

EXAMPLES

 (1) G = Gm → P ¹	$P = \frac{a(t)}{b(t)} \in G = G_{m}(k(T)) = h(T)^{X}$
 Supp Dp = it: Supp Dnp = it:	a(t) = b(t) a''(t) = b''(t)
 m (n => Dmp ≤ Dn	p in general supp Drp Not Bounded

2 $G = E \rightarrow P^{1}$ elliptic scheme over P^{1} $P \in G = E_{/k(T)} \longrightarrow (\mathcal{X}_{p}, \mathcal{Y}_{p}) \qquad \mathcal{X}_{p}, \mathcal{Y}_{p} \in k(T)$ $\alpha_{p} = \frac{\mathcal{A}_{p}}{\mathcal{D}_{p}^{2}} \qquad \mathcal{A}_{p}, \mathcal{D}_{p} \in k(T)$ $D_p = \frac{1}{2} dw (x_p)_{\infty} = div (D_p)_{o}$ m/n => Dmp | Dmp as polinomials supp Drp not bounded OSS: P not torsion

SILVERMAN CONJECTURE (function field version)		
Assume		
и(C)		
(b) The scherie constant is Provide a G		
ine subgroup generaled by I is 2-almse in U		
Then:		
Dup = Dp for infutely many n		
MOTIVATION: result of Bugglud-Corvera-Zommer in Gim/-		
• $G = G_m$ Alcon - RUDNICK 64 and gcd (a'-1, b'-1) (c)		
OSTAFE 16 general lese INDEP. OF N		
• G = E1 × E2 ell curres		
E, Ez IsotRiviAL -> Silverman O4		
Remember as - China - Xin - Turker (18		

THEOREM (Barroero - Capuano - T.) Conjecture holds for G = A × Gm, A ab variety i.e. for every PEG/h(c) s.t. (P) = G Dup = Dp for infutely many n = 1 Moreover 3 effective divisor D on C s.t. Dup XD for every n > 1 $\mathcal{G} = \mathcal{E} \times \mathcal{G}_m \longrightarrow \mathcal{C} = \mathcal{P}^1$ EXAMPLE $P = (Q, f) \in E \times G_{m} / k(c) = G$ $D_p = GCD(D_q, D_{p})$ 3 DEDIV(C) S.T. DIP=GCD(DNG, DNP) 3 D VN>1