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Motto

Rudolf Clasius
1822–1888

Basic principles of thermodynamics of closed systems

Die Energie der Welt ist constant. Die Entropie der Welt
strebt einem Maximum zu.

Turbulence - ergodic hypothesis

Time averages along trajectories of the flow converge, for
large enough times, to an ensemble average given by a
certain probability measure

Andrey
Nikolaevich
Kolmogorov
1903–1987



Navier–Stokes–Fourier system

Mass conservation

∂t%+ divx(%u) = 0

Newton’s Second law (momentum balance)

∂t(%u) + divx(%u⊗ u) +∇xp = divxS + %g

Second law of thermodynamics (entropy balance)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
=

1

ϑ

(
S : Dxu− q · ∇xϑ

ϑ

)

Newton’s rheological law

S(ϑ,Dxu) = µ(ϑ)

(
∇xu +∇t

xu− 2

d
divxuI

)
+ η(ϑ)divxuI

Fourier’s law
q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ



Boundary conditions

Closed systems

impermeability: u · n|∂Ω = 0, no–slip: u× n|∂Ω = 0

thermal insulation: q · n|∂Ω = 0

Open systems

u|∂Ω = uB , inflow Γin : uB · n < 0, outflow Γout : uB · n > 0

%|Γin = %B

heat flow: %e(%, ϑ)(uB · n) + q · n = fi,B(uB · n) on Γin, q · n = 0 on Γout

alternatively

ϑ = ϑB on ∂Ω



Necessary ingredients

Global existence: The problem admits global–in–time solutions de-
fined for all t ≥ t0 for any admissible data

Dissipativity (in the sense of Levinson): All solutions are eventually
trapped in a bounded absorbing set

Asymptotic compactness: Global in time solutions are precompact
with respect to the time shifts; they approach a compact ω−limit set
as t →∞



Long–time behavior, closed systems

Total energy

E(%, ϑ, u) =
1

2
%|u|2 + %e(%, ϑ)

Dichotomy for the closed systems

g = g(x)

Either

g = ∇xG ⇒ all solutions tend to a single equilibrium

or

g 6= ∇xG ⇒
∫

Ω

E(t, ·) dx →∞ as t →∞



Dynamical systems

Dynamical system

U(t, ·) : [0,∞)× X → X

• Closed system: U(t,X0)→ U∞ equilibrium solution as t →∞

• Open system:
1

T

∫ T

0

F (U(t,X0))dt →
∫
X

F (X ) dµ, T →∞

µ a.s. in X0

Principal mathematical problems:

Low regularity of global in time solutions
Global in time solutions necessary. For many problems in fluid dynamics –
Navier–Stokes or Euler system – only weak solutions available

Lack of uniqueness
Solutions do not, or at least are not known to, depend uniquely on the
initial data. Spaces of trajectories: Sell, Nečas, Temam and others

Propagation of oscillations
Realistic systems are partly hyperbolic: propagation of oscillations “from
the past”, singularities



Weak formulation

∂t%+ divx(%u) = 0, %|Γin = %B

∂t(%u) + divx(%u⊗ u) +∇xp = divxS + %g, u|∂Ω = uB

∂t(%s) + divx(%su) + divx

(q

ϑ

)
≥ 1

ϑ

(
S : Dxu− q · ∇xϑ

ϑ

)

ballistic energy balance

d

dt

∫
Ω

(
1

2
%|u− uB |2 + %e(%, ϑ)− ϑ̃%s(%, ϑ)

)
dx ...



Abstract setting

George Roger
Sell
1937–2015

Space of entire trajectories

T = Cloc(R;X ), t ∈ (−∞,∞)

ω–limit set

ω[U(·,X0)] ⊂ T

ω[U(·,X0)] =
{

V ∈ T
∣∣∣ U(·+ tn,X0)→ V in T as tn →∞

}
Necessary ingredients

Dissipativity – ultimate boundedness of trajectories

Compactness – in appropriate spaces



Strong and weak ergodic hypothesis

Krylov – Bogolyubov construction

T 7→ 1

T

∫ T

0

δU(·+t,X0)dt – a family of probability measures on T

tightness in T ⇒ Tn 7→
1

Tn

∫ Tn

0

δU(·+t,X0)dt → µ ∈ P[T ]

[T , µ] stationary statistical solution

Ergodic hypothesis ⇔ µ is unique ⇒ T 7→ 1

T

∫ T

0

δU(·+t,X0)dt → µ

unique ≈ unique on ω[U(·,X0)]

Weak ergodic hypothesis

lim
T→∞

1

T

∫ T

0

δU(·+t,X0)dt = µ exists in the narrow sense in P[T ]

[T , µ] stationary statistical solution



Global bounded trajectories

Global in time weak solutions
U = [%,m = %u, S = %s] – weak solution of the Navier–Stokes–Fourier
system satisfying ballistic energy balance and defined for t > T0

Bounded energy

lim sup
t→∞

∫
Ω

E(%,m, S) dx ≤ E∞

Available

Existence: E.F. and A. Novotný, Commun. Math. Phys. 2021
N. Chaudhuri and E.F. (Dirichlet b.c. for the temperature) Preprint 2021

Globally bounded solutions: F. Fanelli, E. F., and M. Hofmanová arxiv
preprint No. 2006.02278, 2020
J. Březina, E. F., and A. Novotný, Communications in PDE’s 2020
E.F. , A. Novotný, M. Petcu – book in preparation



Hard sphere pressure EOS

p(%, ϑ) = pel(%) + pm(%, ϑ) + prad(ϑ)

pm ≈ %ϑ, Prad ≈ ϑ4

pel ∈ C [0, %)∩C 1(0, %), p′el(%) > 0 for % > 0, lim
%→%−

pel(%) =∞

Ultimate boundedness of trajectories – bounded absorbing set

lim sup
t→∞

∫
Ω

E(%,m, S) dx ≤ E∞

E∞ – universal constant



ω – limit sets

Trajectory space

X =
{

(%,m, S)
∣∣∣ %(t, ·) ∈ Lγ(Ω), m(t, ·) ∈ L

2γ
γ+1 (Ω;Rd) ↪→W−k,2

S(t, ·) ∈M(Ω)
}

T = Cloc(R; L1 ×W−k,2)× Dloc(R;W−k,2)

Fundamental result on compactness [Fanelli, EF, Hofmanová, 2020]

The ω–limit set ω[%,m, S ] of each global in time trajectory with globally
bounded energy is:

non − empty

compact in T

time shift invariant

consists of entire (defined for all t ∈ R) weak solutions of the
Navier–Stokes–Fourier system



Propagation of oscillations

Equation of continuity

∂t%+ u · ∇x% = −%divxu

Renormalized equation of continuity

∂tb(%) + divx(b(%)u) +
(
b′(%)%− b(%)

)
divxu = 0

Weak convergence

b(%n)→ b(%) weakly in L1

∂t
[
b(%)− b(%)

]
+ divx

(
b(%)u− b(%)u

)
=
(
b′(%)%− b(%)

)
divxu−

(
b′(%)%− b(%)

)
divxu[

b(%)− b(%)
]
(0, ·) = 0 is needed!



Vanishing oscillation defect, I

Compactness of densities:

%n ≡ %(·+ Tn)→ % in Cweak,loc(R; Lγ(Ω))

%n log(%n)→ % log(%) ≥ % log(%)

oscillation defect: D(t) ≡
∫

Ω

% log(%)− % log(%) dx ≥ 0

Renormalized equation:

d

dt
D +

∫
Ω

[
%divxu− %divxu

]
dx = 0, 0 ≤ D ≤ D, t ∈ R

Lions’ identity

%divxu− %divxu = p(%, ϑ)%− p(%, ϑ) % ≥ 0



Vanishing oscillation defect, II

Crucial differential inequality

d

dt
D + Ψ(D) ≤ 0, 0 ≤ D ≤ D, t ∈ R

Ψ ∈ C(R), Ψ(0) = 0, Ψ(Z)Z > 0 for Z 6= 0

⇒

D ≡ 0



Statistical stationary solutions

Application of Krylov – Bogolyubov method

1

Tn

∫ Tn

0

δ%(·+t,·),m(·+t,·),S(·+t,·) dt → µ ∈ P[T ] narrowly

[T , µ] (canonical representation) – statististical stationary solution

µ(t)|X (marginal) independent of t ∈ R

Application of Birkhoff – Khinchin ergodic theorem

1

T

∫ T

0

F (%(t, ·),m(t, ·), S(t·))dt → F as T →∞

F bounded Borel measurable on X for µ− a.a. (%,m) ∈ ω


