On the linearity of order-isomorphisms

Bas Lemmens University of Kent (UK)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The problem

A cone C in a vector space V induces a partial ordering \leq , where

$$x \leq y$$
 if $y - x \in C$.

Here C is convex, $\lambda C \subseteq C$ for all $\lambda \ge 0$, and $C \cap (-C) = \{0\}$.

 $X \subseteq V$ and $Y \subseteq W$, where V and W are partially ordered vector spaces.

 $f: X \rightarrow Y$ is an **order-isomorphisms**, if f is a bijection and

 $x \le y$ if and only if $f(x) \le f(y)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So f and f^{-1} are both order-preserving.

Question When are such maps affine?

History

The question goes back to the 1950's and was motivated by special relativity.

Alexandrov and Ovčinnikova (1953): order-isomorphisms $f: C \rightarrow C$, where C is the finite dimensional Lorentz cone are linear.

Alexandrov (1967) Extension to more general finite dimensional cones.

Related works by Zeeman (1964), Rothaus (1966), Arstein-Avidan and Slomka (2012).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Noll and Schäffer extended Alexandrov's work to infinite dimensions in a sequence of papers (1977-1979).

Not always linear!

The map

$$f: x \mapsto x^3$$

is a **nonlinear** order-isomorphism on \mathbb{R} .

If (V, C) is a partially ordered vector space, then $W = V \oplus \mathbb{R}$ with cone $C \times \mathbb{R}_{>0}$ admits a nonlinear order-isomorphism.

Can replace $\mathbb{R}_{\geq 0}$ by the cone of nonnegative functions in C(K).

Question Which partially ordered vector spaces (V, C) admit a **nonlinear** order-isomorphism $f: C \rightarrow C$?

Recent progress on this question by Walsh for order-unit spaces

(日)((1))

The domain

A subset X of V is called an **upper set** if for each $x \in X$ and $v \in C$ we have that $x + v \in X$.

Examples: V, C, or int C.

We **only** consider order-isomorphisms $f: X \to Y$, where $X \subseteq V$ and $Y \subseteq W$ are **upper sets**.

Things are **different** (more complicated) when X or Y is not an upper set!

X and Y order-intervals: Drnovšek, Molnar, Mori, Šemrl, Roelands and Wortel

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some useful concepts

A cone C in V is **Archimedean** if for each $x \in V$ and $y \in C$ we have that

$$nx \leq y$$
 for all $n \geq 1 \implies x \leq 0$.

An element $u \in C$ is called an **order-unit** if for each $x \in V$ there exists $\lambda \ge 0$ such that $x \le \lambda u$.

 $U \subseteq V$ is said to be **directed** if for each $x, y \in U$ there exists $z \in U$ with $x \leq z$ and $y \leq z$.

(V, C) is **directed** if V is a directed set, which is equivalent to V = C - C.

Notation

$$[x, z] = \{y \in V : x \le y \le z\} \quad (\text{order-interval})$$
$$[x, \infty) = x + C = \{x + v : v \in C\} \quad (\text{cone with apex } x).$$

Extreme rays

Given $x \in C$ with $x \neq 0$ we let

 $R_x = \{\lambda x \colon \lambda \ge 0\}$ (ray through x)

 R_x is said to be an **extreme ray** if $0 \le y \le x$ implies $y = \lambda x$ for some $0 \le \lambda \le 1$.

We call x + R an **extreme half-line** if R is an extreme ray of C.

Order theoretic characterisation

Intuition An order-isomorphism should map extreme half-lines onto extreme half-lines.

Fact H = x + R is an extreme half-line if and only if H is maximal among all subsets G of [x, ∞) with x ∈ G satisfying
(1) G is directed.
(2) For each y ∈ G, [x, y] is totally ordered.
(3) G contains at least 2 distinct points.

Corollary An order-isomorphism $f: X \to Y$ maps an extreme half-line x + R onto an extreme half-line f(x) + S.

Key observation

Lemma Let *R* and *S* be distinct extreme rays of *C* and $f: X \to Y$ be an order-isomorphism. For $x \in X$, $r \in R$ and $s \in S$ we have that

$$f(x + r + s) - f(x + s) = f(x + r) - f(x).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Engaged extreme rays

Let \mathcal{R} be the collection of all extreme rays of C.

Definition An extreme ray R of C is said to be **engaged** if

 $R \subseteq \operatorname{Span}(\mathcal{R} \setminus \{R\}) = \operatorname{Span}\{s \colon s \in S \text{ and } S \in \mathcal{R} \setminus \{R\}\}.$

Otherwise, we say it is **disengaged**.

Let \mathcal{R}_E be the collection of all engaged extreme rays.

In the Lorentz cone C with dim $C \ge 3$, all rays in the boundary of C are extreme rays and engaged.

For \mathbb{R}^n_+ the extreme rays are $R_i = \{\lambda e_i : \lambda \ge 0\}$, which are all disengaged.

◆□▶◆□▶◆≧▶◆≧▶ ≧ のへぐ

A consequence

Define

 $[x,\infty)_{\mathcal{R}_E} = \{x+r_1+\cdots+r_k \in [x,\infty) \colon r_i \in R_i \cup (-R_i), R_i \text{ engaged}\}.$

Theorem If $f: [x, \infty) \to [y, \infty)$ is an order-isomorphism, then f is affine on $[x, \infty)_{\mathcal{R}_E}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Noll and Schäffer

Theorem Suppose $X \subseteq V$ and $Y \subseteq W$ are upper sets in Archimedean partially ordered vector spaces, where (V, C) is directed and $f: X \to Y$ is an order-isomorphism. If

 $C = \{r_1 + \cdots + r_k : r_i \in R_i \text{ extreme ray for all } i\}$

and each $R \in \mathcal{R}$ is engaged, then f is affine.

Condition, $C = \{r_1 + \cdots + r_k : r_i \in R_i \text{ extreme ray for all } i\}$ holds if dim $V < \infty$, but rarely in infinite dimensions.

Cones with too few extreme rays

The cone

$$C([0,1])_+ = \{f \in C([0,1]) \colon f \ge 0\}$$

has **no** extreme rays.

The cone $B(H)_{sa}^+$ of positive semidefinite operators has extreme rays $R_P = \{\lambda P : \lambda \ge 0\}$, where P is a rank-one projection.

If dim $H = \infty$, then $B(H)_{sa}^+ \neq \text{Span}_+ \{R_P \colon P \text{ rank-one projection}\}$

inf's and sup's

Idea Order-isomorphisms preserve the inf's and sup's if they exist.

For $U \subseteq [a, \infty)$ and $x \in [a, \infty)$ we say that

 $x = \inf U$ in $[a, \infty)$,

if $x \le u$ for all $u \in U$, and if $z \in [a, \infty)$ is such that $z \le u$ for all $u \in U$, then $z \le x$.

Similarly, $x = \sup U$ in $[a, \infty)$ is x is the least upper bound of U in $[a, \infty)$.

inf-sup-hull

Given $U \subseteq [a, \infty)$ the **inf-sup-hull** of U in $[a, \infty)$ is the set

 $\{x \in [a,\infty): x = \inf_{\alpha \in A} \sup_{\beta \in B} u_{\alpha\beta} \text{ in } [a,\infty), \text{ where } u_{\alpha\beta} \in U\}.$

Theorem (L., van Gaans, van Imhoff) Suppose $X \subseteq V$ and $Y \subseteq W$ are upper sets in Archimedean partially ordered vector spaces, where (V, C) is directed and $f: X \to Y$ is an order-isomorphism. If C equals the inf-sup-hull of $[0, \infty)_{\mathcal{R}_E}$, then f is affine.

Bounded self-adjoint operators

Theorem (Molnar) If *H* is a Hilbert space with dim $H \ge 2$ and $X, Y \subseteq B(H)_{sa}$ are upper sets, then every order-isomorphism $f: X \to Y$ is affine.

Easy to show that $B(H)_{sa}^+$ is the inf-sup-hull (sup-hull) of the engaged extreme rays.

Corollary (Molnar) There is no order-isomorphism from $B(H)_{sa}$ onto int $B(H)_{sa}^+$.

Extension to atomic JBW-algebras without a type I_1 part, Roelands and van Imhoff (2020).

Question Is there a natural condition so that **all** order-isomorphisms are linear?

f: int $C \to int K$ is **positively homogeneous** if $f(\lambda x) = \lambda f(x)$ for all $x \in int C$ and $\lambda > 0$.

Theorem (Schäffer) If (V, C) and (W, K) are order-unit spaces, then every positively homogeneous order-isomorphism $f : \operatorname{int} C \to \operatorname{int} K$ is linear.

Spaces without order-unit

Theorem (L., van Gaans, van Imhoff) Suppose (V, C) and (W, K) are Archimedean partially ordered vector spaces, where (V, C) is directed and C is equal to the inf-sup-hull of

 $\{r_1 + \cdots + r_k \in C : r_i \in R_i \cup (-R_i) \text{ where } R_i \text{ is an extreme ray}\}.$

Then every positive homogeneous order-isomorphism $f: C \to K$ is linear.

Results applies to $\ell_p(\mathbb{N})$ spaces (these spaces have no order unit).

Another related result

Theorem (L., van Gaans, van Imhoff) Let (V, C, u) and (W, K, e) be order unit spaces and $X \subseteq V$ and $Y \subseteq W$ be upper sets. Suppose that the inf-sup-hull of $[0, \infty)_{\mathcal{R}_E}$ has a non-empty intersection with int C and that either $(V, \|\cdot\|_u)$ or $(W, \|\cdot\|_e)$ is separable and complete. Then every order-isomorphism $f: X \to Y$ is affine.

An example

Let $V = C([0,1] \cup [2,3]) \oplus \mathbb{R}$ with cone $C = \{(f,\lambda) \colon ||f||_{\infty} \le \lambda\}.$

Then (V, C, (0, 1)) is a complete separable order-unit space.

The four points

$$(\pm \mathbb{1}_{[0,1]}, 1)$$
 and $(\pm \mathbb{1}_{[2,3]}, 1)$

correspond to the extreme rays, which are all engaged, since

 $(\mathbb{1}_{[0,1]}, 1) + (-\mathbb{1}_{[0,1]}, 1) = 2(0,1) = (\mathbb{1}_{[2,3]}, 1) + (-\mathbb{1}_{[2,3]}, 1).$

. As $(0,1) \in \text{int } C$, the theorem applies.

Thank you for your attention

B. Lemmens. O. van Gaans and H. van Imhoff, On the linearity of order-isomorphisms. *Canad. J. Math.* **73**(2), (2021), 399–416.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@