Geometry of Kato manifolds

Alexandra Otiman (University of Florence and Institute of Mathematics of the Romanian Academy) joint work with N. Istrati, M. Pontecorvo and M. Ruggiero

> -Topics in complex and quaternionic geometry-Portorož, June 23rd, 2021

Plan of the talk:

Plan of the talk: Kato manifolds

▶ ▲ 문 ▶ ▲ 문 ▶

• Construction & motivation

★ ∃ → ★ ∃

- Construction & motivation
- Existence of special metrics

- Construction & motivation
- Existence of special metrics
- Analytic invariants and connections to toric geometry

- Construction & motivation
- Existence of special metrics
- Analytic invariants and connections to toric geometry Interesting non-Kähler manifolds

• • = • • = •

A Riemannian metric g on a complex manifold (M, J) is **Kähler** if $g(\cdot, \cdot) = g(J \cdot, J \cdot)$

伺 ト イヨ ト イヨ ト

A Riemannian metric g on a complex manifold (M, J) is **Kähler** if $g(\cdot, \cdot) = g(J \cdot, J \cdot)$ (g Hermitian)

伺 ト イヨ ト イヨ ト

•
$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
 (g Hermitian)
• $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J \cdot, \cdot)$).

э

• • = • • = •

•
$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
 (g Hermitian)

$$d\Omega_g = 0 \quad (\text{where } \Omega_g(\cdot, \cdot) = g(J \cdot, \cdot)).$$

•
$$\dim_{\mathbb{C}} = 1$$
:

• • = • • = •

•
$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
 (g Hermitian)
• $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J \cdot, \cdot)$).

•
$$\dim_{\mathbb{C}} = 1 : (M, J, g)$$
 Kähler

э

• • = • • = •

•
$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
 (g Hermitian)
• $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J \cdot, \cdot)$).

•
$$\dim_{\mathbb{C}} = 1 : (M, J, g)$$
 Kähler

•
$$\dim_{\mathbb{C}} = 2$$
:

•
$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
 (g Hermitian)
• $d\Omega_g = 0$ (where $\Omega_g(\cdot, \cdot) = g(J \cdot, \cdot)$).

•
$$\dim_{\mathbb{C}} = 1 : (M, J, g)$$
 Kähler

•
$$\dim_{\mathbb{C}} = 2$$
:

Theorem (Miyaoka, Todorov, Siu, Buchdahl, Lamari)

(M, J) compact complex surface admits a Kähler metric $\Leftrightarrow b_1$ even.

< ∃ →

★ ∃ ► < ∃ ►</p>

(Global Spherical Shell) Conjecture: These are all the surfaces!

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics?

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

pluriclosed metrics

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

• pluriclosed metrics ($\partial\overline{\partial}\Omega=0,$ Gauduchon metrics in $\dim_{\mathbb{C}}=2)$

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial\overline{\partial}\Omega=0$, Gauduchon metrics in $\dim_{\mathbb{C}}=2$)
- except a subclass of Inoue surfaces, all are IcK (Tricerri, Ornea, Gauduchon, Belgun, Brunella)

(Global Spherical Shell) Conjecture: These are all the surfaces!

Question: Do non-Kähler surfaces carry special Hermitian metrics? Yes!

- pluriclosed metrics ($\partial\overline{\partial}\Omega=0$, Gauduchon metrics in $\dim_{\mathbb{C}}=2$)
- except a subclass of Inoue surfaces, all are IcK (Tricerri, Ornea, Gauduchon, Belgun, Brunella)

What about their higher dimensional analogues?

Kato manifolds = compact complex manifolds of $\dim_{\mathbb{C}} \geq 2$ admitting a global spherical shell

• • = • • = •

(Kato, '77) - characterization of compact complex manifolds of $\dim_{\mathbb{C}}\geq 2,$ admitting a global spherical shell

伺 ト イヨト イヨト

(Kato, '77) - characterization of compact complex manifolds of $\dim_{\mathbb{C}}\geq 2,$ admitting a global spherical shell

Definition

A spherical shell (SS) in a complex manifold M, $\dim_{\mathbb{C}} M = n$ is an open subset $V \subset M$ that is biholomorphic to a standard neighbourhood of $\mathbb{S}^{2n-1} \subset \mathbb{C}^n$ ($V \simeq S_{\epsilon} := \{z \in \mathbb{C}^n \mid 1 - \epsilon < ||z|| < 1 + \epsilon\}, \epsilon > 0$).

伺 と く ヨ と く ヨ と

(Kato, '77) - characterization of compact complex manifolds of $\dim_{\mathbb{C}}\geq 2,$ admitting a global spherical shell

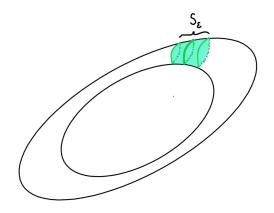
Definition

A spherical shell (SS) in a complex manifold M, $\dim_{\mathbb{C}} M = n$ is an open subset $V \subset M$ that is biholomorphic to a standard neighbourhood of $\mathbb{S}^{2n-1} \subset \mathbb{C}^n$ ($V \simeq S_{\epsilon} := \{z \in \mathbb{C}^n \mid 1 - \epsilon < ||z|| < 1 + \epsilon\}, \epsilon > 0$).

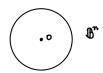
Definition

A global spherical shell (GSS) is a spherical shell such that $M \setminus V$ is connected.

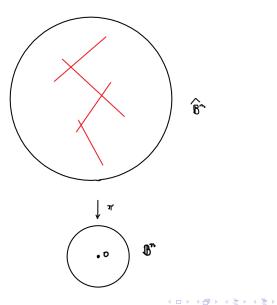
伺 ト イヨ ト イヨト

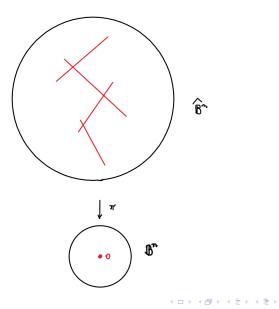


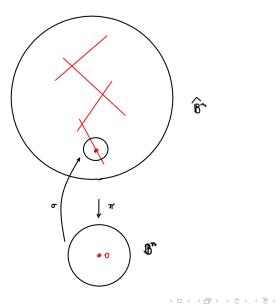
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

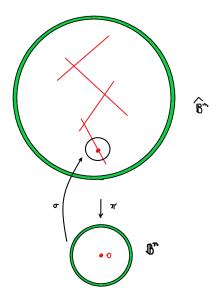


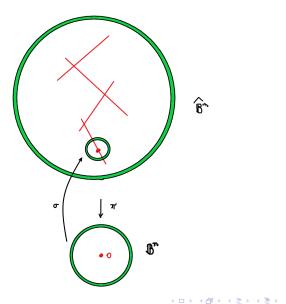
・ロト ・四ト ・ヨト ・ヨト

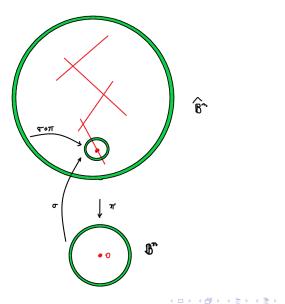




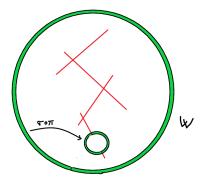






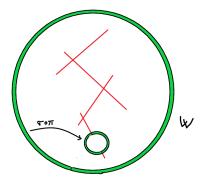


Kato manifolds



< ロ > < 部 > < き > < き > <</p>

Kato manifolds



X (л,°}= W/тол

・ロト ・四ト ・ヨト ・ヨト

Any compact manifold of dim_{$\mathbb{C}} \geq 2$ containing a GSS is obtained in the following way: Let $\mathbb{B} \subset \mathbb{C}^n$, $\mathbb{B} := \{z \in \mathbb{C}^n \mid ||z|| < 1\}$ </sub>

- Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a modification at a finite number of points:
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Define $W := \hat{\mathbb{B}} \setminus \sigma(\overline{\mathbb{B}_{1-\epsilon}}).$
- Define the complex manifold $X = W / \sim \sigma \circ \pi$.

Any compact manifold of dim_{$\mathbb{C}} \geq 2$ containing a GSS is obtained in the following way: Let $\mathbb{B} \subset \mathbb{C}^n$, $\mathbb{B} := \{z \in \mathbb{C}^n \mid ||z|| < 1\}$ </sub>

- Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a modification at a finite number of points:
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Define $W := \hat{\mathbb{B}} \setminus \sigma(\overline{\mathbb{B}_{1-\epsilon}}).$
- Define the complex manifold $X = W / \sim \sigma \circ \pi$.

 (π, σ)

Any compact manifold of dim_{$\mathbb{C}} \geq 2$ containing a GSS is obtained in the following way: Let $\mathbb{B} \subset \mathbb{C}^n$, $\mathbb{B} := \{z \in \mathbb{C}^n \mid ||z|| < 1\}$ </sub>

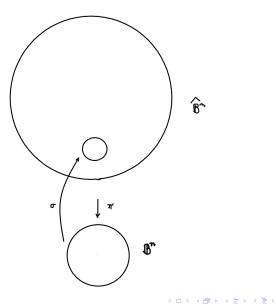
- Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a modification at a finite number of points:
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Define $W := \hat{\mathbb{B}} \setminus \sigma(\overline{\mathbb{B}_{1-\epsilon}}).$
- Define the complex manifold $X = W / \sim \sigma \circ \pi$.

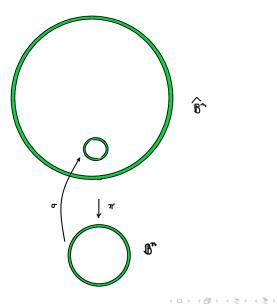
 (π,σ) Kato data

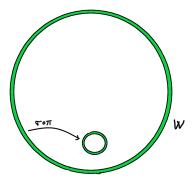
Any compact manifold of dim_{$\mathbb{C}} \geq 2$ containing a GSS is obtained in the following way: Let $\mathbb{B} \subset \mathbb{C}^n$, $\mathbb{B} := \{z \in \mathbb{C}^n \mid ||z|| < 1\}$ </sub>

- Let $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ be a modification at a finite number of points:
- Let $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ be a holomorphic embedding.
- Define $W := \hat{\mathbb{B}} \setminus \sigma(\overline{\mathbb{B}_{1-\epsilon}}).$
- Define the complex manifold $X = W / \sim \sigma \circ \pi$.

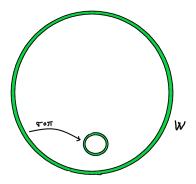
$$(\pi,\sigma)$$
 Kato data $\Rightarrow X(\pi,\sigma)$



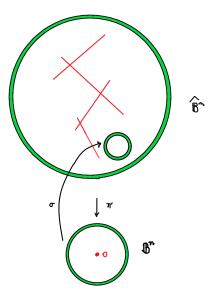




< ロ > < 回 > < 回 > < 回 > < 回 >



 (π, σ) Hopf manifold

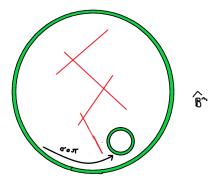


æ

イロト イヨト イヨト イヨト



イロト イヨト イヨト イヨト

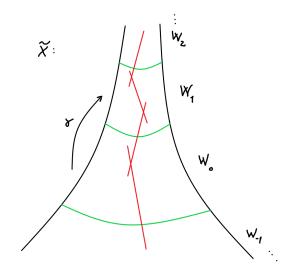


 $X(\pi, \sigma)$ modification of a Hopf manifold

э

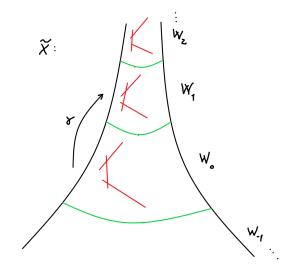
イロト イヨト イヨト イヨト

The universal cover:

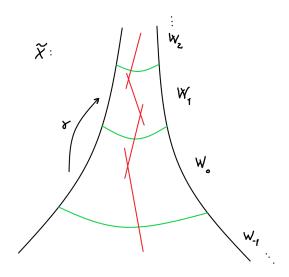


▲ロト ▲部ト ▲座ト ▲座ト

The universal cover (Modification of Hopf:)



The universal cover:



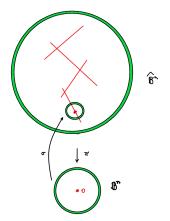
 $\pi_1(M)\simeq \mathbb{Z}(\Rightarrow b_1=1)$ cannot support Kähler metrics.

For any $X(\pi, \sigma)$, there exists a flat deformation $p : \mathcal{X} \to \mathbb{D}$ such that $p^{-1}(0) \simeq X(\pi, \sigma)$ and $p^{-1}(t)$ is a modification of a Hopf manifold.

・ 同 ト ・ ヨ ト ・ ヨ ト …

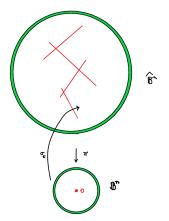
э

For any $X(\pi, \sigma)$, there exists a flat deformation $p : \mathcal{X} \to \mathbb{D}$ such that $p^{-1}(0) \simeq X(\pi, \sigma)$ and $p^{-1}(t)$ is a modification of a Hopf manifold.



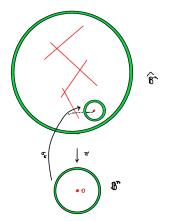
A B F A B F

For any $X(\pi, \sigma)$, there exists a flat deformation $p : \mathcal{X} \to \mathbb{D}$ such that $p^{-1}(0) \simeq X(\pi, \sigma)$ and $p^{-1}(t)$ is a modification of a Hopf manifold.



A B F A B F

For any $X(\pi, \sigma)$, there exists a flat deformation $p : \mathcal{X} \to \mathbb{D}$ such that $p^{-1}(0) \simeq X(\pi, \sigma)$ and $p^{-1}(t)$ is a modification of a Hopf manifold.



• • = • • = •

• $\dim_{\mathbb{C}} = 2 : \pi = \text{composition of smooth blow-ups}$

→ < Ξ → <</p>

э

э

- $\dim_{\mathbb{C}} = 2 : \pi = \text{composition of smooth blow-ups}$
- Olass VII surfaces:
 - $b_2 = 0$: Hopf, Inoue-Bombieri surfaces
 - $b_2 \ge 1$: not classified (GSS conjecture: Kato surfaces are all!)

- $\dim_{\mathbb{C}} = 2 : \pi = \text{composition of smooth blow-ups}$
- Olass VII surfaces:
 - $b_2 = 0$: Hopf, Inoue-Bombieri surfaces
 - $b_2 \ge 1$: not classified (GSS conjecture: Kato surfaces are all!)
- $b_2 = \#$ blow-ups

→ Ξ →

- $\dim_{\mathbb{C}} = 2 : \pi = \text{composition of smooth blow-ups}$
- Olass VII surfaces:
 - $b_2 = 0$: Hopf, Inoue-Bombieri surfaces
 - $b_2 \ge 1$: not classified (GSS conjecture: Kato surfaces are all!)
- $b_2 = \#$ blow-ups
- they are uniquely determined by the germ π ∘ σ : (C², 0) → (C², 0)

• $\dim_{\mathbb{C}} = 2 : \pi = \text{composition of smooth blow-ups}$

- elass VII surfaces:
 - $b_2 = 0$: Hopf, Inoue-Bombieri surfaces
 - $b_2 \ge 1$: not classified (GSS conjecture: Kato surfaces are all!)
- $b_2 = \#$ blow-ups
- they are uniquely determined by the germ $\pi \circ \sigma : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ (not true in dim_C \geq 3.)

• $\dim_{\mathbb{C}} = 2 : \pi = \text{composition of smooth blow-ups}$

- Olass VII surfaces:
 - $b_2 = 0$: Hopf, Inoue-Bombieri surfaces
 - $b_2 \ge 1$: not classified (GSS conjecture: Kato surfaces are all!)
- $b_2 = \#$ blow-ups
- they are uniquely determined by the germ $\pi \circ \sigma : (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ (not true in dim_C \geq 3.)
- Theorem (Brunella, '11): Any Kato surface admits locally conformally Kähler metrics.

 A Hermitian metric ω on (M, J) is locally conformally Kähler (lcK) if there exists θ ∈ Ω¹(M), dθ = 0 such that dω = θ ∧ ω.

-∢ ≣ ▶

- A Hermitian metric ω on (M, J) is locally conformally Kähler (lcK) if there exists θ ∈ Ω¹(M), dθ = 0 such that dω = θ ∧ ω.
- An lcK structure ({ω}, [θ]) is equivalent to a Kähler metric Ω on the universal cover, on which π₁(M) acts by homotheties.

- A Hermitian metric ω on (M, J) is locally conformally Kähler (IcK) if there exists θ ∈ Ω¹(M), dθ = 0 such that dω = θ ∧ ω.
- An lcK structure ({ω}, [θ]) is equivalent to a Kähler metric Ω on the universal cover, on which π₁(M) acts by homotheties.

Question: Should we expect all Kato manifolds to admit lcK metrics?

- A Hermitian metric ω on (M, J) is locally conformally Kähler (IcK) if there exists θ ∈ Ω¹(M), dθ = 0 such that dω = θ ∧ ω.
- An lcK structure ({ω}, [θ]) is equivalent to a Kähler metric Ω on the universal cover, on which π₁(M) acts by homotheties.

Question: Should we expect all Kato manifolds to admit lcK metrics?

Ωis

- balanced if $d\Omega^{n-1} = 0$ (Michesohn)
- pluriclosed if $\partial \overline{\partial} \Omega = 0$ (Bismut)
- strongly Gauduchon if $\partial \Omega^{n-1}$ is $\overline{\partial}$ -exact (Popovici)
- Hermitian symplectic if Ω is the (1,1)-part of a closed 2-form (Streets, Tian).

伺 ト イヨ ト イヨト

Theorem (Istrati, -, Pontecorvo, Ruggiero, '20)

 $X(\pi, \sigma)$ admits a locally conformally Kähler metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is a Kähler modification.

▶ < ∃ ▶</p>

Theorem (Istrati, -, Pontecorvo, Ruggiero, '20)

 $X(\pi, \sigma)$ admits a locally conformally Kähler metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is a Kähler modification.

• When π is a composition of smooth blow-ups, then $X(\pi,\sigma)$ is IcK

Theorem (Istrati, -, Pontecorvo, Ruggiero, '20)

 $X(\pi, \sigma)$ admits a locally conformally Kähler metric if and only if $\pi : \hat{\mathbb{B}} \to \mathbb{B}$ is a Kähler modification.

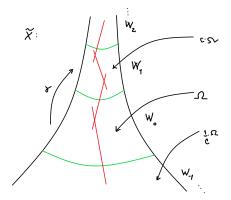
- When π is a composition of smooth blow-ups, then $X(\pi,\sigma)$ is IcK
- example of non-Kähler $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ (in $\dim_{\mathbb{C}} \geq 3$) based on Hironaka's examples.

Idea (of Brunella): Construct a Kähler metric Ω on W such that $(\sigma \circ \pi)^* \Omega_{\partial_+} = c \cdot \Omega_{\partial_-}$.

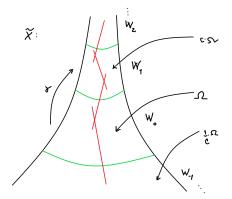
・ 「 ト ・ ヨ ト ・ ヨ ト

э

Idea (of Brunella): Construct a Kähler metric Ω on W such that $(\sigma \circ \pi)^* \Omega_{\partial_+} = c \cdot \Omega_{\partial_-}$.



Idea (of Brunella): Construct a Kähler metric Ω on W such that $(\sigma \circ \pi)^* \Omega_{\partial_+} = c \cdot \Omega_{\partial_-}$.



Conversely, show that $\hat{\mathbb{B}} \setminus \sigma(\{0\})$ is Kähler.

• $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.

→ < Ξ → <</p>

- $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.
- If $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$, then $X(\pi,\sigma)$ does not admit pluriclosed metrics unless $X(\pi,\sigma)$ is a Kato surface.

• • = • • = •

- **1** $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.
- If H^{1,2}_∂(X(π, σ)) = 0, then X(π, σ) does not admit pluriclosed metrics unless X(π, σ) is a Kato surface.
 - balanced \Rightarrow strongly Gauduchon

- **1** $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.
- If H^{1,2}_∂(X(π, σ)) = 0, then X(π, σ) does not admit pluriclosed metrics unless X(π, σ) is a Kato surface.
 - balanced \Rightarrow strongly Gauduchon
 - (Yau, Zhao, Zheng, 19): Hermitian symplectic \Rightarrow strongly Gauduchon

- **1** $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.
- If $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$, then $X(\pi,\sigma)$ does not admit pluriclosed metrics unless $X(\pi,\sigma)$ is a Kato surface.
 - balanced \Rightarrow strongly Gauduchon
 - (Yau, Zhao, Zheng, 19): Hermitian symplectic \Rightarrow strongly Gauduchon

 $\Rightarrow X(\pi, \sigma)$ is never balanced/Hermitian symplectic.

- **1** $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.
- If $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$, then $X(\pi,\sigma)$ does not admit pluriclosed metrics unless $X(\pi,\sigma)$ is a Kato surface.
 - balanced \Rightarrow strongly Gauduchon
 - (Yau, Zhao, Zheng, 19): Hermitian symplectic \Rightarrow strongly Gauduchon

 $\Rightarrow X(\pi, \sigma)$ is never balanced/Hermitian symplectic.

Idea of the proof: use $p: \mathcal{X} \to \mathbb{D}$ and the deformation openness of strongly Gauduchon (Popovici) and of pluriclosed, provided $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$ (Cavalcanti).

1 $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.

If $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$, then $X(\pi,\sigma)$ does not admit pluriclosed metrics unless $X(\pi,\sigma)$ is a Kato surface.

- balanced \Rightarrow strongly Gauduchon
- (Yau, Zhao, Zheng, 19): Hermitian symplectic ⇒ strongly Gauduchon

 $\Rightarrow X(\pi, \sigma)$ is never balanced/Hermitian symplectic.

Idea of the proof: use $p: \mathcal{X} \to \mathbb{D}$ and the deformation openness of strongly Gauduchon (Popovici) and of pluriclosed, provided $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$ (Cavalcanti). Both sG/pluriclosed are stable under modifications in points (Popovici, Fino/Tomassini)

伺 ト イヨ ト イヨト

1 $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.

If H^{1,2}_∂(X(π, σ)) = 0, then X(π, σ) does not admit pluriclosed metrics unless X(π, σ) is a Kato surface.

- balanced \Rightarrow strongly Gauduchon
- (Yau, Zhao, Zheng, 19): Hermitian symplectic \Rightarrow strongly Gauduchon

 $\Rightarrow X(\pi, \sigma)$ is never balanced/Hermitian symplectic.

Idea of the proof: use $p: \mathcal{X} \to \mathbb{D}$ and the deformation openness of strongly Gauduchon (Popovici) and of pluriclosed, provided $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$ (Cavalcanti). Both sG/pluriclosed are stable under modifications in points (Popovici, Fino/Tomassini) and Hopf manifolds cannot support sG/pluriclosed.

伺 ト イヨ ト イヨト

1 $X(\pi, \sigma)$ does not admit strongly Gauduchon metrics.

If H^{1,2}_∂(X(π, σ)) = 0, then X(π, σ) does not admit pluriclosed metrics unless X(π, σ) is a Kato surface.

- balanced \Rightarrow strongly Gauduchon
- (Yau, Zhao, Zheng, 19): Hermitian symplectic \Rightarrow strongly Gauduchon

 $\Rightarrow X(\pi, \sigma)$ is never balanced/Hermitian symplectic.

Idea of the proof: use $p: \mathcal{X} \to \mathbb{D}$ and the deformation openness of strongly Gauduchon (Popovici) and of pluriclosed, provided $H^{1,2}_{\overline{\partial}}(X(\pi,\sigma)) = 0$ (Cavalcanti). Both sG/pluriclosed are stable under modifications in points (Popovici, Fino/Tomassini) and Hopf manifolds cannot support sG/pluriclosed.

伺 ト イヨ ト イヨト

< ロ > < 部 > < き > < き > <</p>

æ

• topological and metric properties: "compare" to modifications of Hopf

э

- topological and metric properties: "compare" to modifications of Hopf
- analytical properties (Dolbeault cohomology, Kodaira/algebraic dimension): $h_{\overline{\partial}}^{*,*}(X_t) \leq h_{\overline{\partial}}^{*,*}(X_0)$

- topological and metric properties: "compare" to modifications of Hopf
- analytical properties (Dolbeault cohomology, Kodaira/algebraic dimension): $h_{\overline{\partial}}^{*,*}(X_t) \leq h_{\overline{\partial}}^{*,*}(X_0)$
 - not VERY useful

- topological and metric properties: "compare" to modifications of Hopf
- analytical properties (Dolbeault cohomology, Kodaira/algebraic dimension): h^{*,*}_∂(X_t) ≤ h^{*,*}_∂(X₀)
 not VERY useful
- \Rightarrow start to consider some special cases/impose some symmetries.

baby case (N. Istrati, -, M. Pontecorvo, '19): X(π, σ) in the special case when π : B̂ → B is a composition of blow-ups in points and σ is a blow-up chart.

- baby case (N. Istrati, -, M. Pontecorvo, '19): X(π, σ) in the special case when π : B̂ → B is a composition of blow-ups in points and σ is a blow-up chart.
- toric case (N. Istrati, -, M. Pontecorvo, M. Ruggiero, '20)

• When $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a succession of blow-ups in points and σ is a standard blow-up chart:

★ ∃ ► < ∃ ►</p>

- When $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a succession of blow-ups in points and σ is a standard blow-up chart:
 - generalization of hyperbolic Inoue surfaces

- When $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a succession of blow-ups in points and σ is a standard blow-up chart:
 - generalization of hyperbolic Inoue surfaces
 - analytic invariants: Kod = $-\infty$, $h^{1,0} = 0$, $H^0(X, \Theta)$;

- When $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a succession of blow-ups in points and σ is a standard blow-up chart:
 - generalization of hyperbolic Inoue surfaces
 - analytic invariants: Kod = $-\infty$, $h^{1,0} = 0$, $H^0(X, \Theta)$;
 - topological invariants: de Rham cohomology

- When $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a succession of blow-ups in points and σ is a standard blow-up chart:
 - generalization of hyperbolic Inoue surfaces
 - analytic invariants: Kod = $-\infty$, $h^{1,0} = 0$, $H^0(X, \Theta)$;
 - topological invariants: de Rham cohomology
 - X(π, σ) ↔ class of matrices in GL_n(ℤ) with special properties (X(π, σ) ↔ X_A)

- When $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a succession of blow-ups in points and σ is a standard blow-up chart:
 - generalization of hyperbolic Inoue surfaces
 - analytic invariants: Kod = $-\infty$, $h^{1,0} = 0$, $H^0(X, \Theta)$;
 - topological invariants: de Rham cohomology
 - X(π, σ) ↔ class of matrices in GL_n(ℤ) with special properties (X(π, σ) ↔ X_A)

• (π, σ) is a toric Kato data if

▶ < ≣ ▶ <</p>

æ

æ

- (π, σ) is a toric Kato data if
 - π : B̂ → B is a toric modification at 0 (i.e. comes from a toric modification at 0, π : Ĉⁿ → Cⁿ.)

▶ < ∃ ▶</p>

- (π, σ) is a toric Kato data if
 - π : B̂ → B is a toric modification at 0 (i.e. comes from a toric modification at 0, π : Ĉⁿ → Cⁿ.)
 - $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ satisfies $\sigma(\underline{\lambda}x) = \nu(\underline{\lambda})\sigma(x), \ \nu \in \operatorname{Aut}((\mathbb{C}^*)^n).$

- (π, σ) is a toric Kato data if
 - $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a toric modification at 0 (i.e. comes from a toric modification at 0, $\pi: \hat{\mathbb{C}}^n \to \mathbb{C}^n$.)
 - $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ satisfies $\sigma(\underline{\lambda}x) = \nu(\underline{\lambda})\sigma(x), \ \nu \in \operatorname{Aut}((\mathbb{C}^*)^n).$
- toric Kato data $\Rightarrow X(\pi, \sigma)$ toric Kato manifold.

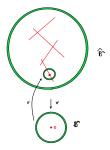
- (π, σ) is a toric Kato data if
 - $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a toric modification at 0 (i.e. comes from a toric modification at 0, $\pi: \hat{\mathbb{C}}^n \to \mathbb{C}^n$.)
 - $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ satisfies $\sigma(\underline{\lambda}x) = \nu(\underline{\lambda})\sigma(x), \ \nu \in \operatorname{Aut}((\mathbb{C}^*)^n).$

• toric Kato data $\Rightarrow X(\pi, \sigma)$ toric Kato manifold.

 \mathbb{T}^n does not act on $X(\pi, \sigma)!$

- (π, σ) is a toric Kato data if
 - $\pi: \hat{\mathbb{B}} \to \mathbb{B}$ is a toric modification at 0 (i.e. comes from a toric modification at 0, $\pi: \hat{\mathbb{C}}^n \to \mathbb{C}^n$.)
 - $\sigma: \overline{\mathbb{B}} \to \hat{\mathbb{B}}$ satisfies $\sigma(\underline{\lambda}x) = \nu(\underline{\lambda})\sigma(x), \ \nu \in \operatorname{Aut}((\mathbb{C}^*)^n).$
- toric Kato data $\Rightarrow X(\pi, \sigma)$ toric Kato manifold.

 \mathbb{T}^n does not act on $X(\pi, \sigma)!$



Key: give an equivalent construction!

•
$$(\pi,\sigma)$$
 \Rightarrow $A \in \operatorname{GL}_n(\mathbb{Z})$ and $\hat{\Sigma}$ fan

◆□▶▲□▶▲目▶▲目▶ ▲□▶

- $(\pi, \sigma) \Rightarrow A \in \operatorname{GL}_n(\mathbb{Z})$ and $\hat{\Sigma}$ fan
- $\widetilde{X(\pi,\sigma)} \subseteq X(\Sigma,\mathbb{Z}^n)$ ($X(\Sigma,\mathbb{Z}^n)$ toric manifold associated to an infinite fan Σ)

- $(\pi,\sigma) \Rightarrow A \in \operatorname{GL}_n(\mathbb{Z})$ and $\hat{\Sigma}$ fan
- $\widetilde{X(\pi,\sigma)} \subseteq X(\Sigma,\mathbb{Z}^n)$ ($X(\Sigma,\mathbb{Z}^n)$ toric manifold associated to an infinite fan Σ)
- generalization of hyperbolic and parabolic Inoue surface

- $(\pi,\sigma) \Rightarrow A \in \operatorname{GL}_n(\mathbb{Z})$ and $\hat{\Sigma}$ fan
- $\widetilde{X(\pi,\sigma)} \subseteq X(\Sigma,\mathbb{Z}^n)$ ($X(\Sigma,\mathbb{Z}^n)$ toric manifold associated to an infinite fan Σ)
- generalization of hyperbolic and parabolic Inoue surface
- analytic invariants: $\text{Kod} = -\infty$, several Hodge numbers $(h^{0,p}, h^{1,p}, h^{p,0})$

- $(\pi,\sigma) \Rightarrow A \in \operatorname{GL}_n(\mathbb{Z})$ and $\hat{\Sigma}$ fan
- $X(\pi, \sigma) \subseteq X(\Sigma, \mathbb{Z}^n)$ ($X(\Sigma, \mathbb{Z}^n)$ toric manifold associated to an infinite fan Σ)
- generalization of hyperbolic and parabolic Inoue surface
- analytic invariants: $\text{Kod} = -\infty$, several Hodge numbers $(h^{0,p}, h^{1,p}, h^{p,0})$
- Tool: build a flat deformation $p : \mathcal{X} \to \mathbb{B}$ such that $p^{-1}(t) \simeq X(\pi, \sigma)$ for $t \neq 0$ and $p^{-1}(0)$ is a singular variety.

- $(\pi, \sigma) \Rightarrow A \in \operatorname{GL}_n(\mathbb{Z})$ and $\hat{\Sigma}$ fan
- $\widetilde{X(\pi,\sigma)} \subseteq X(\Sigma,\mathbb{Z}^n)$ $(X(\Sigma,\mathbb{Z}^n)$ toric manifold associated to an infinite fan Σ)
- generalization of hyperbolic and parabolic Inoue surface
- analytic invariants: $\text{Kod} = -\infty$, several Hodge numbers $(h^{0,p}, h^{1,p}, h^{p,0})$
- Tool: build a flat deformation $p: \mathcal{X} \to \mathbb{B}$ such that $p^{-1}(t) \simeq X(\pi, \sigma)$ for $t \neq 0$ and $p^{-1}(0)$ is a singular variety.

٥

 $A \in \operatorname{GL}_n(\mathbb{Z}) \Rightarrow \begin{cases} \text{ toric Kato manifolds of hyperbolic type} \\ \text{ toric Kato manifolds of parabolic type} \\ \text{ primary Hopf manifolds} \end{cases}$

Let X be a toric Kato manifold.

э

∃ →

▲ □ ▶ ▲ □ ▶ ▲

Let X be a toric Kato manifold.

 X is a primary Hopf manifold if and only if any of its (C*)ⁿ-invariant curves is elliptic;

▶ < ∃ ▶</p>

Let X be a toric Kato manifold.

- X is a primary Hopf manifold if and only if any of its (C*)ⁿ-invariant curves is elliptic;
- X is of hyperbolic type if and only if any (C*)ⁿ-invariant curve is rational;

Let X be a toric Kato manifold.

- X is a primary Hopf manifold if and only if any of its (C*)ⁿ-invariant curves is elliptic;
- X is of hyperbolic type if and only if any (C*)ⁿ-invariant curve is rational;
- X is of parabolic type if and only if X contains a unique (C*)ⁿ-invariant elliptic curve, and at least one rational (C*)ⁿ-invariant curve.

• constructed explicit example of Kato toric manifold $X(\pi, \sigma)$ that does not admit IcK metrics

- constructed explicit example of Kato toric manifold X(π, σ) that does not admit lcK metrics
- a hyperbolic case

- constructed explicit example of Kato toric manifold X(π, σ) that does not admit lcK metrics
- 2 hyperbolic case $\Rightarrow h^{1,2} = 0$

- constructed explicit example of Kato toric manifold X(π, σ) that does not admit lcK metrics
- A specific case ⇒ $h^{1,2} = 0$ ⇒ no pluriclosed metrics in dim_ℂ ≥ 3.

Thank you very much for your attention!

æ

-