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1. Motivation: What do we want to explain?

• What is the geometrical reason behind the fact that the graphs below are
isospectral for the discrete magnetic Laplacian with standard weights?

• For any magnetic flux through the graph (including zero flux)!
• In this talk we use only standard weights:

w(v) = deg(v) , v ∈ V and we = 1 , e ∈ E .

Everything for more general weights (normalised).

• Why standard weights?
• Much more difficult to obtain: e.g., graphs with 9 vertices (e.g., Bulter-Grout ’11)

• combinatorial weights: 15% isospectral; standard weights: 0.4% isospectral
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2. Graphs and discrete magnetic Laplacians

We are considering graphs with magnetic potential on it.

• Oriented multigraphs:

G = (V,E, ∂) with ∂ : E → V × V ,
∂e = (∂−e, ∂+e).

e
(∂−e) (∂+e)

• Magnetic vector potential on edges: α : E → R/Z ∼= [0, 2π).

Since the magnetic field satisfies: B = dA we define

• Gauge equiv.: α ∼ α′ if there is ξ : V → R/Z with α− α′ = dξ ,

where (dξ)e = ξ(∂+e)− ξ(∂−e).
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Hilbert spaces associated to weighted graph:

Let G a graph graph (with standard weights):

`2(V ) := {f : V → C} (0− forms) and `2(E) := {η : E → C} (1− forms) .

Inner product:

〈f, g〉`2(V ) =
∑
v∈V

f(v)g(v)deg(v) and 〈η, ζ〉`2(E) =
∑
e∈E

ηeζe .

Definition
Let G = (G,α) be a graph with magnetic potential α : E(G)→ I = R/2πZ

• The twisted derivative is dα : `2(V )→ `2(E) with

(dαf)e = e
iαe/2f(∂+e)− e − iαe/2f(∂−e) .
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Discrete magnetic Laplacians (a geometric approach):

Definition
Let G = (G,α) a weighted graph with vector potential α. The Discrete magnetic
Laplacian (DML) is:

∆α : `2(V )→ `2(V ) given by ∆α = d∗αdα

(∆αf) (v) = f(v)−
1

deg(v)

∑
e∈Ev

ei
y
αe(v)f(ve) .

• Oriented evaluation:
y
αe (v) =

{
−αe, if v = ∂+(e)

αe, if v = ∂−(e).

• ve ≡ vertex opposite to v along e and Ev ≡ edges “touching” the vertex v.

Signless standard Laplacian if α = π: (∆πf)(v) = f(v) +
1

deg(v)

∑
e∈Ev

f(ve).

Facts in relation to the magnetic potential:

• If α ∼ α′ ⇒ ∆α
∼= ∆α′ ⇒ σ(∆α) = σ(∆α′).

• If G is a tree⇒ any α ∼ 0 and ∆α
∼= ∆0 and σ(∆α) = σ(∆0).
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3. Spectral ordering for finite graphs

Let G = (G,α) be a finite magnetic graph of order |V | = n.
Denote the spectrum of ∆α by

σ(G) = σ(∆α) := {λ1(G) ≤ · · · ≤ λn(G)} .

Definition

Let G = (G,α), G̃ = (G̃, α̃) be magnetic graphs with orders n resp. ñ.
G is spectrally smaller than G̃ with shift q ∈ N0

Notation : G
q

4 G̃ if n ≥ ñ and λk(G) ≤ λk+q(G̃) , k = 1, . . . , n− q .

Remarks:

• G 4 G̃
1

4 G just means that the corresponding eigenvalues interlace.

• The preorder 4 describes the spectral effect of a graph perturbation.
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Two important elementary perturbations magnetic graphs

1) Vertex contraction

Proposition (Fabila-Carrasco, Ll., Post, ’20)

Let G = (G,α) and V0 ⊂ V (G) and denote the graph G̃ = G/∼V0 the graph
with the V0 vertices contracted. Then

G 4 G̃
q

4 G , where q = |G| − |G̃| is the shrinking number.
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2) Vertex virtualisation
Let G = (G,α) and V0 ⊂ V (G).

• Consider the magnetic Laplacian restricted to functions with Dirichlet
conditions on V0 or, equivalently,

• The virtualised Laplacian is the compression of ∆α to the subspace
`2(V \ V0):

ι : `2(V \ V0)→ `2(V ) and ∆+
V0

= ι∗∆αι .

Notation for the virtualised spectra: σ(G+
V0

) := σ(∆+
V0

)

Proposition (Fabila-Carrasco, Ll., Post, ’18)
Let G = (G,α) and V0 ⊂ V (G) with q = |V0| and denote the V0-virtualised
graph by G+

V0
. Then

G 4 G+
V0

q

4 G , where q = |V0| .

• For a systematic study the spectral order relation under perturbations of the graph
and many applications

 see Fabila-Carrasco, Ll., Post, Spectral preorder and perturbations of discrete weighted graphs, Math. Ann. 2020.
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4. Construction of isospectral graphs - in three steps

Step 1: Building block. v0

Let G = (G,α) any finite magnetic graph with spectrum σ(G). GraphG

Step 2: Isospectral frame. Let G = (G,α) be a building block.

Choose V0 ⊂ V (G) and for any p ∈ N define

Fp = Fp(G, V0) =

(
p⊔
G

) /
∼V0 with F1 = G . v1

Example: Let G be the building block and V0 = {v0, v1} (upper/lower vertices ofG).

F1 = G F2 F3 . . .

Theorem (Fabila-Carrasco, Ll., Post, ’21)

The spectrum of the frames is: σ (Fp(G, V0)) = σ(G) ] σ(G+
V0

)p−1, p ∈ N. 9



Step 3: Isospectral graphs. Let G = (G,α) be a magnetic building block.

• Choose V0 ⊂ V (G) isospectral frames {Fp(G,V0)}p∈N (steps 1 and 2).

How can we glue the frames?

• Choose a distinguished vertex v1 ∈ V0

• Choose an s partition of the natural number r:
A = (a1, . . . , as) with r = a1 + · · ·+ as.

Contract (glue) the frames Fa1 , . . . , Fas at the distinguished vertex v1

F (A) =

(⊔
a∈A

Fa

)/
∼v1 . v0

Example: Consider the three partitions of r = 6 of length s = 2.

A = (1, 5) A = (2, 4) A = (3, 3)

v1
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Theorem (Fabila-Carrasco, Ll., Post, ’21)
Let G = (G,α) be a magnetic building block

• For any V0 ⊂ V (G) isospectral frames {Fp(G,V0) | p ∈ N}.

• For any v1 ∈ V0 distinguished vertex to “glue” the frames.

• Consider A,B two different s partitions of r ≥ 4 i.e.,
A = (a1, . . . , as), B = (b1, . . . , bs) with

r = a1 + · · ·+ as = b1 + · · ·+ bs .

Then

1) F (A) and F (B) are isospectral and F (A) 6∼= F (B).

2) σ (F (A)) = σ (F (B)) = σ(G) ] σ(G+
V0

)(r−s) ] σ(G+
v1)(s−1).

Remark:

• Note the σ(F (A)) only depends on r and the length s of the partition and not on
the particular decomposition.

• If P (r, s) is the set of partitions of r of length s one produces
|P (r, s)|-families non isomorphic isospectral graphs for ∆α.

• Generlises Butler-Grout’s ’11 examples where G = P3 and frames where
diamond graphs (and α = 0). 11



Idea of the proof

• The proof isospectral property is based the following spectral relations

1) F (A)+v1
1
4 F (A) 4 F (A)+v1 . F (3, 3)

2)
( ⊔
a∈A

Fa
)
4 F (A)

s−1
4
( ⊔
a∈A

Fa
)
. v1

 the spectra of F (A)+v1 and
( ⊔
a∈A

Fa
)

are known explicitly;

 exploit that frames have high symmetry/multiplicity.
 high multiplicity of eigenvalues of the spectrum of the

sandwiching graphs F (A)+v1
and

( ⊔
a∈A

Fa
)
.

• F (A) 6∼= F (B) because in the corresponding degree lists the partitions
appear explicitly

(a1, . . . , as, . . . ) 6= (b1, . . . , bs, . . . )
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Outlook

What have we done?

• Explained what is the geometrical reason explaining the magnetic
isospectrality of e.g.,

• Control the spectral spreading of eigenvalues under elementary
perturbations of the graph like vertex contraction and virtualisation.

G 4 G̃
q

4 G .

Results from: Fabila-Carrasco, Ll., Post

• A geometric construction of isospectral magnetic graphs, preprint 2021; arXiv:math.CO.???

• Spectral preorder and perturbations of discrete weighted graphs, Mathematische Annalen 2020 (49pp.)

• Spectral gaps and discrete magnetic Laplacians, Linear Algebra and its Applications 547 (2018) 183-216.
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