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The paper

Roel Van Beeumen, Lana Periša, Daniel Kressner, Chao Yang -
A Flexible Power Method for Solving Infinite Dimensional Tensor
Eigenvalue Problems

▶ https://arxiv.org/abs/2102.00146
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Overview

Tensor Rings
· Finite and Infinite Tensor Rings
· Translational invariance

Motivation
· The problem
· The method

Properties of iTRs
· Normalized iTR
· Canonical form
· Rayleigh quotient
· Multiplication with iTRs
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Finite Tensor Rings

Let xℓ be an ℓth-order tensor of size d1 × d2 × · · · × dℓ, then its tensor
ring representation is defined as

and element-wise as

xℓ(i1, i2, . . . , iℓ) := Tr
[
X1(i1)X2(i2) · · ·Xℓ(iℓ)

]
,

where the indices ik run from 1 to dk , k = 1, 2, . . . , ℓ, and each Xk(ik) is
a matrix of size rk × rk+1, with r1 = rℓ+1.

Lana Periša | Infinite Tensor Rings



4

Finite Tensor Rings

Let xℓ be an ℓth-order tensor of size dℓ, then its translational invariant
tensor ring representation is defined as

and element-wise as

xℓ(i1, i2, . . . , iℓ) := Tr
[
X (i1)X (i2) · · ·X (iℓ)

]
,

where the indices ik run from 1 to d , k = 1, 2, . . . , ℓ, and each X (ik) is a
matrix of size r × r .
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Infinite Tensor Rings

A translational invariant infinite tensor ring (iTR) is defined as

and element-wise as

x(. . . , i−1, i0, i1, . . .) := Tr
[

+∞∏
k=−∞

X (ik)
]
,

where all indices ik run from 1 to d and each X (i) is a matrix of size
r × r , with r referred to as the rank of x.
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The problem

Computing the algebraically smallest eigenvalue of an infinite
dimensional tensor eigenvalue problem

Hx = λx,

where H is the infinite dimensional symmetric matrix

H =
+∞∑

k=−∞

Hk , Hk = · · · ⊗ I ⊗ I ⊗ Mk,k+1 ⊗ I ⊗ I ⊗ · · · .

▶ I ∈ Rd×d identity
▶ Mk,k+1 ∈ Rd2×d2 all equal

▶ H is the infinite sum of Kronecker products of infinite number of
finite matrices

▶ H is translational invariant
▶ the eigenvectors of H are infinite dimensional vectors

Lana Periša | Infinite Tensor Rings



7
Finite case

Take Hℓ ∈ Rdℓ×dℓ that only contains (ℓ− 1) terms in the summation and
Kronecker products of (ℓ− 1) matrices.

▶ Hℓ admits Tensor Train (TT) representation

▶ the corresponding eigenvector can be represented by the TT

xℓ(i1, i2, . . . , iℓ) = X1(i1)X2(i2) · · ·Xℓ(iℓ),

where Xk(ik) is an rk × rk+1 matrix, with r1 = rℓ+1 = 1, and the
indices ik = 1, . . . , d , for k = 1, . . . , ℓ

▶ limit ℓ → ∞ is known in the physics literature as the thermodynamic
limit and is important for describing macroscopic properties of
quantum materials when H corresponds to a quantum many-body
Hamiltonian
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Properties of infinite case

Translational invariance property of H implies the Bethe–Hulthén
hypothesis.

The elements of the eigenvector are invariant with respect to a cyclic
permutation of the tensor indices, i.e.,

x(. . . , i−1, i0, i1, . . .) = x(. . . , i0, i1, i2, . . .).

We represent the eigenvector to be computed as a translational
invariant infinite Tensor Ring (iTR)

x(. . . , i−1, i0, i1, . . .) = Tr
[

+∞∏
k=−∞

X (ik)
]
,

where all indices ik = 1, . . . , d , and each X (ik) is a matrix of size r × r .
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The method

To compute the desired eigenpair we assume that the smallest eigenvalue
of H is simple and propose to apply a flexible power iteration to e−Ht

for some small and variable parameter t.
▶ Lie product formula (Suzuki–Trotter splitting):

e−Ht ≈
+∞∏

k=−∞

e−Hk t ,

can be accurate enough if t is sufficiently small
▶ e−Hk t = · · · ⊗ I ⊗ I ⊗ e−Mt ⊗ I ⊗ I ⊗ · · ·

▶
+∞∏

k=−∞

e−Hk t = · · · ⊗ e−Mt ⊗ e−Mt ⊗ e−Mt ⊗ · · ·

(admits TT representation)
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The power method ingredients

How to do this operations when x is an iTR?

▶ multiplication (
+∞∏

k=−∞

e−Hk t

)
x

▶ normalization, uniqueness
▶ Rayleight quotient

xT Hx =
+∞∑

k=−∞

xT Hkx

▶ residual
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Transfer matrix

Let x be an iTR

Then

and we define the transfer matrix TX associated with x as the r2 × r2

matrix

where X (i) is the ith slice of X .
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Normalized iTR

Let x be an iTR. Then x is normalized, i.e., xT x = 1, if its corresponding
transfer matrix TX has a simple dominant eigenvalue η = 1.

Still, we can insert the product of any nonsingular matrix S and its
inverse between two consecutive cores of an iTR and redefine each slice
as S−1X (i)S, i = 1, ..., d , so the representation of an iTR is not unique.
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Canonical form

Let x be an iTR. Then its canonical form is defined as

and element-wise as

x(. . . , i−1, i0, i1, . . .) := Tr
[

+∞∏
k=−∞

Q(ik)Σ
]
,

where Q(i) ∈ Rr×r , for i = 1, . . . , d , and Σ ∈ Rr×r is a diagonal matrix
with decreasing non-negative real numbers on its diagonal and ∥Σ∥F = 1,
such that the following left and right orthogonality conditions hold

d∑
i=1

Q(i)TΣTΣQ(i) = ηI,
d∑

i=1
Q(i)ΣΣT Q(i)T = ηI,

with η ∈ R being the dominant eigenvalue of the transfer matrix TX .
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Canonical decomposition
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Rayleigh quotient

Let x be a normalized nonzero iTR and TX its corresponding transfer
matrix. Then the Rayleigh quotient (in an average sense) for a given
infinite dimensional matrix H can be represented by

where VL and VR are, respectively, the matricizations of the left and right
dominant eigenvectors of TX .
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Canonical Rayleigh quotient

Let x be a normalized iTR in canonical form with Q and Σ being the
tensor and matrix from the canonical representation. Then the Rayleigh
quotient associated with the infinite dimensional matrix H can be
represented by

Lana Periša | Infinite Tensor Rings



17

Multiplication with iTR

H =

(
+∞∑

k=−∞

H2k

)
+

(
+∞∑

k=−∞

H2k+1

)
=: He + Ho

Using the Suzuki–Trotter splitting twice:

e−Ht = e−(He+Ho)t ≈

(
+∞∏

k=−∞

e−H2k t

)(
+∞∏

k=−∞

e−H2k+1t

)
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The matrix–vector operation y = e−Htx
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The multiplication details
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Recap

▶ An iTR can be seen as the infinite limit of finite size tensor ring.
▶ Due to the translational invariance, we only need to store, and work,

with d matrices of size r × r .
▶ Most operations can be efficiently implemented involving only

tensors of size r × d × r .
▶ Special structure of H allows us to split it in even and odd terms.
▶ We are able to multiply a matrix exponential with an iTR and keep

the product in iTR form.
▶ We keep the rank low by doing the truncated SVD.
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Thank you! Questions?
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