Isospectral magnetic graphs

Fernando Lledó 8th ECM 2021, Slovenia - Minisymposium Spectral Graph Theory June 23, 2021

Department of Mathematics, University Carlos III, Madrid and ICMAT, Madrid

Overview:

- 1. Motivation
- 2. Graphs and magnetic Laplacians
- 3. Spectral preorder of magnetic graphs
- 4. Construction of isospectral magnetic graphs
- 5. Outlook

1. Motivation: What do we want to explain?

 What is the geometrical reason behind the fact that the graphs below are isospectral for the discrete magnetic Laplacian with standard weights?

- For any magnetic flux through the graph (including zero flux)!
- In this talk we use only standard weights:

 $w(v) = \deg(v)$, $v \in V$ and $w_e = 1$, $e \in E$.

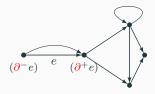
Everything for more general weights (normalised).

- · Why standard weights?
 - Much more difficult to obtain: e.g., graphs with 9 vertices (e.g., Bulter-Grout '11)
 - · combinatorial weights: 15% isospectral; standard weights: 0.4% isospectral

We are considering graphs with magnetic potential on it.

Oriented multigraphs:

 $G = (V, E, \partial)$ with $\partial : E \to V \times V$, $\partial e = (\partial^- e, \partial^+ e).$



• Magnetic vector potential on edges: $\alpha \colon E \to \mathbb{R}/\mathbb{Z} \cong [0, 2\pi)$.

Since the magnetic field satisfies: $\mathbf{B} = d\mathbf{A}$ we define

• Gauge equiv.: $\alpha \sim \alpha'$ if there is $\xi : V \to \mathbb{R}/\mathbb{Z}$ with $\alpha - \alpha' = d\xi$, where $(d\xi)_e = \xi(\partial^+ e) - \xi(\partial^- e)$.

Hilbert spaces associated to weighted graph:

Let G a graph graph (with standard weights):

 $\ell_2(V) := \{f \colon V \to \mathbb{C}\} \quad (0 - \text{forms}) \quad \text{and} \quad \ell_2(E) := \{\eta \colon E \to \mathbb{C}\} \quad (1 - \text{forms}) \ .$

Inner product:

$$\langle f,g\rangle_{\ell_2(V)} = \sum_{v\in V} f(v)\overline{g(v)} \mathrm{deg}(v) \quad \text{and} \quad \langle \eta,\zeta\rangle_{\ell_2(E)} = \sum_{e\in E} \eta_e\overline{\zeta_e}\,.$$

Definition

Let $\mathbf{G} = (G, \alpha)$ be a graph with magnetic potential $\alpha \colon E(\mathbf{G}) \to \mathbf{I} = \mathbb{R}/2\pi\mathbb{Z}$

• The twisted derivative is $d_{\alpha}: \ell_2(V) \to \ell_2(E)$ with

$$(d_{\alpha}f)_{e} = e^{i\alpha_{e}/2}f(\partial^{+}e) - e^{-i\alpha_{e}/2}f(\partial^{-}e) .$$

Discrete magnetic Laplacians (a geometric approach):

Definition

Let $\mathbf{G} = (G, \alpha)$ a weighted graph with vector potential α . The **Discrete magnetic** Laplacian (DML) is:

$$\Delta_{\alpha} \colon \ell_{2}(V) \to \ell_{2}(V) \text{ given by } \Delta_{\alpha} = d_{\alpha}^{*} d_{\alpha}$$
$$(\Delta_{\alpha} f)(v) = f(v) - \frac{1}{\deg(v)} \sum_{e \in E_{v}} e^{i \widehat{\alpha_{e}}(v)} f(v_{e}) + \frac{1}{2} \sum_{e \in E_{v}} e^{i \widehat{\alpha_{e}}(v)} + \frac{1}{2} \sum_{e \in E_{v}} e^{i \widehat{\alpha_{e}}(v)} f(v_{e}) + \frac{1}{2} \sum_{e \in E_{v}} e^{i \widehat{\alpha_{e}}(v)} + \frac{1}{2} \sum_{$$

• Oriented evaluation:
$$\widehat{\alpha_e}(v) = \begin{cases} -\alpha_e, & \text{if } v = \partial^+(e) \\ \alpha_e, & \text{if } v = \partial^-(e). \end{cases}$$

• $v_e \equiv$ vertex opposite to v along e and $E_v \equiv$ edges "touching" the vertex v.

Signless standard Laplacian if $\alpha = \pi$: $(\Delta_{\pi} f)(v) = f(v) + \frac{1}{\deg(v)} \sum_{e \in E_v} f(v_e).$

Facts in relation to the magnetic potential:

- If $\alpha \sim \alpha' \Rightarrow \Delta_{\alpha} \cong \Delta_{\alpha'} \Rightarrow \sigma(\Delta_{\alpha}) = \sigma(\Delta_{\alpha'}).$
- If G is a tree \Rightarrow any $\alpha \sim 0$ and $\Delta_{\alpha} \cong \Delta_0$ and $\sigma(\Delta_{\alpha}) = \sigma(\Delta_0)$.

3. Spectral ordering for finite graphs

Let $\mathbf{G} = (G, \alpha)$ be a finite magnetic graph of order |V| = n. Denote the **spectrum** of Δ_{α} by

$$\sigma(\mathbf{G}) = \sigma(\Delta_{\alpha}) := \{\lambda_1(\mathbf{G}) \leq \cdots \leq \lambda_n(\mathbf{G})\}.$$

Definition

Let $\mathbf{G} = (G, \alpha)$, $\widetilde{\mathbf{G}} = (\widetilde{G}, \widetilde{\alpha})$ be magnetic graphs with orders n resp. \widetilde{n} . G is spectrally smaller than $\widetilde{\mathbf{G}}$ with shift $q \in \mathbb{N}_0$

Notation : $\mathbf{G} \stackrel{q}{\preccurlyeq} \widetilde{\mathbf{G}}$ if $n \geq \widetilde{n}$ and $\lambda_k(\mathbf{G}) \leq \lambda_{k+q}(\widetilde{\mathbf{G}}), \ k = 1, \dots, n-q$.

Remarks:

- $\mathbf{G} \preccurlyeq \widetilde{\mathbf{G}} \stackrel{1}{\preccurlyeq} \mathbf{G}$ just means that the corresponding eigenvalues interlace.
- The preorder \preccurlyeq describes the spectral effect of a graph perturbation.

Two important elementary perturbations magnetic graphs

1) Vertex contraction

Proposition (Fabila-Carrasco, Ll., Post, '20)

Let $\mathbf{G} = (G, \alpha)$ and $V_0 \subset V(G)$ and denote the graph $\widetilde{\mathbf{G}} = \mathbf{G}/\sim_{V_0}$ the graph with the V_0 vertices contracted. Then

 ${m G} \preccurlyeq \widetilde{{m G}} \preccurlyeq {m G}$, where $q = |G| - |\widetilde{G}|$ is the shrinking number.

2) Vertex virtualisation

Let $\mathbf{G} = (G, \alpha)$ and $V_0 \subset V(G)$.

- Consider the magnetic Laplacian restricted to functions with Dirichlet conditions on V_0 or, equivalently,
- The virtualised Laplacian is the compression of Δ_{α} to the subspace $\ell_2(V\setminus V_0)$:

 $\iota \colon \ell_2(V \setminus V_0) \to \ell_2(V) \text{ and } \Delta^+_{V_0} = \iota^* \Delta_{\alpha} \iota .$

Notation for the virtualised spectra: $\sigma(\mathbf{G}_{V_0}^+) := \sigma(\Delta_{V_0}^+)$

Proposition (Fabila-Carrasco, Ll., Post, '18)

Let $\mathbf{G} = (G, \alpha)$ and $V_0 \subset V(G)$ with $q = |V_0|$ and denote the V_0 -virtualised graph by $\mathbf{G}_{V_0}^+$. Then

$$\mathbf{G} \preccurlyeq \mathbf{G}_{V_0}^+ \stackrel{q}{\preccurlyeq} \mathbf{G}$$
, where $q = |V_0|$.

 For a systematic study the spectral order relation under perturbations of the graph and many applications

→ see Fabila-Carrasco, LI., Post, Spectral preorder and perturbations of discrete weighted graphs, Math. Ann. 2020.

4. Construction of isospectral graphs - in three steps

Step 1: Building block.

Let $\mathbf{G} = (G, \alpha)$ any finite magnetic graph with spectrum $\sigma(\mathbf{G})$.

Step 2: Isospectral frame. Let $\mathbf{G} = (G, \alpha)$ be a building block.

Choose $V_0 \subset V(G)$ and for any $p \in \mathbb{N}$ define

$$F_p = F_p(\mathbf{G}, V_0) = \left(\bigsqcup^p G\right) / \sim_{V_0} \text{ with } F_1 = G$$

Example: Let **G** be the building block and $V_0 = \{v_0, v_1\}$ (upper/lower vertices of G).

Theorem (Fabila-Carrasco, LI., Post, '21)

The spectrum of the frames is: $\sigma(F_p(\mathbf{G}, V_0)) = \sigma(\mathbf{G}) \uplus \sigma(\mathbf{G}_{V_0}^+)^{p-1}, p \in \mathbb{N}.$

 v_0

 v_1

Graph G

Step 3: Isospectral graphs. Let $\mathbf{G} = (G, \alpha)$ be a magnetic building block.

• Choose $V_0 \subset V(G) \rightsquigarrow$ isospectral frames $\{F_p(G, V_0)\}_{p \in \mathbb{N}}$ (steps 1 and 2).

How can we glue the frames?

- Choose a distinguished vertex $v_1 \in V_0$
- Choose an *s* partition of the natural number *r*:

$$A = (a_1, \ldots, a_s)$$
 with $r = a_1 + \cdots + a_s$.

Contract (glue) the frames F_{a_1}, \ldots, F_{a_s} at the distinguished vertex v_1

$$F(A) = \left(\bigsqcup_{a \in A} F_a\right) \Big/ \Big|_{v_1} \cdot v_0$$

Example: Consider the three partitions of r = 6 of length s = 2.

Theorem (Fabila-Carrasco, Ll., Post, '21)

Let $\mathbf{G} = (G, \alpha)$ be a magnetic building block

- For any $V_0 \subset V(G) \rightsquigarrow$ isospectral frames $\{F_p(G, V_0) \mid p \in \mathbb{N}\}$.
- For any $v_1 \in V_0$ distinguished vertex to "glue" the frames.
- Consider A, B two different s partitions of $r \ge 4$ i.e., $A = (a_1, \ldots, a_s), B = (b_1, \ldots, b_s)$ with

$$r = a_1 + \dots + a_s = b_1 + \dots + b_s .$$

Then

1) F(A) and F(B) are isospectral and $F(A) \not\cong F(B)$.

2)
$$\sigma(F(A)) = \sigma(F(B)) = \sigma(\mathbf{G}) \uplus \sigma(\mathbf{G}_{V_0}^+)^{(r-s)} \uplus \sigma(\mathbf{G}_{v_1}^+)^{(s-1)}$$

Remark:

- Note the $\sigma(F(A))$ only depends on r and the length s of the partition and not on the particular decomposition.
- If P(r, s) is the set of partitions of r of length $s \rightarrow$ one produces |P(r, s)|-families non isomorphic isospectral graphs for Δ_{α} .
- Generlises Butler-Grout's '11 examples where $G = P_3$ and frames where diamond graphs (and $\alpha = 0$).

Idea of the proof

· The proof isospectral property is based the following spectral relations

1)
$$F(A)_{v_1}^{+} \stackrel{1}{\preccurlyeq} F(A) \preccurlyeq F(A)_{v_1}^{+}$$
.
2) $(\bigsqcup_{a \in A} F_a) \preccurlyeq F(A) \stackrel{s-1}{\preccurlyeq} (\bigsqcup_{a \in A} F_a)$.
 \rightsquigarrow the spectra of $F(A)_{v_1}^{+}$ and $(\bigsqcup_{a \in A} F_a)$ are known explicitly;
 \rightsquigarrow exploit that frames have high symmetry/multiplicity.
 \rightsquigarrow high multiplicity of eigenvalues of the spectrum of the sandwiching graphs $F(A)_{v_1}^{+}$ and $(\bigsqcup_{a \in A} F_a)$.

• $F(A) \not\cong F(B)$ because in the corresponding degree lists the partitions appear explicitly

$$(a_1,\ldots,a_s,\ldots) \neq (b_1,\ldots,b_s,\ldots)$$

A

Outlook

What have we done?

• Explained what is the geometrical reason explaining the magnetic isospectrality of e.g.,

 Control the spectral spreading of eigenvalues under elementary perturbations of the graph like vertex contraction and virtualisation.

$$\mathbf{G}\preccurlyeq\widetilde{\mathbf{G}}\overset{q}{\preccurlyeq}\mathbf{G}$$
 .

Results from: Fabila-Carrasco, LI., Post

- · A geometric construction of isospectral magnetic graphs, preprint 2021; arXiv:math.CO.???
- · Spectral preorder and perturbations of discrete weighted graphs, Mathematische Annalen 2020 (49pp.)
- · Spectral gaps and discrete magnetic Laplacians, Linear Algebra and its Applications 547 (2018) 183-216.