n$ with $\alpha \leq m_n(A) \leq \frac{1}{2}$, then $m_n(\partial_{R_\alpha}A) > c_\alpha m_n(A)$ (where $\partial_{R_\alpha}A = \{x \in X_n \setminus A : d_n(x, A) \leq R_\alpha\}$).

• When $c_{\alpha} \equiv c > 0$, we call it **Measured expanders**.

Let $P \in \mathfrak{B}(\ell^2(X; \ell^2(\mathbb{N})))$ be a block-rank-one projection and m_n the associated measure on X_n . Then $P \in C^*(X)$ iff $\{(X_n, d_n, m_n)\}_n$ is a sequence of **measured asymptotic expanders**.

Definition (L-Vigolo-Zhang, 2019)

A sequence of finite probability metric spaces $\{(X_n, d_n, m_n)\}_n$ is called **measured asymptotic expanders** if $\forall \alpha \in (0, \frac{1}{2}], \exists c_\alpha > 0$ and $R_\alpha > 0$ such that $\forall n$ and $\forall A \subset X_n$ with $\alpha \leq m_n(A) \leq \frac{1}{2}$, then $m_n(\partial_{R_\alpha}A) > c_\alpha m_n(A)$ (where $\partial_{R_\alpha}A = \{x \in X_n \setminus A : d_n(x, A) \leq R_\alpha\}$).

• When $c_{\alpha} \equiv c > 0$, we call it **Measured expanders**.

• When $c_{\alpha} \equiv c > 0$ and m_n = counting measure on finite graphs V_n , we recover **Expander graphs**: $\exists c > 0 \forall n$ and $\forall A \subset X_n$ with $0 < |A| \le \frac{1}{2}|V_n|$, then $|\partial A| > c|A|$.

• Structure theorem: Measured asymptotic expanders can be "nicely" approximated by measured expander graphs (V_n, E_n, m_n) with **bounded measure ratios** (i.e. If $u \sim_{E_n} v$ in V_n , then $s \cdot m_n(v) \le m_n(u) \le \frac{m_n(v)}{s}$ for some 0 < s < 1).

• Structure theorem: Measured asymptotic expanders can be "nicely" approximated by measured expander graphs (V_n, E_n, m_n) with **bounded measure ratios** (i.e. If $u \sim_{E_n} v$ in V_n , then $s \cdot m_n(v) \le m_n(u) \le \frac{m_n(v)}{s}$ for some 0 < s < 1).

• (V_n, E_n, m_n) may **not** come from any reversible random walk. However, we construct v_n st (V_n, E_n, v_n) has a reversible random walk, and v_n and m_n control each other. • Structure theorem: Measured asymptotic expanders can be "nicely" approximated by measured expander graphs (V_n, E_n, m_n) with **bounded measure ratios** (i.e. If $u \sim_{E_n} v$ in V_n , then $s \cdot m_n(v) \le m_n(u) \le \frac{m_n(v)}{s}$ for some 0 < s < 1).

• (V_n, E_n, m_n) may **not** come from any reversible random walk. However, we construct v_n st (V_n, E_n, v_n) has a reversible random walk, and v_n and m_n control each other.

• The associated Laplacian operator $\Delta_n \in C^*(X)$ to (V_n, E_n, v_n) has spectral gap at 0 in the spectrum. So $Q_n = \chi_{\{0\}}(\Delta_n) \in C^*(X)$ and $Q_n \to P$ up to a compact perturbation. Hence, $P \in C^*(X)$.

If *X* or *Y* contains no sparse subspaces consisting of ghostly measured asymptotic expanders, then the rigidity holds.

If *X* or *Y* contains no sparse subspaces consisting of ghostly measured asymptotic expanders, then the rigidity holds.

Corollary

If either *X* or *Y* coarsely embeds into L^p -space for $p \in [1, \infty)$, then the rigidity holds.

If *X* or *Y* contains no sparse subspaces consisting of ghostly measured asymptotic expanders, then the rigidity holds.

Corollary

If either *X* or *Y* coarsely embeds into L^p -space for $p \in [1, \infty)$, then the rigidity holds.

Corollary (L-Špakula-Zhang, 2020)

There exist metric spaces that do **not** coarsely embed into any L^p -space for $1 \le p < \infty$, but the rigidity still holds.

Thank you for your attention!