Quantum information theory and Reznick's Positivstellensatz

Ion Nechita (CNRS, LPT Toulouse)

- joint work with Alexander Müller-Hermes and David Reeb

8th ECM, Portorož, June 23rd 2021

Talk outline

Sums of squares and Reznick's Positivstellensatz

Polynomials vs. symmetric operators

The complex Positivstellensatz

Sums of squares and Reznick's Positivstellensatz

Hilbert's 17th problem

$$
\begin{aligned}
& \mathbb{R}[x] \ni P(x) \geq 0 \Longleftrightarrow P=Q_{1}(x)^{2}+Q_{2}(x)^{2} \text {, for } Q_{1,2} \in \mathbb{R}[x] . \\
& \operatorname{Pos}(d, n):=\left\{P \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right] \text { hom. of deg. } 2 n, P(x) \geq 0, \forall x\right\} . \\
& \operatorname{SOS}(d, n):=\left\{\sum_{i} Q_{i}^{2} \text { with } Q_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right] \text { hom. of deg. } n\right\} .
\end{aligned}
$$

In general, SOS is a strict subset of Pos [Hili88]

$$
\operatorname{SOS}(d, n) \subseteq \operatorname{Pos}(d, n), \text { eq. iff }(d, n) \in\{(d, 1),(2, n),(3,2)\} .
$$

The Motzkin polynomial $x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}$ is positive but not SOS.

Membership in SOS can be efficiently decided with a semidefinite program (SDP) and provides an algebraic certificate for positivity.

More on the Motzkin polynomial

The non-homogeneous Motzkin polynomial (set $z=1) x^{4} y^{2}+y^{4}+x^{2}-3 x^{2} y^{2}$ can be seen to be positive by the AMGM inequality.

There exist computer algebra packages to check SOS and perform polynomial optimization using SOS ([NC]SOSTOOLS, Gloptipoly)

```
> syms x y z; findsos(x^4*y^2 + y^4 + x^2 - 3*x^2*y^2)
```

Size: 4919

No sum of squares decomposition is found.

Reznick's Positivstellensatz

Artin's solution to Hilbert's 17th problem [Art27]

$$
P \geq 0 \Longleftrightarrow P=\sum_{i} \frac{Q_{i}^{2}}{R_{i}^{2}}
$$

In particular, if $P \geq 0$, there exists R such that $R^{2} P$ is SOS

Theorem ([Re295])

Let $P \in \operatorname{Pos}(d, k)$ such that $m(P):=\min _{\|x\|=1} P(x)>0$. Let also $M(P):=\max _{\|x\|=1} P(x)$. Then, for all

$$
n \geq \frac{d k(2 k-1)}{2 \ln 2} \frac{M(P)}{m(P)}-\frac{d}{2}
$$

we have

$$
\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{n-k} P(x)=\sum_{j=1}^{r}\left(a_{1}^{(j)} x_{1}+\cdots a_{d}^{(j)} x_{d}\right)^{2 n}
$$

In particular, $\|x\|^{2(n-k)} P$ is SOS.

Polynomials vs. symmetric

 operators
From the symmetric subspace to polynomials

Homogeneous polynomials of degree n in d real variables x_{1}, \ldots, x_{d} are in one-to-one correspondence with symmetric tensors:

$$
\vee^{n} \mathbb{R}^{d} \ni v \rightsquigarrow P_{v}\left(x_{1}, \ldots, x_{d}\right)=\left\langle x^{\otimes n}, v\right\rangle
$$

where $x=\left(x_{1}, \ldots, x_{d}\right)$ is the vector of variables.

Examples:

- $n=1, P_{v}(x)=\sum_{i=1}^{d} v_{i} x_{i}$;
- $|G H Z\rangle=|000\rangle+|111\rangle \rightsquigarrow P_{|G H Z\rangle}(x, y)=x^{3}+y^{3}$;
- $|W\rangle=|001\rangle+|010\rangle+|001\rangle \rightsquigarrow P_{|W\rangle}(x, y)=3 x^{2} y$;
- if $|\Omega\rangle=\sum_{i=1}^{d}|i i\rangle$, then $P_{|\Omega\rangle}{ }^{\otimes n}\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{i=1}^{d} x_{i}^{2}\right)^{n}=\|x\|^{2 n}$.

We denote $d[n]:=\operatorname{dim} \vee^{n} \mathbb{R}^{d}=\binom{n+d-1}{n}[H a r 13]$.

From the symmetric subspace to polynomials

In the complex case, we are interested in bi-homogeneous polynomials of degree n in d complex variables: $P\left(z_{1}, \ldots, z_{d}\right)$ is hom. in the variables z_{i} and also in \bar{z}_{i}.

Bi-hom. polynomials are in one-to-one correspondence with operators on $V^{n} \mathbb{C}^{d}$:

$$
P\left(z_{1}, \ldots, z_{d}\right)=\left\langle z^{\otimes n}\right| W\left|z^{\otimes n}\right\rangle .
$$

Self-adjoint W are associated to real, bi-hom. polynomials.
The norm: $\|z\|^{2 n}=\left\langle z^{\otimes n}\right| P_{s y m}^{(d, n)}\left|z^{\otimes n}\right\rangle$.
More generally, polynomials which are bi-hom. of degree n in complex variables z_{1}, \ldots, z_{d} and, separately, bi-hom. of degree k in complex variables u_{1}, \ldots, u_{D} are in one-to-one correspondence with operators on $\vee^{n} \mathbb{C}^{d} \otimes V^{k} \mathbb{C}^{D}:$

$$
Q\left(z_{1}, \ldots, z_{d}, u_{1}, \ldots, u_{D}\right)=\left\langle z^{\otimes n} \otimes u^{\otimes k}\right| W\left|z^{\otimes n} \otimes u^{\otimes k}\right\rangle .
$$

The different notions of positivity

A self-adjoint matrix $W \in \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right)$ is called:

- block-positive if $\left\langle z^{\otimes n}\right| W\left|z^{\otimes n}\right\rangle \geq 0, \forall z \in \mathbb{C}^{d}$;
- positive semidefinite (PSD) if $\langle u| W|u\rangle \geq 0, \forall u \in \vee^{n} \mathbb{C}^{d}$;
- separable if $W \in \operatorname{conv}\left\{|z\rangle\left\langle\left. z\right|^{\otimes n}\right\}_{z \in \mathbb{C}^{d}}\right.$.

We have: W separable $\Longrightarrow W$ PSD $\Longrightarrow W$ block-positive.
W is block-positive $\Longleftrightarrow P_{W}$ is non-negative:

$$
P_{W}(z)=\left\langle z^{\otimes n}\right| W\left|z^{\otimes n}\right\rangle \geq 0, \quad \forall z \in \mathbb{C}^{d}
$$

W is PSD $\Longleftrightarrow P_{W}$ is Sum Of hom. Squares:

$$
W=\sum_{j} \lambda_{j}\left|w_{j}\right\rangle\left\langle w_{j}\right| \Longrightarrow P_{w}(z)=\sum_{j} \lambda_{j}\left|\left\langle z^{\otimes n}, w_{j}\right\rangle\right|^{2}
$$

W is separable $\Longleftrightarrow P_{W}$ is Sum Of hom. Powers:

$$
W=\left.\sum_{j} t_{j}\left|a_{j}\right\rangle\left\langle\left. a_{j}\right|^{\otimes n} \Longrightarrow P_{w}(z)=\sum_{j} t_{j}\right|\left\langle z, a_{j}\right\rangle\right|^{2 n} .
$$

Tensoring with the identity

For $k \leq n$, let $\operatorname{Tr}_{k \rightarrow n}^{*}: \mathcal{B}\left(\vee^{k} \mathbb{C}^{d}\right) \rightarrow \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right)$ be the map

$$
\operatorname{Tr}_{k \rightarrow n}^{*}(W)=P_{s y m}^{(d, n)}\left[W \otimes I_{d}^{\otimes(n-k)}\right] P_{s y m}^{(d, n)} .
$$

We have: $P_{T_{T_{k \rightarrow n}^{*}}^{*}}(W)(z)=\|z\|^{2(n-k)} P_{W}(z)$.

Clone $_{k \rightarrow n}:=\frac{d[k]}{d[n]} \operatorname{Tr}_{k \rightarrow n}^{*}$ is the optimal Keyl-Werner cloning quantum channel [Wer98, kW99]: among all quantum channels sending states $\rho^{\otimes k}$ to symmetric n-partite states σ, it is the one which achieves the largest fidelity
 between ρ and $\operatorname{Tr}_{2 \ldots n} \sigma$.

The partial trace

For $k \leq n$, let $\operatorname{Tr}_{n \rightarrow k}: \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right) \rightarrow \mathcal{B}\left(V^{k} \mathbb{C}^{d}\right)$ be the partial trace

$$
\operatorname{Tr}_{n \rightarrow k}(W)=\left[\mathrm{id}^{\otimes k} \otimes \operatorname{Tr}^{\otimes(n-k)}\right](W)
$$

Lemma

We have: $P_{\operatorname{Tr}_{n \rightarrow k}(W)}=\left((n)_{n-k}\right)^{-2} \Delta_{\mathrm{C}}^{n-k} P_{W}$, where $(x)_{p}=x(x-1) \cdots(x-p+1)$ and $\Delta_{\mathbb{C}}$ is the complex Laplacian

$$
\Delta_{\mathbb{C}}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial \bar{z}_{i} \partial z_{i}}
$$

Lemma (complex Bernstein inequality \leftarrow we need analysis here)
For any $W=W^{*} \in \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right)$ we have

$$
\forall\|z\| \leq 1, \quad\left|\left(\Delta_{\mathbb{C}}^{s} P_{W}\right)(z)\right| \leq 4^{-s}(2 d)^{s}(2 n)_{2 s} M(W)
$$

OHe Dictiomary	
Sym. operators $\in \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right)$	Polynomials (d vars, bi-hom. deg. n)
W	$P_{W}(z)=\left\langle z^{\otimes n}\right\| W\left\|z^{\otimes n}\right\rangle$
Positivity notions	
block-positive	non-negative
positive semidefinite	Sum Of Squares
separable	Sum Of Powers
Operations	
Tensor with identity	mult. with the norm ${ }^{2}$
Partial trace	complex Laplacian

The complex Positivstellensatz

A complex version of Reznick's PSS

Theorem ([MHNR19])

Consider $W=W^{*} \in \mathcal{B}\left(V^{k} \mathbb{C}^{d} \otimes \mathbb{C}^{D}\right)$ with $m(W)>0$ and $k \geq 1$. Then, for any

$$
n \geq \frac{d k(2 k-1)}{\ln \left(1+\frac{m(W)}{M(W)}\right)}-k
$$

with $n \geq k$, we have

$$
\|x\|^{2(n-k)} P_{W}(x, y)=\int P_{\tilde{W}}(\varphi, y)|\langle\varphi, x\rangle|^{2 n} \mathrm{~d} \varphi
$$

with $P_{\tilde{W}}(\varphi, y) \geq 0$ for all $\varphi \in \mathbb{C}^{d}$ and $y \in \mathbb{C}^{D}$, where the matrix $\tilde{W} \in \mathcal{B}\left(\vee^{k} \mathbb{C}^{d} \otimes \mathbb{C}^{D}\right)$ is explicitly computable in terms of W, and $\mathrm{d} \varphi$ is any $(n+k)$-spherical design. In the case $k=1$, the bound on n can be improved to $n \geq d M(W) / m(W)-1$.

A similar result was obtained by To and Yeung [TY06] with worse bounds and in a less general setting, by "complexifying" Reznick's proof.

Spherical designs

A complex n-spherical design in dimension d [DGS91] is a probability measure $\mathrm{d} \varphi$ on the unit sphere of \mathbb{C}^{d} which approximates the uniform measure $\mathrm{d} z$ in the following sense: for any degree n bi-hom. polynomial $P(z)$ in d complex variables, $\int P(\varphi) \mathrm{d} \varphi=\int P(z) \mathrm{d} z$. Equivalently,

$$
\int|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes n} \mathrm{~d} \varphi=\int_{\|z\|=1} \mid z\right\rangle\left\langle\left. z\right|^{\otimes n} \mathrm{~d} z=\frac{P_{s y m}^{(d, n)}}{d[n]} .\right.
$$

For all d, n, there exist finite n-designs: the measure $\mathrm{d} \varphi$ has support of size $\leq(n+1)^{2 d}$; in particular, the integral in the main theorem can be a finite sum

Designs of orders $60,120,216$ in \mathbb{R}^{3}

Proof idea

$$
\|x\|^{2(n-k)} P_{w}(x, y)=\int P_{\tilde{W}}(\varphi, y)|\langle\varphi, x\rangle|^{2 n} \mathrm{~d} \varphi
$$

- We want to transform a non-negative polynomial into a sum of powers by multiplying with some power of the norm.
- In terms of operators, this amounts to transforming a block-positive operator into a separable operator.
- Ansatz: use the measure-and-prepare map

$$
\begin{aligned}
\mathrm{MP}_{n \rightarrow k}: \mathcal{B}\left(\mathrm{V}^{n} \mathbb{C}^{d}\right) & \rightarrow \mathcal{B}\left(\mathrm{V}^{\mathrm{k}} \mathbb{C}^{d}\right) \\
X & \mapsto d[n] \int\left\langle\varphi^{\otimes n}\right| X\left|\varphi^{\otimes n}\right\rangle|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes k} \mathrm{~d} \varphi,\right.
\end{aligned}
$$

for some $(n+k)$-spherical design $\mathrm{d} \varphi$.

- The linear map $\mathrm{MP}_{n \rightarrow k}$ is completely positive, and it is normalized to be trace preserving (i.e. it is a quantum channel).

Chiribella's identity

Theorem ([Chi10])

For any $k \leq n$, we have

$$
\mathrm{MP}_{n \rightarrow k}=\sum_{s=0}^{k} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{n \rightarrow s}
$$

where $c(n, k, s)=\binom{n}{s}\binom{k+d-1}{k-s} /\binom{n+k+d-1}{k}$.

Above, $c(n, k, \cdot)$ is a probability distribution: $\sum_{s=0}^{k} c(n, k, s)=1$.

The proof of the Chiribella identity is a straightforward computation in the group algebra of $G=\mathcal{S}_{n+k}$:

$$
\varepsilon_{G}=\sum_{s=0}^{\min (n, k)} \frac{\binom{n}{s}\binom{k}{s}}{\binom{n+k}{n}} \varepsilon_{H} \sigma_{s} \varepsilon_{H}
$$

where ε_{X} is the average of the elements in $X, H=\mathcal{S}_{n} \times \mathcal{S}_{k} \leq G$ is a Young subgroup and σ_{s} is some permutation swapping s elements from $[1, n]$ with s elements from $[n+1, n+k]$.

The result is about the interplay between Clone and MP

The equality $\|x\|^{2(n-k)} P_{W}(x, y)=\int P_{\tilde{W}}(\varphi, y)|\langle\varphi, x\rangle|^{2 n} \mathrm{~d} \varphi$ reads, in terms of linear maps over symmetric spaces

$$
\text { Clone }_{k \rightarrow n} \otimes \mathrm{id}_{D}=\left[\mathrm{MP}_{k \rightarrow n} \circ \Psi\right] \otimes \mathrm{id}_{D} .
$$

The fact that the polynomial $P_{\tilde{W}}$ is non-negative reads

$$
\tilde{W}:=\Psi(W) \text { is block-positive } \Longleftrightarrow\left\langle z^{\otimes n}\right| \tilde{W}\left|z^{\otimes n}\right\rangle \geq 0 .
$$

Re-write the Chiribella identity as

$$
\begin{aligned}
\mathrm{MP}_{n \rightarrow k} & =\sum_{s=0}^{k} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{n \rightarrow s} \\
& =\sum_{s=0}^{k} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{k \rightarrow s} \circ \operatorname{Tr}_{n \rightarrow k} \\
& =\Phi_{k \rightarrow k}^{(n)} \circ \operatorname{Tr}_{n \rightarrow k} .
\end{aligned}
$$

Invert the Chiribella formula

Recall that $\mathrm{MP}_{n \rightarrow k}=\Phi_{k \rightarrow k}^{(n)} \circ \operatorname{Tr}_{n \rightarrow k}$, for some linear map $\Phi_{k \rightarrow k}^{(n)}$.

Key fact.

The linear map $\Phi_{k \rightarrow k}^{(n)}: \vee^{k} \mathbb{C}^{d} \rightarrow \vee^{k} \mathbb{C}^{d}$ is invertible, with inverse

$$
\Psi_{k \rightarrow k}^{(n)}:=\sum_{s=0}^{k} q(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{k \rightarrow s}
$$

with

$$
q(n, k, s):=(-1)^{s+k} \frac{\binom{n+s}{s}\binom{k}{s}}{\binom{n}{k}} \frac{d[k]}{d[s]}
$$

Hence, up to some constants, Clone ${ }_{k \rightarrow n}=\mathrm{MP}_{k \rightarrow n} \circ \psi_{k \rightarrow k}^{(n)}$.
Final step: use hypotheses on $n, k, m(W), M(W)$ to ensure $\Psi_{k \rightarrow k}^{(n)}(W)$ is block-positive whenever W is (strictly) block-positive.

Use the Bernstein inequality to prove $P_{\tilde{W}}$ non-negative

Assume, wlog, $D=1$, i.e. there is no y. We have

$$
\begin{aligned}
P_{\tilde{W}}(\varphi) & =\sum_{s=0}^{k} q(n, k, s)\left\langle\varphi^{\otimes k}\right| \operatorname{Clone}_{s \rightarrow k} \circ \operatorname{Tr}_{k \rightarrow s}(W)\left|\varphi^{\otimes k}\right\rangle \\
& =\sum_{s=0}^{k} q(n, k, s)\|\varphi\|^{2(k-s)}\left\langle\varphi^{\otimes s}\right| \operatorname{Tr}_{k \rightarrow s}(W)\left|\varphi^{\otimes s}\right\rangle \\
& =\sum_{s=0}^{k} q(n, k, s)\|\varphi\|^{2(k-s)} P_{\mathrm{T}_{k \rightarrow s}(W)}(\varphi) \\
& =\sum_{s=0}^{k} \hat{q}(n, k, s)\|\varphi\|^{2(k-s)}\left(\Delta_{\mathbb{C}}^{k-s} p_{W}\right)(\varphi) .
\end{aligned}
$$

Use the complex version of the Bernstein inequality to ensure that

$$
P_{\tilde{W}}(\varphi) \geq\left[m(W) \tilde{q}(n, k, k)-M(W) \sum_{s=0}^{k-1}|\tilde{q}(n, k, s)|\right] \geq 0 .
$$

How good are the bounds?

Consider the modified Motzkin polynomial

$$
P_{\varepsilon}(x, y, z)=x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}+\varepsilon\left(x^{2}+y^{2}+z^{2}\right) .
$$

We have $m\left(P_{\varepsilon}\right)=\varepsilon ; M\left(P_{\varepsilon}\right)=\varepsilon+4 / 27$. Multiply with denominator $P_{n, \varepsilon}(x, y, z):=\left(x^{2}+y^{2}+z^{2}\right)^{n-3} P_{\varepsilon}(x, y, z)$. If a PSS decomposition for $P_{n, \varepsilon}$ exists, then the [2p,2q,2r] coefficient of $P_{n, \varepsilon}$ must be positive \rightsquigarrow lower bound on optimal n.

The take-home slide

$W \in \mathcal{B}^{\text {sa }}\left(V^{n} \mathbb{C}^{d}\right) \rightsquigarrow$ hom. poly. in d vars of deg. $n P_{W}(z)=\left\langle z^{\otimes n}\right| W\left|z^{\otimes n}\right\rangle$ W is block-positive $\Longleftrightarrow P_{W}$ is non-negative.
W is PSD $\Longleftrightarrow P_{W}$ is Sum Of hom. Squares:

$$
W=\sum_{j} \lambda_{j}\left|w_{j}\right\rangle\left\langle w_{j}\right| \Longrightarrow P_{w}(z)=\sum_{j} \lambda_{j}\left|\left\langle z^{\otimes n}, w_{j}\right\rangle\right|^{2} .
$$

W is separable $\Longleftrightarrow P_{W}$ is Sum Of hom. Powers:

$$
W=\left.\sum_{j} t_{j}\left|a_{j}\right\rangle\left\langle\left. a_{j}\right|^{\otimes n} \Longrightarrow P_{w}(z)=\sum_{j} t_{j}\right|\left\langle z, a_{j}\right\rangle\right|^{2 n} .
$$

Theorem ([MHNR19])

For any $W \in \mathcal{B}^{\text {sa }}\left(V^{k} \mathbb{C}^{d} \otimes \mathbb{C}^{D}\right)$ and $n \geq[d k(2 k-1)] / \ln \left(1+\frac{m(W)}{M(W)}\right)-k$,

$$
\|x\|^{2(n-k)} P_{W}(x, y)=\int P_{\tilde{W}}(\varphi, y)|\langle\varphi, x\rangle|^{2 n} \mathrm{~d} \varphi \in \operatorname{SOP}(x) \subseteq \operatorname{SOS}(x)
$$

where the polynomial $P_{\tilde{W}}(\cdot, \cdot) \geq 0$.

References

[Art27] Emil Artin.

Über die Zerlegung definiter Funktionen in Quadrate.
In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, volume 5, pages 100-115. Springer, 1927.
[Chi10] Giulio Chiribella.
On quantum estimation, quantum cloning and finite quantum de finetti theorems.
In Conference on Quantum Computation, Communication, and Cryptography, pages 9-25. Springer, 2010.
[DGS91] Philippe Delsarte, Jean-Marie Goethals, and Johan Jacob Seidel.
Spherical codes and designs.
In Geometry and Combinatorics, pages 68-93. Elsevier, 1991.
[Har13] Aram W Harrow.
The church of the symmetric subspace.
arXiv preprint arXiv:1308.6595, 2013.
[Hil88] David Hilbert.
Über die Darstellung definiter Formen als Summe von Formenquadraten.
Mathematische Annalen, 32(3):342-350, 1888.
[KW99] Michael Keyl and Reinhard F Werner.
Optimal cloning of pure states, testing single clones.
Journal of Mathematical Physics, 40(7):3283-3299, 1999.
[MHNR19] Alexander Müller-Hermes, Ion Nechita, and David Reeb.
A refinement of Reznick's Positivstellensatz with applications to quantum information theory.
arXiv preprint arXiv:1909.01705, 2019.
[Rez95] Bruce Reznick.
Uniform denominators in hilbert's seventeenth problem.
Mathematische Zeitschrift, 220(1):75-97, 1995.
[TY06] Wing-Keung To and Sai-Kee Yeung.
Effective isometric embeddings for certain hermitian holomorphic line bundles.
Journal of the London Mathematical Society, 73(3):607-624, 2006.
[Wer98] Reinhard F Werner.
Optimal cloning of pure states.
Physical Review A, 58(3):1827, 1998.

