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Nonlinear Schrödinger equation

Why nonlinear Schrödinger equation on graphs? And where?

- NLS: the equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) +W (x)ψ(x, t) + γ|ψ(x, t)|2pψ(x, t)

where

- x ∈ Rn, t > 0 and W is an external potential, possibly present;

- power nonlinearity |ψ|2pψ, the most common is p = 1 (the cubic case);

- γ > 0 defocussing, γ < 0 focusing (often in the following γ = ±(p+ 1))

- NLS: paradigm of nonlinear wave propagation: dispersion, scattering, bound
states, breathers, solitons, stability of these discrete structures...;

- NLS: many physical systems described by NLS: Langmuir waves in plasma
physics, e.m. pulse propagation in Kerr media, dynamics of BEC
(Gross-Pitaevskii equation);

- NLS is Hamiltonian; when n = 1 and p = 1 and W = 0 also integrable

- NLS on graphs: Y-junctions, H-junctions or more complex structures. Some
of them realized in BEC’s. More complicated modellization in fiber optics
arrays, where a more realistic description is however in terms of systems of
NLS-type equations.
See also N 2014 for a general overview of the subject (cited references are at
the end of the slides)



Nonlinear Schrödinger Equation on graphs

i
d

dt
Ψ = HΨ± (p+ 1)|Ψ|2pΨ

Linear term: H is a linear operator with δ-interaction in the vertices plus a
potential

D(H) :=

{
Ψ ∈ H2(G)|

∑
e≺v

∂ψe(v) = α(v)ψe(v), α(v) ∈ R, ∀v ∈ V
}
.

HΨ = −Ψ′′ +WΨ

and W fairly general (Cacciapuoti, Finco, N 2017)

Componentwise: i d
dt
ψe = − d2

dx2e
ψe+Weψe± (p+ 1)|ψe|2pψe ∀e ∈ E + B.C.

I |E| scalar equations

I Coupled by the conditions in the vertices

Included in the above B.C. are the Neumann-Kirchhoff or natural B.C.: α(v) = 0
or ∑

e≺v
∂ψe(v) = 0

With N-K boundary conditions we will write H = −∆.



Well posedness

A few words about the time dependent equation
(see Cacciapuoti Finco N 17 for more details)

With mild hypotheses on potentials and the above boundary conditions:

local well posedness of the strong solutions
(solutions with values in the operator domain D(H))

local well posedness of weak solutions
(solutions with values in the form domain H1(G))

Moreover for weak solutions the mass or L2- norm,

M [Ψ] := ||Ψ||2

is conserved, as well the energy

E[Ψ] = ‖Ψ′‖2 + (Ψ,WΨ) +
∑
v∈V

α(v)|Ψ(v)|2 − ‖Ψ‖2p+2
2p+2

Global well posedness

I p < 2

I p = 2 for small masses (the critical case)

I in the special example of star graphs strong instability and blow-up of
supercritical equation (p > 2) has been recently studied
(Goloshchapova-Ohta, 2020)



Ground states

We call ground state a minimizer Φ of the energy E with fixed mass M .

E[Φ] = inf{E[Ψ] s.t. Ψ ∈ H1(G), M [Ψ] = µ} := Eµ (1)

Notice that this definition contains two requirements:

I inf{E[Ψ] s.t. Ψ ∈ E, M [Ψ] = µ} > −∞
I The infimum is actually attained at some Φ ∈ H1(G)

Comments

I The existence of the ground state is usually considered as a good stability
property of a physical system, significantly stronger than the mere
boundedness from below of the energy. In particular ground states are
orbitally stable.

I A minimizer does not necessarily exist, it does not necessarily exist for every
mass, and when existing dependence from the mass could be relevant.

I Existence and properties of ground states in the case W = 0 and
Neumann-Kirchhoff B.C. has been studied extensively and in depth by
Adami-Serra-Tilli (2014-2017)

I Bifurcation of ground states from the bottom of the spectrum of the linear
Hamiltonian has been studied in the generic case in Cacciapuoti-Finco-N 17



Euler-Lagrange equations

Any ground state Φ, as a constrained minimum point, satisfies, for some λ ∈ R
(the Lagrange multiplier)

I −φ′′e − |φe|2pφe +We(x)φe = λφe ∀ edge e (NLS)

I
∑
e�v

dφe

dxe
(v) = α(v)φe(v) ∀v (δ b.c.)

Actually the same set of equations and B.C. rules any constrained critical point,
not only constrained minima. We call bound states constrained critical points.

Any bound state corresponds to a solution Ψ(x, t) to the time dependent NLS s.t.

Ψ(x, t) = e−iωtΦ(x)

where ω takes the role of the Lagrange multiplier λ, and the profile Φ satisfies the
stationary equation (written in compact form)

−∆Φ +WΦ− |Φ|2pΦ = ωΦ (sNLS)

From now on we will be interested in the case W = 0 and Neumann Kirchhoff B.C.



Ground state and standing waves: the line

For p ∈ (0, 2) and M = m > 0 ground states exist and all of them are obtained
translating a soliton. The soliton on the line is explicit:

ϕω(x) = |ω|
1
2p sech

1
p (p
√
|ω| x) ω < 0

ϕω

Figure: The soliton ϕω .

In the case of the halfline G = R+, p ∈ (0, 2) and every µ > 0, there is one and
only one ground state given by “half a soliton”.

Notice that in this case the translational symmetry is broken by the Neumann b.c.

For the critical case p = 2 we have solitons of the same form as above, but now the
mass is independent on ω



A concrete example: the tadpole graph

∞

The tadpole graph

The tadpole graph T is the metric graph G constituted by a circle and a half-line
attached at a single vertex.

We normalize the interval for the circle to [−π, π] with the end points connected
to the half-line [0,∞) at a single vertex.

The natural Neumann–Kirchhoff boundary conditions for the two-component
vectors Φ := (u, v) ∈ H2(−π, π)×H2(0,∞) are given by

(BC)

{
u(π) = u(−π) = v(0),

u′(π)− u′(−π) = v′(0).

The Laplace operator ∆ : D(∆) ⊂ L2(T ) 7→ L2(T ) with the operator domain

D(∆) :=
{

Φ = (u, v)| u ∈ H2(−π, π), v ∈ H2(0,∞) : satisfying (BC)
}

(2)

is self-adjoint in L2(T ) := L2(−π, π)× L2(0,∞).



The tadpole graph with subcritical power

I It is known that the subcritical (0 < p < 2) NLS equation for the tadpole
graph T admits a ground state Φ for all positive values of the mass µ.

I The ground state Φ is given by a monotone piece of soliton on the half-line
glued with a piece of a periodic (elliptic in the cubic or quintic case) function
on the circle, with a single maximum at the antipodal point to the vertex

∞

In the subcritical case (Cacciapuoti, Finco N ’15, N Pelinovsky, Shaikova ’15) a
complex bifurcation diagram (more work needed for a complete understanding)
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The tadpole graph with critical power (N-Pelinovsky ’20)

In the following we will be interested in the NLS on the tadpole graph in the
absence of potentials and with the critical power p = 2 (Noja-Pelinovsky ’20)

I For p = 2 the ground state on any metric graph G with exactly one half-line
(e.g., on the tadpole graph T ) is attained if and only if (Adami Serra Tilli ’17)

µ ∈ (mR+ ,mR]

I Soliton of the quintic NLS equation on the line centered at x = 0

ϕω(x) = |ω|1/4sech1/2(2
√
|ω|x)

mR+ = ‖ϕω‖2L2(R+)
=
π

4
, mR = ‖ϕω‖2L2(R)

=
π

2
.

I Notice that both values are independent on ω for p = 2

I So, the ground state on the tadpole graph T exists if and only if

µ ∈ (mR+ ,mR] = (
π

4
,
π

2
] (and Eµ < 0)

I What happens above this range of masses (where Eµ = −∞)?



The tadpole graph with critical power

Minimizing energy at constant mass is not the only variational problem giving
information about standing waves.

An alternative constrained minimization problem is

B(ω) = inf
Φ∈H1(T )

{
Bω(Φ) : ‖Φ‖L6(T ) = 1

}
, ω < 0, (S)

where
Bω(Φ) := ‖∇Φ‖2

L2(T )
− ω‖Φ‖2

L2(T )
.

I The Euler Lagrange equations associated to this constrained variational
problem is the stationary NLS equation (after scaling to adjust coefficients)

−∆Φ− 3|Φ|4u = ωΦ (sNLS)

I Versions of this variational problem arise in the determination of the best
constant of the Sobolev inequality (equivalent to the Gagliardo–Nirenberg
inequality in Rn, but not on a metric graph)

I The above variational problem gives generally a larger set of standing waves
compared to the set of ground states

.



The tadpole graph with critical power

Theorem
For every ω < 0, there exists a global minimizer Φω ∈ H1(T ) of the constrained
minimization problem S. By regularity, this yields a strong solution to the
stationary NLS equation.
Φω is real up to the phase rotation, positive up to sign choice, symmetric on
[−π, π] and monotonically decreasing on [0, π] and [0,∞).

Main steps of the proof

I Bω(Φ) := ‖∇Φ‖2
L2(T )

− ω‖Φ‖2
L2(T )

is equivalent to the H1(T ) norm

I from ||Φ||6 = 1 one has B(ω) = infΦ∈H1(T ) {Bω(Φ)} > 0

I a minimizing sequence {Φn} satisfying ||Φn||6 = 1 and Bω(Φn)→ B(ω) has a
weak limit Φ∗. By Fatou Lemma, 0 ≤ ||Φ∗||6 ≤ lim ||Φn||6 = 1;
let γ := ||Φ∗||6

I if γ ∈ (0, 1) the sequence splits; ruled out.

I if γ = 0 the sequence vanishes: ruled out by a counterexample of a Φ0 with
||Φ0||6 = 1 and Bω(Φ0) < minΦ∈H1(R) Bω(Φ,R) (proven not possible)

I it follows γ = 1, Φ∗ is a strong limit of {Φn} and a minimizer

I restoring ω dependence one set Φ∗ = Φω ; regularity and B.C. are standard

I symmetry follows from Polya-Szegö inequality on metric graphs



The minimizer: mass-frequency relation

We want to understand the behavior of the family of standing waves Ψω in terms
of the mass, so giving relation with the problem of ground states.
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Figure: The horizontal dotted lines show the limiting levels mR+ and mR .



The minimizer: mass-frequency relation

I It is natural to introduce the following Lagrangian function (”action”, more
often) to treat our constrained variational problems

Sω(Ψ) = E(Ψ)− ωM [Ψ]

I Notice that S′ωΨ = 0 is nothing that the stationary equation, solved by Φω

To give information on local constrained stationary points (such that
S′ωΨω = 0) study second order variation of the action at the critical point Φω

S′′ω(Φω)η = 〈L1α, α〉+ 〈L2β, β〉

where η = α+ iβ ∼= (α, β) and (for general p)

L1 = −∆− ω − (2p+ 1)(p+ 1)Φ2p
ω

L2 = −∆− ω − (p+ 1)Φ2p
ω

I If
(L1α, α) ≥ C1||α||2H1 , (L2β, β) ≥ C2||β||2H1

one would have a local constrained minimum for the energy

(the higher order remainder is easily under control)



The minimizer: mass-frequency relation

However things are more complicated.

I L2 is annihilated by Φω , because

L2Φω = (−∆− ω − (p+ 1)Φ2p
ω )(Φω) = 0

coincides with the stationary equation

I L1 has at least a negative eigenvalue, because

〈L1Φω ,Φω〉 = −2p(p+ 1)||Φω ||66 < 0

I what we really need is that S′′ω is positive on the constrained space

L2
c = {u ∈ L2| 〈u,Φω〉 = 0}

I Now Ker(L2) = {Φω} and so L2 is positive on L2
c

I L1 has a single negative eigenvalue, but the eigenvector is not Φω

I However, if d
dω
||Φω ||2 < 0 (the Vakhitov-Kolokolov condition) one can show

that the eigenvalue of L1 on L2
c disappears

I Remaining issues:

I determination of the kernel of L1

I monotonicity of mass m(ω) = ||Φω ||2 as a function of frequency ω



The minimizer: stability and mass-frequency relation

Analysis of the two issues

I Non degeneracy of L1

Theorem
Let Φω ∈ D(∆) be a solution to the stationary quintic NLS equation for ω < 0
constructed by the previous variational problem. Then Ker(L1) = ∅.
Moreover σe(L1) = [|ω|,∞).

The proof of the triviality of Ker(L1) is rather direct and not immediate. Use of
dynamical system techniques

I Monotonicity of ω 7→ m(ω)

Theorem
Let Φω ∈ D(∆) be the solution to the stationary NLS equation for ω < 0
previously constructed.

Then, the mapping ω 7→ m(ω) = ||Φω ||2 is C1 for every ω < 0 and satisfies
m(ω)→ mR+ as ω → 0 and m(ω)→ mR as ω → −∞.

Moreover, there exist a single ω1 with −∞ < ω1 < 0 and m(ω1) > mR such that
m′(ω) > 0 for ω ∈ (−∞, ω1) and m′(ω) < 0 for ω ∈ (ω1, 0).

The proof make heavy use of properties of modified Jacobi elliptic functions
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Figure: The horizontal dotted lines show the limiting levels mR+ and mR .

Theorem
The standing wave Φω is a local minimizer of the energy E(Ψ) subject to the
constraint M(Ψ) = µ(ω) for ω ∈ (ω1, 0); it is a saddle point of the energy E(Ψ)
subject to the constraint M(Ψ) = µ(ω) for ω ∈ (−∞, ω1).



Remarks and conclusions

I Ground states are orbitally stable for the NLS flow (Cazenave-Lions
argument).

I Using the action as a Lyapunov function (see the classical theory of
Weinstein ’86 and Grillakis-Shatah-Strauss ’87) one concludes that the
standing waves e−iωtΦω are orbitally stable for the NLS flow for ω ∈ (ω1, 0)
(local constrained minima of the energy are orbitally stable)

I In particular, being m(ω1) > mR := m(ω0), to the range ω ∈ (ω1, ω0)
correspond stable standing waves that are not ground states

I Uniqueness of ground states is treated in Dovetta-Serra-Tilli 20

I A different situation, the line with a pendant, is treated in
Pierotti-Soave-Verzini ’2021

I Much to do as regards the complete scenario; many other bifurcations arise
as the direct analysis of the stationary equation of the cubic NLS on the
tadpole reveals

I Extension to flower graphs (several circles attached to the half-line end) due
to Kairzhan-Marangell-Pelinovsky-Xiao (2021)

Thanks for the attention!
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