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A Riemannian metric g on a complex manifold (M, J) is Kähler if

1 g(·, ·) = g(J·, J·) (g Hermitian)

2 dΩg = 0 (where Ωg (·, ·) = g(J·, ·)).

dimC = 1 : (M, J, g) Kähler

dimC = 2:

Theorem (Miyaoka, Todorov, Siu, Buchdahl, Lamari)

(M, J) compact complex surface admits a Kähler metric ⇔ b1
even.
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Non-Kähler surfaces (known): Kodaira surfaces, properly elliptic
surfaces, Inoue surfaces, Hopf surfaces, Kato surfaces

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics?
Yes!

pluriclosed metrics (∂∂Ω = 0, Gauduchon metrics in
dimC = 2)

except a subclass of Inoue surfaces, all are lcK (Tricerri,
Ornea, Gauduchon, Belgun, Brunella)

What about their higher dimensional analogues?
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Kato manifolds = compact complex manifolds of dimC ≥ 2
admitting a global spherical shell
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Kato manifolds

(Kato, ’77) - characterization of compact complex manifolds of
dimC ≥ 2, admitting a global spherical shell

Definition

A spherical shell (SS) in a complex manifold M, dimCM = n is an
open subset V ⊂ M that is biholomorphic to a standard
neighbourhood of S2n−1 ⊂ Cn

(V ' Sε := {z ∈ Cn | 1− ε < ||z || < 1 + ε}, ε > 0).

Definition

A global spherical shell (GSS) is a spherical shell such that M \ V
is connected.
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Manifolds with global spherical shell

Theorem (Kato, ’77)

Any compact manifold of dimC ≥ 2 containing a GSS is obtained
in the following way: Let B ⊂ Cn, B := {z ∈ Cn | ||z || < 1}

Let π : B̂→ B be a modification at a finite number of points:

Let σ : B→ B̂ be a holomorphic embedding.

Define W := B̂ \ σ(B1−ε).

Define the complex manifold X = W /∼ σ ◦ π .

(π, σ) Kato data ⇒ X (π, σ)
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Special case π = id
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Special case σ(0) ∩ π−1(0) = ∅:
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The universal cover:
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The universal cover (Modification of Hopf:)
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The universal cover:

π1(M) ' Z(⇒ b1 = 1) cannot support Kähler metrics.
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Theorem (Kato, ’77)

For any X (π, σ), there exists a flat deformation p : X → D such
that p−1(0) ' X (π, σ) and p−1(t) is a modification of a Hopf
manifold.
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Kato surfaces

1 dimC = 2 : π = composition of smooth blow-ups

2 class VII surfaces:

b2 = 0 : Hopf, Inoue-Bombieri surfaces
b2 ≥ 1: not classified (GSS conjecture: Kato surfaces are all!)

3 b2 = ] blow-ups

4 they are uniquely determined by the germ
π ◦ σ : (C2, 0)→ (C2, 0)
(not true in dimC ≥ 3.)

5 Theorem (Brunella, ’11): Any Kato surface admits locally
conformally Kähler metrics.
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Definition

A Hermitian metric ω on (M, J) is locally conformally Kähler
(lcK) if there exists θ ∈ Ω1(M), dθ = 0 such that dω = θ ∧ω.

An lcK structure ({ω}, [θ]) is equivalent to a Kähler metric Ω
on the universal cover, on which π1(M) acts by homotheties.

Question: Should we expect all Kato manifolds to admit lcK
metrics?
Ω is

balanced if dΩn−1 = 0 (Michesohn)

pluriclosed if ∂∂Ω = 0 (Bismut)

strongly Gauduchon if ∂Ωn−1 is ∂-exact (Popovici)

Hermitian symplectic if Ω is the (1, 1)-part of a closed 2-form
(Streets, Tian).
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LCK Kato manifolds

Theorem (Istrati, -, Pontecorvo, Ruggiero, ’20)

X (π, σ) admits a locally conformally Kähler metric if and only if
π : B̂→ B is a Kähler modification.

When π is a composition of smooth blow-ups, then X (π, σ) is
lcK

example of non-Kähler π : B̂→ B (in dimC ≥ 3) based on
Hironaka’s examples.
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Idea (of Brunella): Construct a Kähler metric Ω on W such that
(σ ◦ π)∗Ω∂+ = c · Ω∂− .

Conversely, show that B̂ \ σ({0}) is Kähler.
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Theorem (Istrati, -, Pontecorvo, Ruggiero, 2020)

1 X (π, σ) does not admit strongly Gauduchon metrics.

2 If H1,2

∂
(X (π, σ)) = 0, then X (π, σ) does not admit pluriclosed

metrics unless X (π, σ) is a Kato surface.

balanced ⇒ strongly Gauduchon

(Yau, Zhao, Zheng, 19): Hermitian symplectic ⇒ strongly
Gauduchon

⇒ X (π, σ) is never balanced/Hermitian symplectic.

Idea of the proof: use p : X → D and the deformation openness of
strongly Gauduchon (Popovici) and of pluriclosed, provided
H1,2

∂
(X (π, σ)) = 0 (Cavalcanti). Both sG/pluriclosed are stable

under modifications in points (Popovici, Fino/Tomassini) and
Hopf manifolds cannot support sG/pluriclosed.
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Questions:

topological and metric properties: “compare” to modifications
of Hopf

analytical properties (Dolbeault cohomology,
Kodaira/algebraic dimension): h∗,∗

∂
(Xt) ≤ h∗,∗

∂
(X0)

- not VERY useful

⇒ start to consider some special cases/impose some symmetries.
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Special cases

baby case (N. Istrati, -, M. Pontecorvo, ’19): X (π, σ) in the
special case when π : B̂→ B is a composition of blow-ups in
points and σ is a blow-up chart.

toric case (N. Istrati, -, M. Pontecorvo, M. Ruggiero, ’20)
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When π : B̂→ B is a succession of blow-ups in points and σ
is a standard blow-up chart:

generalization of hyperbolic Inoue surfaces
analytic invariants: Kod = −∞, h1,0 = 0, H0(X ,Θ);
topological invariants: de Rham cohomology
X (π, σ)←→ class of matrices inGLn(Z) with special
properties (X (π, σ) ←→ XA)

Alexandra Otiman Geometry of Kato manifolds



When π : B̂→ B is a succession of blow-ups in points and σ
is a standard blow-up chart:

generalization of hyperbolic Inoue surfaces

analytic invariants: Kod = −∞, h1,0 = 0, H0(X ,Θ);
topological invariants: de Rham cohomology
X (π, σ)←→ class of matrices inGLn(Z) with special
properties (X (π, σ) ←→ XA)

Alexandra Otiman Geometry of Kato manifolds



When π : B̂→ B is a succession of blow-ups in points and σ
is a standard blow-up chart:

generalization of hyperbolic Inoue surfaces
analytic invariants: Kod = −∞, h1,0 = 0, H0(X ,Θ);

topological invariants: de Rham cohomology
X (π, σ)←→ class of matrices inGLn(Z) with special
properties (X (π, σ) ←→ XA)

Alexandra Otiman Geometry of Kato manifolds



When π : B̂→ B is a succession of blow-ups in points and σ
is a standard blow-up chart:

generalization of hyperbolic Inoue surfaces
analytic invariants: Kod = −∞, h1,0 = 0, H0(X ,Θ);
topological invariants: de Rham cohomology

X (π, σ)←→ class of matrices inGLn(Z) with special
properties (X (π, σ) ←→ XA)

Alexandra Otiman Geometry of Kato manifolds



When π : B̂→ B is a succession of blow-ups in points and σ
is a standard blow-up chart:

generalization of hyperbolic Inoue surfaces
analytic invariants: Kod = −∞, h1,0 = 0, H0(X ,Θ);
topological invariants: de Rham cohomology
X (π, σ)←→ class of matrices inGLn(Z) with special
properties (X (π, σ) ←→ XA)

Alexandra Otiman Geometry of Kato manifolds



When π : B̂→ B is a succession of blow-ups in points and σ
is a standard blow-up chart:

generalization of hyperbolic Inoue surfaces
analytic invariants: Kod = −∞, h1,0 = 0, H0(X ,Θ);
topological invariants: de Rham cohomology
X (π, σ)←→ class of matrices inGLn(Z) with special
properties (X (π, σ) ←→ XA)

Alexandra Otiman Geometry of Kato manifolds



Toric Kato

(π, σ) is a toric Kato data if

π : B̂→ B is a toric modification at 0 (i.e. comes from a toric
modification at 0, π : Ĉn → Cn. )
σ : B→ B̂ satisfies σ(λx) = ν(λ)σ(x), ν ∈ Aut((C∗)n).

toric Kato data ⇒ X (π, σ) toric Kato manifold.

Tn does not act on X (π, σ)!

Key: give an equivalent construction!
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(π, σ)⇒ A ∈ GLn(Z) and Σ̂ fan

X̃ (π, σ) ⊆ X (Σ,Zn) (X (Σ,Zn) toric manifold associated to
an infinite fan Σ)

generalization of hyperbolic and parabolic Inoue surface

analytic invariants: Kod = −∞, several Hodge numbers
(h0,p, h1,p, hp,0)

Tool: build a flat deformation p : X → B such that
p−1(t) ' X (π, σ) for t 6= 0 and p−1(0) is a singular variety.

A ∈ GLn(Z)⇒


toric Kato manifolds of hyperbolic type
toric Kato manifolds of parabolic type
primary Hopf manifolds
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Theorem (Istrati, -, Pontecorvo, Ruggiero, ’20)

Let X be a toric Kato manifold.

1 X is a primary Hopf manifold if and only if any of its
(C∗)n-invariant curves is elliptic;

2 X is of hyperbolic type if and only if any (C∗)n-invariant
curve is rational;

3 X is of parabolic type if and only if X contains a unique
(C∗)n-invariant elliptic curve, and at least one rational
(C∗)n-invariant curve.
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1 constructed explicit example of Kato toric manifold X (π, σ)
that does not admit lcK metrics

2 hyperbolic case ⇒ h1,2 = 0 ⇒ no pluriclosed metrics in
dimC ≥ 3.
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Thank you very much for your attention!
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