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Fluid-Structure Interaction problem

• reference subdomains Ωf , Ωs

• transformation ξ maps Ωf , Ωs to Ωf (t), Ωs(t)
• v and u denote velocities and displacements in Ω̂ := Ωf ∪ Ωs

• ξ(x) := x+ u(x), F := ∇ξ = I+∇u, J := det(F)
• Cauchy stress tensors σf , σs

• pressures pf ,ps
• density ρf is constant
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Fluid-Structure Interaction problem

Dynamic equations

∂v
∂t =


ρ−1
s div (JσsF−T) in Ωs,

(Jρf )−1div (Jσf F−T)−∇v
(
F−1

(
v− ∂u

∂t

))
in Ωf

Kinematic equation
∂u
∂t = v in Ωs

Fluid incompressibility

div (JF−1v) = 0 in Ωf or J∇v : F−T = 0 in Ωf

Constitutive relation for the fluid stress tensor

σf = −pf I+ µf ((∇v)F−1 + F−T(∇v)T) in Ωf
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FSI problem

Constitutive relation for the solid stress tensor

σs = σs(J, F, ps, λs, µs, . . . ) in Ωs

Monolithic approach 1 : Extension of the displacement field to the fluid
domain

G(u) = 0 in Ωf ,

u = u∗ on ∂Ωf

for example, vector Laplace equation or elasticity equation

+ Initial, boundary, interface conditions (σf F−Tn = σsF−Tn)

1Michler et al (2004), Hubner et al (2004), Hron&Turek (2006),...
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Numerical scheme

• Consistent triangular or tetrahedral mesh Ωh in Ω̂

• LBB-stable pair for velocity and pressure P2/P1, P2 for displacements

• Open source software Ani2D,Ani3D (Advanced numerical instruments 2D/3D, K.Lipnikov,

Yu.Vassilevski et al.)

http://sf.net/p/ani2d/ http://sf.net/p/ani3d/:

• mesh generation
• FEM systems
• algebraic solvers
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Numerical scheme

Find{uk+1, vk+1, pk+1}∈V0
h×Vh×Qh satisfying b.c. and

[
∂u
∂t

]
k+1=v

k+1 on Γfs

∫
Ωs

ρs

[
∂v
∂t

]
k+1
ψ dΩ+

∫
Ωs
JkF(ũk)S(uk+1, ũk) : ∇ψ dΩ+

∫
Ωf

ρf Jk
[
∂v
∂t

]
k+1
ψ dΩ+

∫
Ωf

ρf Jk∇vk+1F−1(ũk)
(
ṽk −

[̃
∂u
∂t

]
k

)
ψ dΩ+∫

Ωf

2µf JkDũkv
k+1 : Dũkψ dΩ−

∫
Ωf

pk+1JkF−T(ũk) : ∇ψ dΩ = 0 ∀ψ ∈ V0h

∫
Ωs

[
∂u
∂t

]
k+1
φdΩ−

∫
Ωs
vk+1φ dΩ+

∫
Ωf

G(uk+1)φ dΩ = 0 ∀φ ∈ V00h

∫
Ωf

Jk∇vk+1 : F−T(ũk)q dΩ = 0 ∀ q ∈ Qh

Jk := J(ũk), f̃k := 2fk − fk−1
, Duv := {∇vF−1(u)}s, {A}s :=

1
2
(A + AT)
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Numerical scheme

. . .+

∫
Ωs

JkF(ũk)S(uk+1, ũk) : ∇ψ dΩ+ . . .

• St. Venant–Kirchhoff model (geometrically nonlinear):

S(u1,u2) = λstr(E(u1,u2))I+ 2µsE(u1,u2);
E(u1,u2) = {F(u1)TF(u2)− I}s

• inc. Blatz–Ko model:

S(u1,u2) = µs(tr({F(u1)TF(u2)}s)I− {F(u1)TF(u2)}s)

• inc. Neo-Hookean model:

S(u1,u2) = µsI; F(ũk) → F(uk+1)

{A}s := 1
2 (A+ AT)
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Numerical scheme

The scheme

• provides strong coupling on interface
• semi-implicit
• produces one linear system per time step
• may be first or second order in time
• unconditionally stable (stability estimate without CFL
restriction), proved with assumptions:

• 1st order in time
• St. Venant–Kirchhoff inc./comp. (experiment: Neo-Hookean inc./comp.)
• extension of u to Ωf guarantees Jk > 0
• ∆t is not large

A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable semi-implicit FSI
finite element method. Comput.Methods Appl.Mech.Engrg., 297, 2015
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3D: pressure wave in flexible tube

L.Formaggia et al., CMAME 191: 561–582, 2001

t = 0.004s t = 0.006s

t = 0.008s t = 0.01s

Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and 10×
enlarged structure displacement for several time instances

• The tube (fixed at both ends) is 50mm long, it has inner diameter of 10mm and the wall
(SVK) is 1mm thick.

• Left end: external pressure pext is set to 1.333 · 103Pa for t ∈ (0, 3 · 10−3)s and zero
afterwards, σf F−Tn = pextn. Right end: open boundary

• Simulation was run with ∆t = 10−4 s
• #Tets(Ωs) = 6336/11904/38016, #Tets(Ωf ) = 13200/29202/89232
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3D: pressure wave in flexible tube

L.Formaggia et al., CMAME 191: 561–582, 2001

axial component radial component

Pressure wave: The radial and axial components of displacement of the inner tube wall at half the
length of the pipe. Solutions are shown for three sequentially refined meshes. The plots are

almost indistinguishable.

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. Analysis and assessment of a monolithic FSI finite element method. Computers & Fluids, 179, 2019
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3D: silicone filament in glycerol

Benchmark challenge for CMBE 2015, Paris

Image from A. Hessenthaler et al. Experiment for validation of fluid-structure interaction models
and algorithms. Int. J. for Numer. Meth. Biomed. Engng., 2017

10



3D: silicone filament in glycerol

Meshed volume: original and extended domains.
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3D: silicone filament in glycerol

• Steady and pulsatile flow regimes

• Simulation was run with ∆t = 10−2 s, t ∈ [0, 12]

• #Tets(Ωs) = 733, #Tets(Ωf ) = 28712, #unknowns = 254439

• The filament (SVK) is lighter than the fluid and deflects upward

• Linear elasticity model is used for the update2 of the displacement
extension in Ωf , the Lame parameters are element-volume dependent

2M.Landajuela et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. Int. J. for Numer. Meth.
in Biomed. Engng., 33, 2017.
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3D: silicone filament in glycerol

Streamlines colored by the velocity magnitude t = 0.721s (left), t = 2.017s (right)

Track of the computed y-displacement of the point in the structure with coordinate z ≈ 53, x = 0
for t ∈ [0, 6] and recorded experimental data

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. Analysis and assessment of a monolithic FSI finite element method. Computers & Fluids, 179, 2019
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Fluid-structure interaction: pros and cons

Pros:

• FSI is the accurate model providing 3D fields of p, v in fluid, u,σs in
structure

• Unconditionally stable semi-implicit FE scheme for FSI is proposed

• Only one linear system is solved per time step

• The scheme can incorporate diverse elasticity models

• Works robustly in 2D and 3D and handles relatively large time steps
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Fluid-structure interaction: pros and cons

Cons:

• FSI is computationally expensive (hours of computation on a parallel
cluster with ∼ 100 cores )

• Long simulation is not relevant to clinical practice

• Unknown elastic properties of structure

• Boundary conditions for fluid are speculative

Simpler models?
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Example 1
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Incompressible fluid flow in a moving domain

Let ξ mapping Ω0 to Ω(t), F = ∇ξ = I+∇u, J = det(F) be given

Dynamic equations

∂v
∂t = (Jρf )−1div (Jσf F−T)−∇v

(
F−1

(
v− ∂u

∂t

))
in Ω0

Fluid incompressibility

div (JF−1v) = 0 in Ω0 or J∇v : F−T = 0 in Ω0

Constitutive relation for the fluid stress tensor

σf = −pf I+ µf ((∇v)F−1 + F−T(∇v)T) in Ω0

Mapping ξ does not define material trajectories→ quasi-Lagrangian
formulation
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Finite element scheme

Let Vh,Qh be Taylor-Hood P2/P1 finite element spaces.

Find {vkh,pkh} ∈ Vh ×Qh satisfying b.c.

(”do nothing”σF−Tn = 0 or no-penetration no-slip vk = (ξk − ξk−1)/∆t)

∫
Ω0

Jk
vkh − vk−1h

∆t
·ψ dx+

∫
Ω0

Jk∇vkhF
−1
k

(
vk−1h − ξk − ξk−1

∆t

)
·ψ dx−∫

Ω0

JkpkhF
−T
k : ∇ψ dx+

∫
Ω0

JkqF−Tk : ∇vkh dx+∫
Ω0

νJk(∇vkhF
−1
k F−Tk + F−Tk (∇vkh)TF

−T
k ) : ∇ψ dx = 0

∫
Ω0

Jk∇vk : F−Tk qdΩ = 0

for all ψ and q from the appropriate FE spaces 14



Finite element scheme

The scheme

• semi-implicit
• produces one linear system per time step
• first order in time (may be generalized to the second order)
• unconditionally stable (stability estimate without CFL
restriction) and 2nd order accurate, proved with assumptions:

• infQ J ≥ cJ > 0, supQ(‖F‖F + ‖F−1‖F) ≤ CF

• LBB-stable pairs (e.g. P2/P1)

• ∆t is not large

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A quasi-Lagrangian finite element method for the
Navier-Stokes equations in a time-dependent domain. Comput.Methods Appl.Mech. Engrg.333,2018
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Stability estimate for the FE solution

Let ∂Ω(t) = ∂Ωns(t) and ξt be given on ∂Ωns(t). Then there exists
v1 ∈ C1(Q)d, v1 = ξt , div (JF−1v1) = 0 [Miyakawa1982]

and we can decompose the solution v = w+ v1, w = 0 on ∂Ωns

Energy balance for wkh FE approximation of wk:

1
2∆t

(
‖J

1
2
k w

k
h‖2 − ‖J

1
2
k−1w

k−1
h ‖2

)
︸ ︷︷ ︸ +2ν

∥∥∥∥J 12k Dk(wkh)∥∥∥∥2︸ ︷︷ ︸ +
(∆t)
2

∥∥∥∥J 12k−1 [wh]
k
t

∥∥∥∥2︸ ︷︷ ︸
variation of energy of O(∆t) dissipative
kinetic energy viscous dissipation term

+(Jk(∇vk1F−1
k )wkh,wkh)︸ ︷︷ ︸ = (̃fk,wkh)︸ ︷︷ ︸

intensification work of
due to b.c. ext. forces

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017
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Stability estimate for the FE solution

Stability estimate for wnh FE approximation of wn:

C1‖∇vk1‖ ≤ ν/2:

1
2‖w

n
h‖2n + ν

n∑
k=1

∆t‖Dk(wkh)‖2k ≤
1
2‖w0‖

2
0 + C

n∑
k=1

∆t‖̃fk‖2

Dk(v) := 1
2 (∇vF

−1
k + F−T

k (∇v)T)

C1‖∇vk1‖ > ν/2:

1
2‖w

n
h‖2n + ν

n∑
k=1

∆t‖Dk(wkh)‖2k ≤ e
2C2
α
T

(
1
2‖w0‖

2
0 + C

n∑
k=1

∆t‖̃fk‖2
)
,

if (1− 2C2∆t) = α > 0

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017
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A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017
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Convergence of the FE solution

Assume

1. LBB stable FE pair Pm+1-Pm;
2. Ω0 is a convex polyhedron;
3. utt ∈ L∞(Ω0), u(t) ∈ Hm+ 5

2 (Ω0), p(t) ∈ Hm+1(Ω0) for all t ∈ [0, T];
4. c∆t ≥ h2m+4 with some c independent of h, ∆t;
5. either ∆t is small enough s.t. 1

2 − C̃∆t > 0 or ν ≥ C̃ CK

Then

max
1≤k≤N

‖ek‖2k + 2ν∆t
N∑
k=1

‖Dk(ek)‖2k ≤ C
(
h2(m+1) + (∆t)2 + (∆t)−1h2(m+2)

)
.

In particular, for Taylor-Hood pair, m = 1:

max
1≤k≤N

‖ek‖2k + 2ν∆t
N∑
k=1

‖Dk(ek)‖2k ≤ Cmax{h2;∆t} if h2 ≤ c∆t.

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A quasi-Lagrangian finite element method for the
Navier-Stokes equations in a time-dependent domain. Comput. Methods Appl. Mech. Engrg. 333,
2018 17



3D: left ventricle of a human heart

Рис. 1: Left ventricle
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Рис. 2: Ventricle volume

The law of motion for the ventricle walls is known thanks to ceCT
scans→ 100 mesh files with time gap 0.0127 s→ u given as input

• 2 - aortic valve (outflow)
• 5 - mitral valve (inflow)

18



3D: left ventricle of a human heart

• Quasi-uniform mesh: 14033 vertices,
69257 elements, 88150 edges.

• Boundary conditions: Dirichlet v = ∂u
∂t

except:

• Do-nothing on aortal valve
during systole

• Do-nothing on mitral valve
during diastole

• Time step 0.0127 s is too large! =⇒
refined to ∆t = 0.0127/20 s =⇒
Cubic-splined u.

• Blood parameters: ρf = 103 kg/m3 ,
µf = 4 · 10−3 Pa ·s.
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3D: left ventricle of a human heart
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Example 2
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Navier-Stokes equations for flows in rigid walls
T.Dobroserdova

• 1D hemodynamic simulations are low-cost and are appealing in clinical applications
• But they do not provide 3D fields
• 3D Navier-Stokes equations for incompressible flows in rigid walls are easier-to-solve than
FSI, give 3D fields

• But they can not give correct averaged flow rates and pressures for a straight vessel
• However, in case of a bifurcation, 3D NS eq. can provide 3D fields and correct averaged flow
rates and pressures within a multiscale framework

T.Dobroserdova, F.Liang, G.Panasenko, Yu.Vassilevski. Multiscale models of blood flow in the compliant aortic bifurcation Applied

Mathematics Letters 93C, 2019 20



Navier-Stokes equations in aortic bifurcation

• 3D Navier-Stokes equations for flow in rigid wall in bifurcation vicinity
• 1D hemodynamic equations (cross-area averaged flow in collapsible
tubes)

• 0D lumped model (elastic sphere filled by fluid)
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Navier-Stokes equations in aortic bifurcation

Mass and momentum balance in each vessel

∂Sk/∂t + ∂(Skuk) /∂x = 0,

∂uk/∂t + ∂
(
u2k/2+ pk/ρ

)
/∂x = −8πµukSk

,

ρ is the blood density (constant), Sk(t, x) is the cross-section area, uk(t, x) is the linear velocity

averaged over the cross-section, pk(Sk) is the blood pressure
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Navier-Stokes equations in aortic bifurcation

Elastic sphere with volume V = V(t) filled with fluid is the 0D absorber

p0D(t) = pfluid − pext

The kinematics of the sphere is:

I d
2V
dt2 + R0

dV
dt +

V − V0
C = p0D
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Navier-Stokes equations in aortic bifurcation

The conservation of mass:
dV
dt = Q1D − Q3D,

Q1D = Sv, Q3D = −
∫
Γ
v · nds

Poiseuille law links the flow rate to the pressure drop:

p− p0D = R1DODQ1D at x = b,
p0D − p = R0D3DQ3D on Γ,

where R1D0D and R0D3D are the resistance coefficients introducing additional dissipation in the
cumulative energy balance of the complete 1D–0D–3D system

T.Dobroserdova, M.Olshanskii, S.Simakov. Multi-scale coupling of compliant and rigid walls blood flow models. Int.J.Num.Meth.Fluids,

82(12):799-817, 2016
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Navier-Stokes equations in aortic bifurcation

Error in flux pressure
Method avg% max% avg% max%
1dHem 0.78 3.53 0.41 0.74
3dNS 9.15 30.02 1.41 8.31

10301d 1.15 4.49 2.02 3.48

T.Dobroserdova, F.Liang, G.Panasenko, Yu.Vassilevski. Multiscale models of blood flow in the compliant aortic bifurcation Applied

Mathematics Letters 93C, 2019
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For details refer to

PERSONALIZED 
COMPUTATIONAL  
HEMODYNAMICS

Yuri Vassilevski ● Maxim Olshanskii  
Sergey Simakov ● Andrey Kolobov  

and Alexander Danilov

Models, Methods, and  
Applications for Vascular Surgery  

and Antitumor Therapy

Y.Vassilevski, M.Olshanskii,
S.Simakov, A.Kolobov, A.Danilov

Personalized Computational Hemodynamics:
Models, Methods, and Applications for
Vascular Surgery and Antitumor Therapy

Academic Press 2020, ISBN: 9780128156537
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Example 3
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Patient-specific modeling of aortic valve closing

V.Salamatova, A.Danilov, A.Lyogkii, R.Pryamonosov

Aortic valve cusps replacement by leaflets cut from pericardium:

• no immune response
• efficient, low-cost
• all measurements and cuttings are made during operation

24



Patient-specific modeling of aortic valve closing

Objectives of modeling:

• degree of regurgitation
• height of coaptation

AA

LV

STJ

VAJ

24



Patient-specific modeling of aortic valve closing
The mass-spring model (MSM) computes
leaflet deformation under diastolic
pressure:

• leaflet is an oriented triangulated
surface

• each edge is a spring with given
stiffness

• each node has a point mass at which
forces due to springs and pressure
are applied

Fij = kij(‖rj − ri‖ − Lij)
rj − ri

‖rj − ri‖

kij =
E(ε, α0)HAij

L2ij
• we search static equilibrium

A.VanGelder. Approximate simulation of elastic membranes by
triangulated spring meshes

J. Graph. Tools. 1998
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Patient-specific modeling of aortic valve closing

Size Isotropic ↑ → ↗
22 h 14.3 14.3 14.2 14.2
26 h 16.4 16.2 16.3 16.6
28 h 16.8 16.2 17.0 16.9
22 hc 0 0 0 0
26 hc 11.6 10 10.1 12.2
28 hc 11.9 13.4 12.7 13.2

Coaptation height (mm) for 3 leaflet sizes
(mm) and anisotropy directions

Hyperelastic nodal force method
(V.Salamatova) allows us to simulate
coaptation of cusps from hyperelastic
materials

V.Salamatova, A.Liogky, P.Karavaikin et al. Numerical assessment of coaptation for auto-pericardium based aortic valve cusps. Russian J.
Numer. Anal. Math. Modelling, 34, 2019
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Patient-specific modeling of aortic valve closing

Coaptation profiles for different elasticity models and elastic modulii (upper row), suturing paths

and commissures on the aorta (bottom).

V.Salamatova, A.Liogky, P.Karavaikin et al. Numerical assessment of coaptation for auto-pericardium based aortic valve cusps. Russian J.
Numer. Anal. Math. Modelling, 34, 2019
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Thank you for your attention!
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