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Chromatic polynomial: xr(n) number of proper colorings of graph I'
with n colors.
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Flow polynomial: ¢r(n) number of nowhere-zero flows on graph I', values

in Z, \ {0}.
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Tutte polynomial:

TH(X, ¥) = S0 (X — 1Ok q)lAl= IV
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Tutte polynomial: Specializes to the chromatic polynomial

Te(1 = n,0) = (~-)M=HO 0Oy ()
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Tutte polynomial: Specializes to the flow polynomial

Tr(0,1 = n) = (=1)/ VDo (n)
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Tutte polynomial on matroids: if matroid (of rank r) is graphic, Tutte
polynomial of graph with same cycle space.

Tm(X,Y) = Z(X _ l)r(E)—r(A)(y _ 1)\A|—r(A)
ACE
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Tutte on maps: Map < (I, vertex rot'n system); genus g, faces fp

T(Mix,y) = Y xR JAVIFKONAD T oy TT vamy
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c.c. M; cc. M;
of M/A of M\ A®
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Surface Tutte

Maps
Tutte on maps: Map < (I, vertex rot'n system); genus g, faces fp

T(M;x,y) = ZX\A“\ F(M)+K(M/A) A= | VI+K(M\AY) H Xe(M H Ve(
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Tutte (non-or.) maps: Map « (I, A\, vertex rot'n system); A Maps, 4 q
signature. g signed genus.

T(M;x7y):ZXlAcl—f(M)+k(M/A)y|A\—|VH—k(M\A‘) H Xg (M) H Ya(M)

ACE

c.c. M; cc. M;
of M/A of M\ A®
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Maps

Tutte (non-or.) maps: Map <> (I, A\, rot'n system); A\ : E — =£1 signa-

ture.

T(M;x7y):ZX|AC|*f(M)+k(M/A)y|A\*|VHk(M\AC) H Xg(M) H Yz (M)
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Tutte signed graphs: signed graph ¥ = (', \), signature A : eMapg ;.

Te(X, ¥, Z) = 37 (X—1)KE)KE) (y 1) A= IV k(R (71 jE\A)
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Tutte signed graphs: Evaluates to chromatic polynomial fMaglsgned
graphs and flow polynomial for signed graphs.
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Tutte pair matroids: M;, M, pair of matroids on E. Evaluates Mepsvari-
ate Tutte of X = (I, A) for (cycle matroid of I', frame matroid of X¥)

(Chromatic  Flow

\Signed

S (X, Y, Z) = Z(X_l)fl(E)*fl(A)(y_l)lA\*fz(A)(Z_l)fz(AHfl(E)*fl(A)'
ACE
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The Tutte polynomial

Graph ' = (V, E).
T(Fix,y) = 3 0= 10Oy — i),
ACE
where
® A¢ = E\Ais the complement of A C E.
e (M) =v(l)—k(), n(l) =e(l) — v(I') + k(T
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Properties of the Tutte polynomial

Deletion-contraction:

T(F\e;x,y)+ T([/e;x,y) for e non-bridge edge

T(Fix,y) = yT(T'\ e x,y) e a loop
oY) = xT([/e;x,y) e a bridge.
1 I is the empty graph

Universality for deletion-contraction invariants
Duality plane graphs: T(I;x,y) = T(I'*;y,x)

Chromatic polynomial (counting # 0 Z,-tensions):
(=) Op O T 1 = n,0); (-1)"DT(T;1—n,0))

Flow polynomial (counting # 0 Z,-flows):
(-=1)"MOT(r;0,1 - n).

and more...
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Signed graphs
® A signed graph is a pair (I', \), with
= (V,E) a graph (multiple edges and loops allowed),
A E — £1 signature map.

® A cycle (v1,e1,va,€2,...,v1) is balanced if traverses an even
number of negative edges.

Unbalanced otherwise.

® Connected component is balanced if all the cycles are balanced.
Unbalanced if it contains one unbalanced cycle.

__

(e is a circuit path edge)
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Tutte for signed graphs, pair of matroids

Definition (Trivariate Tutte polynomial of a signed graph)
Signed graph X = (I, \)

Te(X,Y,2) = 3 (X—1)HEI=KE) (y _1) A= IVEHh(E\A) (7 jla(E\A)
ACE

Definition (Trivariate Tutte polynomial of a pair of matroids)
Matroids M; = (E, 1) and M, = (E, r,) on a common ground set E,

S(M Mz)(X Y Z) — (X _ 1)f1(E)*f1(A)(y _ 1)\A\*'2(A)(Z _ 1)’2(A)+f1(5)*’1(A)
1, R : E
ACE

Te(X,Y,2)=(Z-1)""ESu.n(X.Y,2)

where M is underlying cycle matroid and F underlying frame matroid of ¥
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Properties Tutte for signed graphs |

Deletion-Contraction
Y = (I, ). e positive edge.

Ts

Ts/e + Tx\e

Tsje + (X—1)Tx\e

XTs e

YTs\e

1+ (Z-1)[1+ -+ Y]
1

e ordinary in

e bridge of I, circuit path edge of X,

e bridge of I, not circuit path edge of ¥,
e loop of I, positive in X,

Y one vertex with ¢ > 1 negative loops

Y has no edges
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Properties Tutte for signed graphs Il

R be an invariant of signed graphs invariant under switching and multiplicative

over disjoint unions. Suppose exists
for a signed graph ¥ =

Ry

aRs/e + BRs\e
aRs/e + YR):\e
aRs/e + Blx—c) Rz\e
XR):/e

yRs\e

BZ l,y_’_(z_,y)zl oyé 1— lﬂl

1

a, B,7,x,y and z, with v # 0, such that,
(T, A) and positive edge e € E,

e ordinary in I and in X,

e ordinary in T and k,(X\e) < k,(X),

e bridge in I, circuit path edge in X,

e bridge in I, not circuit path edge in ¥,
eloopinl andin X,

Y one vertex with £ > 1 negative loops
Y single vertex and no edges

Then, Ry is the polynomial in «, 8,7, x,y and z over Z[y,v7}]

Ry = an(E)ﬂ\E\—fF

(8) () -E) (57 Y E)
a By
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Definition ( G-coloring)

Colorings

G finite abelian group. A proper G-coloring of a signed graph ¥ with
vertices V isa map f : V — G such that, for an edge e = uv, we have
f(u) # f(v) if e is positive and —f(u) # f(v) if e is negative.

—Ps /e + Px\e e ordinary in [ and in X,
—Ps /e + Px\e e ordinary in T and k,(X\e) < ku(X),
—Ps)e +|G|Ps\e e bridge in T, circuit path edge in X,
Ps(G) =< (|G| — 1)Pg/. e bridge in ', not circuit path edge in X,
0Ps\c eloopin T and in X,
|G| — % ¥ one vertex with £ > 1 negative loops
|G| Y single vertex and no edges
Hence,
_ 1
Ps(G) = (—1)VI=k®)| G |x®) T <1 —|Gl,0,1 - |2G|)
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Flows

Definition (Flow)
G finite abelian group. f : E — G is a G-flow of a bidirected graph
(F'=(V, E),w) if Kirchhoff law is satisfied at each vertex:

Z w(v,e)f(e) =0, for each v € V

half edges (v,e)
vee

f is a G-flow of a signed graph X = (I', \) if bidirection w is compatible with A
(positive edges: —— /<<, negative edges: —<—/<—).
# nowhere-zero G-flows on ¥ (e positive edge) [DeVos, Rollova, Samal 13]:
(G) = Gs/e(G) — gs\e(G) if eis not a loop of T,
7 6| - 1)gs\e(G)  if elis a loop of I' positive in X.

and if X is a bouquet of ¢ negative loops,

#(6) = g7 | (161~ 1)+ (-6l - 5|

Hence,
_ |El— V| +k(T B _ 16
a5(G) = (~1) (0 1-16],1 |2G‘).
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Tensions, potential differences |
Definition
G finite abelian group. X = (I, \) signed graph, w compatible bidirection.
f: E — G is a G-tension of ¥ with respect to the orientation w if and only if,
for each positive closed walk W = (v, e1, v, €2, . . ., Vi, €, v1),

k

Z (L/.J(V,'7 e,-) H)\(éj)) f(e,-) =0.

i=1

f is a G-potential difference if and only if f is a G-tension such that, for every

walk W = (v1, e1, v2, €2, ..., vk, €, v1) around an unbalanced cycle,
K
> f(e) € 26.
i=1
k(T) . . .
Note: QE:W proper G-colorings <+ 1 nowhere-zero G-potential difference.

For each walk around an unbalanced cycle,
k

> f(e) € u+26.

i=1
for some u € G depending on the connected component. 11/15



Tensions, potential differences Il

For positive edge e, and u € G, the number of nowhere-zero G-tensions where

k
> f(e) € u+26.
i=1
for each unbalanced cycle in each connected component we have satisfies
pr\e(G; u) — px/e(G; u) if e is ordinary in I and in X,
[2G|ps\e(G; u) — px/e(G; u) e ordinary in T and ku(X\e) < ku(X),
pr(Giu) = %pz\e(G; u) — psse(G;u) e bridge in I, circuit path edge in X,
(1G] = 1)ps\e(G; 1) e bridge in T, not circuit path edge in X,
0 e loop in I and in X (positive loop),

2G| -1 we22G

and pr(Giu) = {2(; ug2G

} for a vertex with ¢ > 1 negative loops.

Hence, the number of nowhere-zero G-potential differences:
pe(G) = (<1 V126/* T (1 161.0.1— ;3 ).
And, if G unbalanced and connected, the number of nowhere-zero G-tensions
1 |G]

ts(G) = (-1) V26| [Tz(l -161,0,1 ~ @) * (\2@\ - ) T=(1= G"O’l)L)ls



Relation of Tutte for signed graphs to
other polynomials

Includes Zaslavsky's dichromatic polynomial for signed graphs/
partition function for mixed Potts model on a signed graph (g.f. for
states by no. of improperly coloured edges)

Tutte polynomial for pairs of matroids is Welsh—Kayibi's linking
polynomial (frame matroid and cycle matroid relevant pair of
matroids for signed graphs)

Fits in the unifying framework of “canonical Tutte polynomials” of
Krajewski, Moffat and Tanasa '18 of Hopf algebras and Tutte
polynomials, and the extension by Dupont, Fink and Moci '18.

Evaluation of the surface Tutte polynomial introduced by G.,
Litjens, Regts, Vena +'20 (generalization of G., Krajewski, Regts,
Vena '18), which is not the canonical Tutte polynomial for maps
but rather akin to Tutte's universal V-function of graphs

13/15



Loose ends

® QOther evaluations of the trivariate Tutte polynomial for signed
graphs with combinatorial interpretations (not evaluations of the
Tutte polynomial of the underlying cycle matroid or frame matroid)?

® Enumerating flows and tensions for gain graphs, for biased graphs
more generally: gives the canonical Tutte polynomial?

® Hochstattler and Wiehe '21 have constructed a trivariate Tutte
polynomial for digraphs that enumerates Neumann Lara flows and
acyclic colourings that is not the canonical Tutte polynomial. When
is the “dichromate” (enumerating the analogue of nowhere-zero
tensions and flows) equal to the canonical Tutte polynomial?
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Thank you for your attention!
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