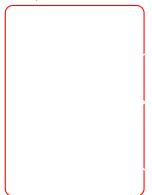
Tutte's dichromate for signed graphs

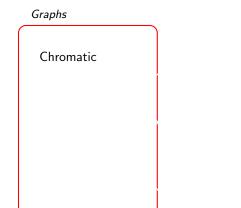
Andrew Goodall, Bart Litjens, Guus Regts, Lluís Vena

Charles University

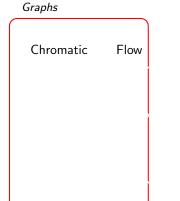
8ECM Graphs, Polynomials, Surfaces, and Knots (MS - ID 49) June 22, 2021

Graphs

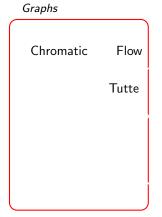




Chromatic polynomial: $\chi_{\Gamma}(n)$ number of proper colorings of graph Γ with *n* colors.



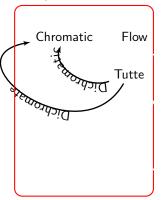
Flow polynomial: $\phi_{\Gamma}(n)$ number of nowhere-zero flows on graph Γ , values in $\mathbb{Z}_n \setminus \{0\}$.



Tutte polynomial:

$$T_{\Gamma}(X,Y) = \sum_{A \subset E} (X-1)^{k(\Gamma \setminus A^c) - k(\Gamma)} (Y-1)^{|A| - |V| + k(\Gamma \setminus A^c)}$$

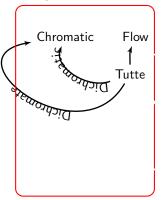
Graphs



Tutte polynomial: Specializes to the chromatic polynomial

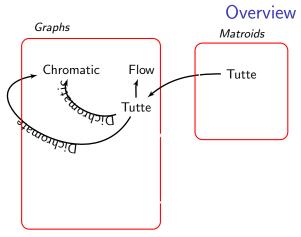
$$T_{\Gamma}(1-n,0) = (-1)^{|V|-k(\Gamma)} n^{k(\Gamma)} \chi_{\Gamma}(n)$$

Graphs



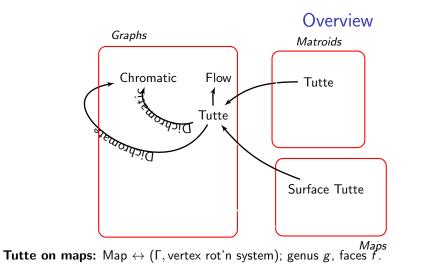
Tutte polynomial: Specializes to the flow polynomial

$$T_{\Gamma}(0,1-n) = (-1)^{|\mathcal{E}|-|\mathcal{V}|+k(\Gamma)} \phi_{\Gamma}(n)$$

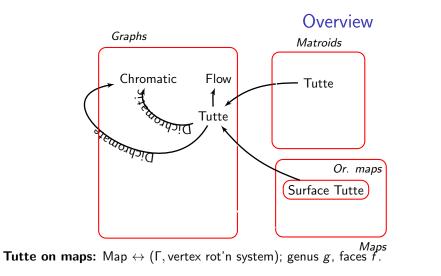


Tutte polynomial on matroids: if matroid (of rank r) is graphic, Tutte polynomial of graph with same cycle space.

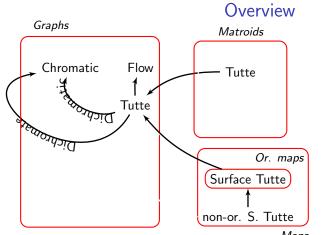
$$T_M(X,Y) = \sum_{A \subset E} (X-1)^{r(E)-r(A)} (Y-1)^{|A|-r(A)}$$



$$\mathcal{T}(M; \mathbf{x}, \mathbf{y}) = \sum_{A \subseteq E} x^{|A^c| - f(M) + k(M/A)} y^{|A| - |V| + k(M \setminus A^c)} \prod_{\substack{\text{c.c. } M_i \\ \text{of } M/A}} x_{g(M_i)} \prod_{\substack{\text{c.c. } M_j \\ \text{of } M \setminus A^c}} y_{g(M_j)}$$

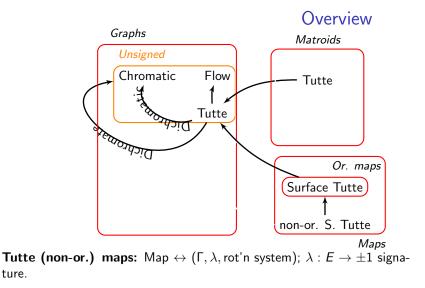


$$T(M; \mathbf{x}, \mathbf{y}) = \sum_{A \subseteq E} x^{|A^c| - f(M) + k(M/A)} y^{|A| - |V| + k(M \setminus A^c)} \prod_{\substack{\text{c.c. } M_i \\ \text{of } M/A}} x_{g(M_i)} \prod_{\substack{\text{c.c. } M_j \\ \text{of } M \setminus A^c}} y_{g(M_j)}$$



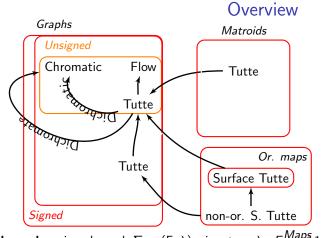
Tutte (non-or.) maps: Map \leftrightarrow (Γ , λ , vertex rot'n system); $\lambda : \overset{Maps}{E} \pm 1$ signature. \overline{g} signed genus.

$$\mathcal{T}(M; \mathbf{x}, \mathbf{y}) = \sum_{A \subseteq E} x^{|A^c| - f(M) + k(M/A)} y^{|A| - |V| + k(M \setminus A^c)} \prod_{\substack{\text{c.c. } M_i \\ \text{of } M/A}} x_{\overline{g}(M_i)} \prod_{\substack{\text{c.c. } M_j \\ \text{of } M \setminus A^c}} y_{\overline{g}(M_j)}$$



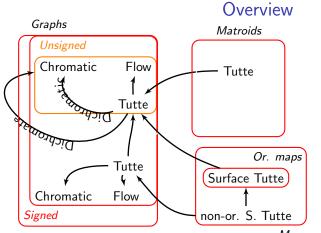
$$\mathcal{T}(M; \mathbf{x}, \mathbf{y}) = \sum_{A \subseteq E} x^{|A^c| - f(M) + k(M/A)} y^{|A| - |V| + k(M \setminus A^c)} \prod_{\substack{\text{c.c. } M_i \\ \text{of } M/A}} x_{\bar{g}(M_i)} \prod_{\substack{\text{c.c. } M_j \\ \text{of } M \setminus A^c}} y_{\bar{g}(M_j)}$$

ture.

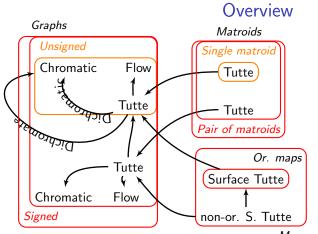


Tutte signed graphs: signed graph $\Sigma = (\Gamma, \lambda)$, signature $\lambda : E \xrightarrow{Maps}{\pm} 1$.

$$T_{\Sigma}(X,Y,Z) = \sum_{A \subseteq E} (X-1)^{k(\Sigma \setminus A^c) - k(\Sigma)} (Y-1)^{|A| - |V| + k_b(\Sigma \setminus A^c)} (Z-1)^{k_u(\Sigma \setminus A^c)}$$



Tutte signed graphs: Evaluates to chromatic polynomial for signed graphs and flow polynomial for signed graphs.



Tutte pair matroids: M_1 , M_2 pair of matroids on E. Evaluates to trivariate Tutte of $\Sigma = (\Gamma, \lambda)$ for (cycle matroid of Γ , frame matroid of Σ)

$$S_{M_1,M_2}(X,Y,Z) = \sum_{A \subseteq E} (X-1)^{r_1(E)-r_1(A)} (Y-1)^{|A|-r_2(A)} (Z-1)^{r_2(A)+r_1(E)-r_1(A)}.$$

The Tutte polynomial

Graph
$$\Gamma = (V, E)$$
.
 $T(\Gamma; x, y) = \sum_{A \subseteq E} (x - 1)^{r(\Gamma) - r(\Gamma \setminus A^c)} (y - 1)^{n(\Gamma \setminus A^c)},$

where

- $A^c = E \setminus A$ is the complement of $A \subseteq E$.
- $r(\Gamma) = v(\Gamma) k(\Gamma), \ n(\Gamma) = e(\Gamma) v(\Gamma) + k(\Gamma)$

Properties of the Tutte polynomial

• Deletion-contraction:

$$T(\Gamma; x, y) = \begin{cases} T(\Gamma \setminus e; x, y) + T(\Gamma/e; x, y) & \text{for } e \text{ non-bridge edge} \\ yT(\Gamma \setminus e; x, y) & e \text{ a loop} \\ xT(\Gamma/e; x, y) & e \text{ a bridge.} \\ 1 & \Gamma \text{ is the empty graph} \end{cases}$$

- Universality for deletion-contraction invariants
- Duality plane graphs: $T(\Gamma; x, y) = T(\Gamma^*; y, x)$
- Chromatic polynomial (counting $\neq 0 \mathbb{Z}_n$ -tensions): $(-1)^{r(\Gamma)} n^{k(\Gamma)} T(\Gamma; 1-n, 0); ((-1)^{r(\Gamma)} T(\Gamma; 1-n, 0))$
- Flow polynomial (counting $\neq 0 \mathbb{Z}_n$ -flows): $(-1)^{n(\Gamma)} T(\Gamma; 0, 1-n).$
- and more...

Signed graphs

- A signed graph is a pair (Γ, λ) , with $\Gamma = (V, E)$ a graph (multiple edges and loops allowed), $\lambda : E \to \pm 1$ signature map.
- A cycle (v₁, e₁, v₂, e₂, ..., v₁) is *balanced* if traverses an even number of negative edges.
 Unbalanced otherwise.
- Connected component is *balanced* if all the cycles are balanced. *Unbalanced* if it contains one unbalanced cycle.

(*e* is a circuit path edge)

Tutte for signed graphs, pair of matroids

Definition (Trivariate Tutte polynomial of a signed graph) Signed graph $\Sigma = (\Gamma, \lambda)$

$$T_{\Sigma}(X,Y,Z) = \sum_{A \subseteq E} (X-1)^{k(\Sigma \setminus A^c) - k(\Sigma)} (Y-1)^{|A| - |V| + k_b(\Sigma \setminus A^c)} (Z-1)^{k_u(\Sigma \setminus A^c)}$$

Definition (Trivariate Tutte polynomial of a pair of matroids) Matroids $M_1 = (E, r_1)$ and $M_2 = (E, r_2)$ on a common ground set E,

$$S_{(M_1,M_2)}(X,Y,Z) := \sum_{A \subseteq E} (X-1)^{r_1(E)-r_1(A)} (Y-1)^{|A|-r_2(A)} (Z-1)^{r_2(A)+r_1(E)-r_1(A)}$$

$$T_{\Sigma}(X, Y, Z) = (Z - 1)^{-r_{M}(E)} S_{(M,F)}(X, Y, Z)$$

where M is underlying cycle matroid and F underlying frame matroid of Σ

Properties Tutte for signed graphs I

Deletion-Contraction $\Sigma = (\Gamma, \lambda)$. *e* positive edge.

$$T_{\Sigma} = \begin{cases} T_{\Sigma/e} + T_{\Sigma \setminus e} \\ T_{\Sigma/e} + (X-1) T_{\Sigma \setminus e} \\ X T_{\Sigma/e} \\ Y T_{\Sigma \setminus e} \\ 1 + (Z-1) [1 + \dots + Y^{\ell-1}] \\ 1 \end{cases}$$

e ordinary in Γ e bridge of Γ , circuit path edge of Σ , e bridge of Γ , not circuit path edge of Σ , e loop of Γ , positive in Σ , Σ one vertex with $\ell \geq 1$ negative loops Σ has no edges

Properties Tutte for signed graphs II

R be an invariant of signed graphs invariant under switching and multiplicative over disjoint unions. Suppose exists $\alpha, \beta, \gamma, x, y$ and *z*, with $\gamma \neq 0$, such that, for a signed graph $\Sigma = (\Gamma, \lambda)$ and positive edge $e \in E$,

$$R_{\Sigma} = \begin{cases} \alpha R_{\Sigma/e} + \beta R_{\Sigma \setminus e} \\ \alpha R_{\Sigma/e} + \gamma R_{\Sigma \setminus e} \\ \alpha R_{\Sigma/e} + \frac{\beta(x-\alpha)}{\gamma} R_{\Sigma \setminus e} \\ x R_{\Sigma/e} \\ y R_{\Sigma \setminus e} \\ \beta^{\ell-1}\gamma + (z-\gamma) \sum_{i=0}^{\ell-1} y^{\ell-1-i} \beta^{i} \\ 1 \end{cases}$$

e ordinary in Γ and in Σ , e ordinary in Γ and $k_u(\Sigma \setminus e) < k_u(\Sigma)$, e bridge in Γ , circuit path edge in Σ , e bridge in Γ , not circuit path edge in Σ , e loop in Γ and in Σ , Σ one vertex with $\ell \ge 1$ negative loops Σ single vertex and no edges

Then, R_{Σ} is the polynomial in $\alpha, \beta, \gamma, x, y$ and z over $\mathbb{Z}[\gamma, \gamma^{-1}]$

$$R_{\Sigma} = \alpha^{r_{M}(E)} \beta^{|E|-r_{F}(E)} \gamma^{r_{F}(E)-r_{M}(E)} T_{\Sigma} \left(\frac{x}{\alpha}, \frac{y}{\beta}, \frac{z}{\gamma}\right)$$

Colorings

Definition (*G*-coloring)

G finite abelian group. A proper G-coloring of a signed graph Σ with vertices V is a map $f: V \to G$ such that, for an edge e = uv, we have $f(u) \neq f(v)$ if e is positive and $-f(u) \neq f(v)$ if e is negative.

$$P_{\Sigma}(G) = \begin{cases} -P_{\Sigma/e} + P_{\Sigma \setminus e} \\ -P_{\Sigma/e} + P_{\Sigma \setminus e} \\ -P_{\Sigma/e} + |G| P_{\Sigma \setminus e} \\ (|G| - 1) P_{\Sigma/e} \\ 0 P_{\Sigma \setminus e} \\ |G| - \frac{|G|}{|2G|} \\ |G| \end{cases}$$

e ordinary in Γ and in Σ , e ordinary in Γ and $k_u(\Sigma \setminus e) < k_u(\Sigma)$, e bridge in Γ , circuit path edge in Σ , e bridge in Γ , not circuit path edge in Σ , e loop in Γ and in Σ , Σ one vertex with $\ell \ge 1$ negative loops Σ single vertex and no edges

Hence,

$$P_{\Sigma}(G) = (-1)^{|V|-k(\Sigma)|} G^{|k(\Sigma)|} T_{\Sigma} \left(1 - |G|, 0, 1 - \frac{1}{|2G|} \right)$$

Flows

Definition (Flow)

G finite abelian group. $f : E \to G$ is a *G*-flow of a bidirected graph $(\Gamma = (V, E), \omega)$ if Kirchhoff law is satisfied at each vertex:

$$\sum_{\substack{ \mathsf{half edges}\ (v,e) \ v \in e}} \omega(v,e) f(e) = \mathsf{0}, ext{ for each } v \in V$$

f is a *G*-flow of a signed graph $\Sigma = (\Gamma, \lambda)$ if bidirection ω is compatible with λ (positive edges: $\rightarrow \rightarrow / \leftarrow \leftarrow$, negative edges: $\rightarrow \leftarrow / \leftarrow \rightarrow$). # nowhere-zero *G*-flows on Σ (*e* positive edge) [DeVos, Rollová, Šámal 13]:

$$q_{\Sigma}(G) = \begin{cases} q_{\Sigma/e}(G) - q_{\Sigma\setminus e}(G) & \text{if } e \text{ is not a loop of } \Gamma, \\ (|G| - 1)q_{\Sigma\setminus e}(G) & \text{if } e \text{ is a loop of } \Gamma \text{ positive in } \Sigma. \end{cases}$$

and if Σ is a bouquet of ℓ negative loops,

$$q_{\Sigma}(G) = rac{1}{|G|} \left[rac{|G|}{|2G|} (|G|-1)^{\ell} + (-1)^{\ell} (|G|-rac{|G|}{|2G|})
ight].$$

Hence,

$$q_{\Sigma}(G) = (-1)^{|E| - |V| + k(\Gamma)} T_{\Sigma} \left(0, 1 - |G|, 1 - \frac{|G|}{|2G|} \right).$$

Tensions, potential differences I

Definition

G finite abelian group. $\Sigma = (\Gamma, \lambda)$ signed graph, ω compatible bidirection. $f : E \to G$ is a *G*-tension of Σ with respect to the orientation ω if and only if, for each positive closed walk $W = (v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_1)$,

$$\sum_{i=1}^k \left(\omega(\mathbf{v}_i, \mathbf{e}_i) \prod_{j=1}^{i-1} \lambda(\mathbf{e}_j) \right) f(\mathbf{e}_i) = \mathbf{0}.$$

f is a G-potential difference if and only if f is a G-tension such that, for every walk $W = (v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_1)$ around an unbalanced cycle,

$$\sum_{i=1}^k f(e_i) \in 2G.$$

Note: $\frac{|G|^{k(\Sigma)}}{|2G|^{k_u(\Sigma)}}$ proper *G*-colorings \leftrightarrow 1 nowhere-zero *G*-potential difference. For each walk around an unbalanced cycle,

$$\sum_{i=1}^k f(e_i) \in u+2G.$$

for some $u \in G$ depending on the connected component.

Tensions, potential differences II

For positive edge e, and $u \in G$, the number of nowhere-zero G-tensions where

$$\sum_{i=1}^k f(e_i) \in u+2G.$$

for each unbalanced cycle in each connected component we have satisfies

$$p_{\Sigma}(G; u) = \begin{cases} p_{\Sigma \setminus e}(G; u) - p_{\Sigma / e}(G; u) \\ |2G|p_{\Sigma \setminus e}(G; u) - p_{\Sigma / e}(G; u) \\ \frac{|G|}{|2G|}p_{\Sigma \setminus e}(G; u) - p_{\Sigma / e}(G; u) \\ (|G| - 1)p_{\Sigma \setminus e}(G; u) \\ 0 \end{cases}$$

if e is ordinary in Γ and in Σ , e ordinary in Γ and $k_u(\Sigma \setminus e) < k_u(\Sigma)$, e bridge in Γ , circuit path edge in Σ , e bridge in Γ , not circuit path edge in Σ , e loop in Γ and in Σ (positive loop),

and
$$p_{\Sigma}(G; u) = \begin{cases} |2G| - 1 & u \in 2G \\ |2G| & u \notin 2G \end{cases}$$
 for a vertex with $\ell \ge 1$ negative loops.

Hence, the number of nowhere-zero G-potential differences:

$$p_{\Sigma}(G) = (-1)^{r(\Gamma)} |2G|^{k_u(\Sigma)} T_{\Sigma} \Big(1 - |G|, 0, 1 - \frac{1}{|2G|} \Big),$$

And, if *G* unbalanced and connected, the number of nowhere-zero *G*-tensions $t_{\Sigma}(G) = (-1)^{r(\Gamma)} |2G| \left[T_{\Sigma} \left(1 - |G|, 0, 1 - \frac{1}{|2G|} \right) + \left(\frac{|G|}{|2G|} - 1 \right) T_{\Sigma} (1 - |G|, 0, 1) \right]_{2/1}$

Relation of Tutte for signed graphs to other polynomials

- Includes Zaslavsky's dichromatic polynomial for signed graphs/ partition function for mixed Potts model on a signed graph (g.f. for states by no. of improperly coloured edges)
- Tutte polynomial for pairs of matroids is Welsh-Kayibi's *linking polynomial* (frame matroid and cycle matroid relevant pair of matroids for signed graphs)
- Fits in the unifying framework of "canonical Tutte polynomials" of Krajewski, Moffat and Tanasa '18 of Hopf algebras and Tutte polynomials, and the extension by Dupont, Fink and Moci '18.
- Evaluation of the surface Tutte polynomial introduced by G., Litjens, Regts, Vena +'20 (generalization of G., Krajewski, Regts, Vena '18), which is *not* the canonical Tutte polynomial for maps but rather akin to Tutte's universal V-function of graphs

Loose ends

- Other evaluations of the trivariate Tutte polynomial for signed graphs with combinatorial interpretations (not evaluations of the Tutte polynomial of the underlying cycle matroid or frame matroid)?
- Enumerating flows and tensions for gain graphs, for biased graphs more generally: gives the canonical Tutte polynomial?
- Hochstättler and Wiehe '21 have constructed a trivariate Tutte polynomial for digraphs that enumerates Neumann Lara flows and acyclic colourings that is not the canonical Tutte polynomial. When is the "dichromate" (enumerating the analogue of nowhere-zero tensions and flows) equal to the canonical Tutte polynomial?

Thank you for your attention!