Isometries of Wasserstein spaces

Dániel Virosztek IST Austria 8th European Congress of Mathematics, 24 June 2021

Joint work with G. P. Gehér (U Reading) and T. Titkos (Rényi)

Introduction

- 2 Isometries of Wasserstein spaces
 - The discrete case
 - Unit interval, real line, and Euclidean spaces

Future plan

Dániel Virosztek

What is a Wasserstein space?

- roughly speaking: the space of sufficiently concentrated probability measures endowed with a metric which is calculated by means of optimal transport (Monge: 1781, Kantorovich: WW II, Villani: 2010, Figalli: 2018)
- more precisely: for a Polish space (X, ρ) and a parameter 0 the*p-Wasserstein space*is

$$\mathcal{W}_{\mathbf{p}}(X) = \left\{ \mu \in \mathcal{P}(X) \,\middle|\, \int_{X} \rho(x, \hat{x})^{\mathbf{p}} \, \mathrm{d}\mu(x) < \infty \text{ for some } \hat{x} \in X \right\}$$

endowed with the *p-Wasserstein distance*

$$d_{\mathcal{W}_{\boldsymbol{\rho}}}(\mu,\nu) := \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{X^2} \rho(x,y)^{\boldsymbol{\rho}} \, \mathrm{d}\pi(x,y)\right)^{\min\left\{\frac{1}{\boldsymbol{\rho}},1\right\}}.$$

where $\Pi(\mu, \nu) = \{\pi \in \mathcal{P}(X^2) \mid \pi_1 = \mu, \pi_2 = \nu\}$ is the collection of all transport plans between μ and ν

Probabilistic and dynamical interpretations

• a probabilistic reformulation of the *p*-Wasserstein distance:

$$d_{\mathcal{W}_p}(\mu,\nu) = \left(\inf_{(\mathsf{x},\mathsf{y}):\,\mathsf{x}\sim\mu,\,\mathsf{y}\sim\nu}\mathsf{E}\left(d(\mathsf{x},\mathsf{y})^p\right)\right)^{\min\left\{\frac{1}{p},1\right\}}.$$

 a dynamical interpretation: Benamou-Brenier formula (fluid mechanics or "Eulerian" formulation):

$$d_{\mathcal{W}_{2}}^{2}(\mu,\nu) = \inf_{(\rho,\nu) \in V(\mu,\nu)} \int_{0}^{1} \int_{R^{n}} \rho_{t}(x) \|v_{t}(x)\|^{2} dx dt,$$

where $\{\rho_t\}_{t\in[0,1]}$ is the weak solution of the linear transport equation

$$\frac{\partial \rho_t}{\partial t} + \nabla_{\mathsf{x}} \cdot (\rho_t \mathsf{v}_t) = 0$$

with initial and final conditions $ho_0=\mu,
ho_1=
u$

Dániel Virosztek 4/17

Motivation and basic notions

- when working in a metric setting, a natural question arises: how do isometries look like?
- classical results:
 - the Banach–Lamperti theorem describing all linear non-surjective isometries of L^p spaces
 - the Banach–Stone theorem on the group of all linear isometries of commutative C^* -algebras (C(K))
- Bertrand and Kloeckner: a series of papers on isometries of quadratic
 Wasserstein spaces over various metric spaces
- Kloeckner:¹ a description of the isometry group of $W_2(E)$ for $\dim(E) < \infty$
- main question: is $W_p(X)$ more symmetric than X?
- isometric rigidity: $\operatorname{Isom}(\mathcal{W}_p(X)) = \operatorname{Isom}(X)$

Dániel Virosztek 5 / 17

¹B. Kloeckner, *A geometric study of Wasserstein spaces: Euclidean spaces*, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze IX (2010), 297–323.

Basic notions, notation

Definition (Push-forward)

For a measurable map $g: X \to X$ the induced *push-forward map* $g_{\#} \colon \mathcal{P}(X) \to \mathcal{P}(X)$ is defined by

$$(g_{\#}(\mu))(A) = \mu(g^{-1}[A])$$
 $(A \subseteq X \text{ Borel set}, \ \mu \in \mathcal{P}(X))$

where $g^{-1}[A] = \{x \in X \mid g(x) \in A\}$. We call $g_{\#}(\mu)$ the *push-forward* of μ with g. If $\psi \in \mathrm{Isom}(\mathbb{R})$, then the push-forward map $\psi_{\#}$ is an isometry of $\mathcal{W}_p(X)$, and the embedding

$$\# : \operatorname{Isom}(X) \to \operatorname{Isom}(\mathcal{W}_p(X)), \qquad \psi \mapsto \psi_\#$$

is a group homomorphism. Isometries of the form $\psi_{\#}$ are called *trivial isometries*.

Basic notions, notation

- p-Wasserstein distance expressed by cumulative distribution and quantile functions:
 - Vallender:²

$$d_{\mathcal{W}_{\mathbf{1}}}(\mu,\nu) = \int_{-\infty}^{\infty} |F_{\mu}(x) - F_{\nu}(x)| \, dx = \int_{0}^{1} |F_{\mu}^{-1}(x) - F_{\nu}^{-1}(x)| \, dx$$

• this can be generalized:³

$$d_{\mathcal{W}_p}\left(\mu,\nu\right) = \left(\int_0^1 \left|F_\mu^{-1} - F_\nu^{-1}\right|^p \mathrm{d}t\right)^{\frac{1}{p}} \qquad \left(p > 1, \; \mu,\nu \in \mathcal{W}_p(\mathbb{R})\right),$$

58, American Mathematical Society, Providence, RI, 2003.

²S. S. Vallender. Calculation of the Wasserstein distance between probability distributions on the line, Theory Probab. Appl. 18 (1973), 784–786.

³C. Villani, *Topics in optimal transportation*, Graduate studies in Mathematics vol.

The discrete case

Theorem (Gehér, Titkos, V., J. Math. Anal. Appl. 480 (2019), 123435)

For $p \in (0, \infty)$ and $f : W_p(\mathcal{X}) \to W_p(\mathcal{X})$ an isometric embedding, there exists a unique family of measures

$$\Phi := (\varphi_{x,t})_{x \in \mathcal{X}, t \in (0,1]} \in \mathcal{M}(\mathcal{X})^{\mathcal{X} \times (0,1]}$$

that satisfies the properties

- (a) for all $x \neq y$: $S_{\varphi_{x,1}} \cap S_{\varphi_{y,1}} = \emptyset$,
- (b) for all $x \in \mathcal{X}$ and $0 < t \le 1$: $\varphi_{x,t}(\mathcal{X}) = t$,
- (c) for all $x \in \mathcal{X}$ and $0 < s < t \le 1$: $\varphi_{x,s} \le \varphi_{x,t}$,

and that generates f in the sense that $f(\mu) = \sum_{x \in S_{\mu}} \varphi_{x,\mu(\{x\})}$. Conversely, every $\mathcal{X} \times (0,1]$ -indexed family of measures satisfying (a)–(c) generates an isometric embedding.

Dániel Virosztek 8 / 17

4 D > 4 B > 4 B > 4 B >

The discrete case

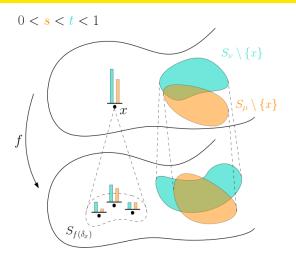


Figure: $f(\mu)|_{S_{f(\delta_x)}} \leq f(\nu)|_{S_{f(\delta_x)}}$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Unit interval, real line, and Euclidean spaces

Theorem (Gehér, Titkos, V., Trans. Amer. Math. Soc. (2020) & G-T-V, arXiv:2102.02037 (2021))

For $0 , the Wasserstein space <math>W_p(X)$ is isometrically rigid for every Polish space X. Moreover, the isometry group of $W_p(X)$ depending on $X \in \{[0,1], \mathbb{R}, E\}$ and p > 1 is isomorphic to:

$\overline{\mathrm{Isom}(\mathcal{W}_p(X))}$	X = [0, 1]	$X = \mathbb{R}$	X = E
p = 1	$C_2 \times C_2$	$\mathrm{Isom}(\mathbb{R})$	Isom(E)
$p > 1, p \neq 2$	C_2	$\mathrm{Isom}(\mathbb{R})$	Isom(E)
p = 2	C_2	$\operatorname{Isom}(\mathbb{R})\ltimes\operatorname{Isom}(\mathbb{R})$	$\mathrm{Isom}(E)\ltimes O(E)$

E stands for a separable real Hilbert space. Color code: Kloeckner (2010), G-T-V (2020-21), Kloeckner: $\dim(E) < \infty$, G-T-V: $\dim(E) = \infty$.

Dániel Virosztek

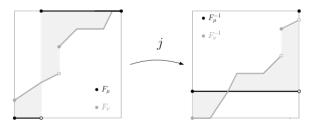
The unit interval

Theorem (G-T-V, TAMS (2020))

Every isometric embedding of $W_1([0,1])$ is surjective, and

$$\mathrm{Isom}(\mathcal{W}_{\textcolor{red}{\mathbf{1}}}([0,1])) = \{\mathrm{id}, r_{\#}, j, r_{\#}j\} \simeq C_2 \times C_2$$

(Klein group), where r is the reflection of [0,1], and j is the flip operation defined by $F_{i(\mu)}=F_{\mu}^{-1}$



40 × 40 × 40 × 40 × 10 × 00 0

The action of isometries of $W_1([0,1])$

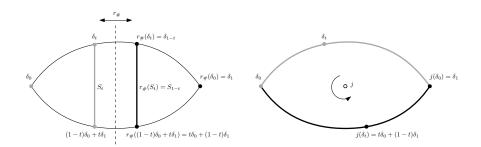
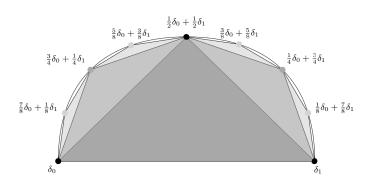


Figure: The action of $r_{\#}$ and j on $\mathcal{W}_1([0,1])$

Dániel Virosztek 12 / 17

The shape of $W_2([0,1])$



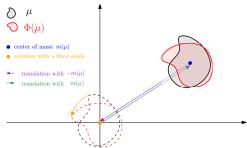
(ロ) (部) (注) (注) 注 りのの

Wasserstein-Hilbert spaces (G-T-V, arXiv:2102.02037)

- (a) If $p \neq 2$, then Φ is necessarily a push-forward of an isometry ψ of E, that is, $\Phi(\mu) = \psi_{\#}\mu$.
- (b) If p = 2 and E is infinite dimensional then

$$\Phi(\mu) = \left(\psi \circ t_{m(\mu)} \circ R \circ t_{m(\mu)}^{-1}\right)_{\#} \mu \qquad (\mu \in \mathcal{W}_2(E)),$$

where $\psi \colon E \to E$ is an affine, $R \colon E \to E$ is a linear isometry, and $t_{m(\mu)} \colon E \to E$ is the translation on E by the barycenter $m(\mu)$ of μ



Dániel Virosztek 14 / 17

Wasserstein-Hilbert spaces (G-T-V, arXiv:2102.02037)

main tool: the Wasserstein potential defined by

$$\mathcal{T}^{p}_{\mu} \colon E \to \mathbb{R}, \quad x \mapsto d^{p}_{\mathcal{W}_{p}}(\mu, \delta_{x}) = \int_{E} \|x - y\|^{p} d\mu(y)$$

from which atoms can be recovered if $1 \le p < \infty$, $2 \nmid p$ by

$$\lim_{h \to 0} \frac{\sum_{j=0}^{2k} {2k \choose j} (-1)^j \mathcal{T}^p_{\mu} (x + (k-j)h)}{\left(\sum_{j=0}^{2k} {2k \choose j} (-1)^j |k-j|^p\right) \|h\|^p} = \mu(\{x\})$$

• for 2 p the potential does not contain enough information about the measure, still, we proved rigidity by different techniques

4□ > 4圖 > 4 = > 4 = > = 900 Dániel Virosztek

Future plan

Describe the isometric structure of *p*-Wasserstein spaces over:

- graphs with the shortest path distance
- Banach spaces, length spaces, non-branching spaces: no inner product structure ⇒ genuinely new methods are needed
- spheres, tori: Fourier method combined with the Wasserstein potential technique
- projective spaces: represent the sets of pure states in quantum mechanics

Thank you for your kind attention!

