The Witten Conjecture for homology
 $$
S^{1} \times S^{3}
$$

Nikolai Saveliev
University of Miami

June 23, 2021

1950s (Yang and Mills) Non-abelian version of the classical electromagnetic theory

1980s (Donaldson) Applications to topology of smooth 4-manifolds via the Donaldson polynomials

1988 (Witten) Quantum Field Theory: Donaldson polynomials $=$ expectation values of certain observables. Degree-zero Donaldson polynomial $=$ partition function.

1994 (Witten) The Seiberg-Witten invariants and the Witten Conjecture
Natural domain: closed oriented smooth 4-manifolds X with $\pi_{1}(X)=1$ and $b_{2}^{+}(X)>1$ (Feehan and Leness)

Extension: smooth 4-manifolds X with $b_{2}^{+}(X)=1$ via wall-crossing formulas
This project: smooth 4-manifolds X with $b_{1}(X)=1$ and $b_{2}(X)=0$

Homology $\boldsymbol{S}^{\mathbf{1}} \times \boldsymbol{S}^{\mathbf{3}}$ is a smooth oriented closed spin 4-manifold X such that

$$
H_{*}(X ; \mathbb{Z})=H_{*}\left(S^{1} \times S^{3} ; \mathbb{Z}\right)
$$

Example. A product $X=S^{1} \times Y$, where Y is an integral homology sphere.

Example. A "furled up" homology cobordism from Y to itself:

Homology orientation of X is a choice of generator $1 \in H^{1}(X ; \mathbb{Z})$.

Donaldson Theory

Given a metric on X, consider connections A in the trivial $S U(2)$ bundle on X such that

$$
F_{A}+\star F_{A}=0 .
$$

These are called instantons. The moduli space $\mathcal{M}(X, g)$ of irreducible instantons is compact, oriented, and 0-dimensional (perhaps after perturbation).

Furuta-Ohta invariant

$$
\lambda_{\mathrm{FO}}(X)=\frac{1}{4} \# \mathcal{M}(X, g) .
$$

Theorem. This is a well-defined diffeomorphism invariant of X if $H_{*}(\tilde{X} ; \mathbb{Q})=$ $H_{*}\left(S^{3} ; \mathbb{Q}\right)$, where $\tilde{X} \rightarrow X$ is the universal abelian cover.

The instantons in question are flat so $\lambda_{\mathrm{FO}}(X)$ can be viewed as a count of irreducible representations $\pi_{1}(X) \rightarrow \mathrm{SU}(2)$.

Product case: $\quad \lambda_{\mathrm{FO}}\left(S^{1} \times Y\right)=\lambda(Y)$.

Seiberg-Witten Theory

Given a metric g on X and a form $\beta \in \Omega^{1}(X, i \mathbb{R})$, consider the triples

$$
(A, s, \varphi) \in \Omega^{1}(X, i \mathbb{R}) \times \mathbb{R} \geq 0 \times \mathbb{C}^{\infty}\left(S^{+}\right)
$$

such that

$$
\left\{\begin{array}{l}
F_{A}^{+}-s^{2} \cdot \tau(\varphi, \varphi)=d^{+} \beta \\
D_{A}^{+}(X, g)(\varphi)=0, \quad\|\varphi\|_{L^{2}(X)}=1
\end{array}\right.
$$

Seiberg-Witten moduli space $\mathcal{M}(X, g, \beta)$: the gauge equivalence classes of solutions of the above system. The solutions with $s=0$ are called reducible.

Theorem. For generic (g, β), the moduli space $\mathcal{M}(X, g, \beta)$ is a compact oriented 0-dimensional manifold with no reducibles.

Denote by $\# \mathcal{M}(X, g, \beta)$ the signed count of points in this moduli space. It depends on g and β.

Correction Term

Let $Y \subset X$ be a Poincaré dual to $1 \in H^{1}(X ; \mathbb{Z})$ and cut X open along Y to obtain a cobordism W from Y to itself.

End-periodic manifold is a smooth manifold $Z_{+}=Z \cup W \cup W \cup \ldots$ where Z is a compact smooth spin 4-manifold with $\partial Z=Y$

Product case: $X=S^{1} \times Y$ gives rise to $Z_{+}=Z \cup([0,+\infty) \times Y)$. The index theory was studied by Atiyah, Patodi and Singer.

General case: the basics of index theory on Z_{+}were established by Taubes. We developed this theory far enough to prove the following two theorems.

Theorem (Mrowka, Ruberman, $\mathrm{S}, 2011$) For generic (g, β), the operator

$$
D^{+}\left(Z_{+}, g\right)+\beta: L_{1}^{2}\left(Z_{+}\right) \rightarrow L^{2}\left(Z_{+}\right)
$$

is Fredholm, and

$$
w(X, g, \beta)=\operatorname{ind}\left(D^{+}\left(Z_{+}, g\right)+\beta\right)+\operatorname{sign}(Z) / 8
$$

is independent of the choice of Z and the way g and β are extended over $Z \subset Z_{+}$.

Theorem (Mrowka, Ruberman, S, 2011)

$$
\lambda_{\mathrm{sw}}(X)=\# \mathcal{M}(X, g, \beta)-w(X, g, \beta)
$$

is a diffeomorphism invariant of X.
Product case: Weimin Chen (1997) and Yuhan Lim (1999).

Witten Conjecture

Conjecture (Mrowka, Ruberman, S, 2011) Let X be a homology $S^{1} \times S^{3}$ such that $H_{*}(\tilde{X} ; \mathbb{Q})=H_{*}\left(S^{3} ; \mathbb{Q}\right)$. Then

$$
\lambda_{\mathrm{FO}}(X)=-\lambda_{\mathrm{SW}}(X)
$$

Theorem (Yuhan Lim, 1999) Let Y be an integral homology sphere. Then

$$
\lambda_{\mathrm{FO}}\left(S^{1} \times Y\right)=-\lambda_{\mathrm{SW}}\left(S^{1} \times Y\right)
$$

Theorem (Jianfeng Lin, Ruberman, S, 2020) Let Y be an integral homology sphere and X the mapping torus of a diffeomorphism $\tau: Y \rightarrow Y$ generating a semi-free action of \mathbb{Z} / n. Then

$$
\lambda_{\mathrm{FO}}(X)=-\lambda_{\mathrm{SW}}(X)
$$

The proof uses, on the Furuta-Ohta side, the equivariant Casson invariant of Collin-S (1999) and Ruberman-S (2004)

Explicit formulas

If τ has fixed points: $Y^{\prime}=Y / \tau$ is an integral homology sphere and the quotient map $Y \rightarrow Y^{\prime}$ is the n-fold branched cover with branch set a knot K. Then $\lambda_{\mathrm{FO}}(X)=-\lambda_{\mathrm{SW}}(X)$ equals

$$
n \cdot \lambda\left(Y^{\prime}\right)+\frac{1}{8} \sum \operatorname{sign}^{m / n}(K)
$$

(also proved by Langte Ma (2020) using a surgery formula for $\lambda_{\mathrm{sw}}(X)$).

If τ has no fixed points: $Y^{\prime}=Y / \tau$ is a homology lens space which can be obtained by (n / q)-surgery along a knot K in an integral homology sphere Σ. Then $\lambda_{\mathrm{FO}}(X)=-\lambda_{\mathrm{SW}}(X)$ equals

$$
n \cdot \lambda(\Sigma)+\frac{1}{8} \sum \operatorname{sign}^{m / n}(K)+\frac{q}{2} \Delta_{K}^{\prime \prime}(1)
$$

Floer-theoretic interpretation

Assume that the Poincaré dual to $1 \in H^{1}(X ; \mathbb{Z})$ can be chosen to be a rational homology sphere $Y \subset X$. Cut X open along Y to obtain W.

Theorem (Jianfeng Lin, Ruberman, S, 2018)

$$
-\lambda_{\mathrm{sw}}(X)=h_{\mathrm{sw}}(Y)+\operatorname{Lef}\left(W_{*}\right),
$$

where $h_{\mathrm{sw}}(Y)$ is the Frøyshov invariant and Lef $\left(W_{*}\right)$ is the Lefschetz number in the reduced monopole Floer homology $H M^{\text {red }}(Y)$ of Kronheimer and Mrowka.

Theorem (Anvari, 2019) If $Y \subset X$ is an integral homology sphere,

$$
\lambda_{\mathrm{FO}}(X)=h_{D}(Y)+\operatorname{Lef}\left(W_{*}\right),
$$

where $h_{D}(Y)$ is the instanton Frøyshov invariant and $\operatorname{Lef}\left(W_{*}\right)$ is the Lefschetz number in the reduced instanton Floer homology $I^{\text {red }}(Y)$ of Frøyshov.

Topological Applications

Stem from calculating Lef(W_{*}) for mapping cylinders of self-diffeomorphisms

$$
\tau: Y \rightarrow Y
$$

Example. Akbulut cork W_{0}

Smooth compact contractible 4-manifold with boundary Y. The boundary admits involution $\tau: Y \rightarrow Y$ exchanging the two link components.

Theorem (Akbulut, 1991) The involution τ does not extend to a diffeomorphism of W_{0}.

Theorem (Jianfeng Lin, Ruberman, S, 2018) The involution $\tau: Y \rightarrow Y$ does not extend to a diffeomorphism of any compact smooth 4-manifold W with boundary Y such that

$$
H_{*}(W ; \mathbb{Z} / 2)=H_{*}\left(D^{4} ; \mathbb{Z} / 2\right) .
$$

Extended by Dai, Hedden, and Mallick (2020) to other involutions using the Floer-theoretic framework developed by Hendricks, Manolescu, and Zemke.

Theorem (Jianfeng Lin, Ruberman, S, 2018) Let $K \subset S^{3}$ be a Khovanov-thin knot and Y its double branched cover. Then

$$
h(Y)=\frac{1}{8} \operatorname{sign}(K)
$$

This is known as the Manolescu-Owens Conjecture. It was proved by ManolescuOwens for all alternating knots and by Lisca for all quasi-alternating knots.

Why $\lambda_{\mathrm{SW}}(X)$ is metric independent

For simplicity, consider the product case $X=S^{1} \times Y$ only. Then

$$
\lambda_{\mathrm{sw}}(X)=\# \mathcal{M}(Y)+\frac{1}{2} \eta(Y)+\frac{1}{8} \eta_{\mathrm{Sign}}(Y) .
$$

For any $\mu \in \mathbb{R}$ consider the moduli space $\mathcal{M}(Y, \mu)$ of triples (A, φ) such that

$$
F_{A}=\tau(\varphi, \varphi), \quad D_{A}(\varphi)=\mu \varphi
$$

A schematic depiction of $\mathcal{M}(Y)=\bigcup_{\mu} \mathcal{M}(Y, \mu)$

For any $t>0$ a direct calculation shows that

$$
\# \mathcal{M}(Y, 0)+\frac{1}{2} \eta(Y)=\lim _{t \rightarrow 0} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \# \mathcal{M}^{*}(Y, \mu) \cdot t^{1 / 2} \cdot e^{-t \mu^{2}} d \mu
$$

In particular,

$$
\# \mathcal{M}(Y)+\frac{1}{2} \eta(Y)
$$

is a continuous function of the metric. But $\eta_{\operatorname{sign}}(Y)$ is also a continuous function of the metric. Since the sum

$$
\# \mathcal{M}(Y)+\frac{1}{2} \eta(Y)+\frac{1}{8} \eta_{\mathrm{Sign}}(Y)
$$

is an integer, it must be constant as a function of the metric.

