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Fluid-Structure Interaction problem

- reference subdomains €, Qs

- transformation & maps Qy, Qs to Qg(t), Qs(t)

- vand u denote velocities and displacements in Q := Qs U Qs
- &(X) :=x+u(x), F:= V& =1+ Vu, ) := det(F)

- Cauchy stress tensors o7, o's

- pressures py,ps

- density py is constant



Fluid-Structure Interaction problem

Dynamic equations

p;1div (JO'SFJ) in Qs,

at Ups)div (JosFT) — Vv (F‘W (v = %)) in Q

ov

Kinematic equation

Fluid incompressibility

div(JF7'v)=0 inQ or JVv:F =0 inQ

Constitutive relation for the fluid stress tensor

or = —pfl + pr(VVF + F(WW)') in @



FSI problem

Constitutive relation for the solid stress tensor

os =0s(J,F,Ds, s, s, ...) N Qs

Monolithic approach ' : Extension of the displacement field to the fluid
domain

G(u) =0 in £y,
u=u" on oy

for example, vector Laplace equation or elasticity equation
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+ Initial, boundary, interface conditions (oyF~"n = asF~n)

TMichler et al (2004), Hubner et al (2004), Hron&Turek (2006),...



Numerical scheme

- Consistent triangular or tetrahedral mesh €, in Q
- LBB-stable pair for velocity and pressure P,/Ps, P, for displacements

* Open source SOftWare An 12D, An 13D (Advanced numerical instruments 2D/3D, K.Lipnikov,
YuVassilevski et al.)

http://sf.net/p/ani2d/ http://sf.net/p/ani3d/:

- mesh generation
- FEM systems
- algebraic solvers


http://sf.net/p/ani2d/
http://sf.net/p/ani3d/

Numerical scheme

Find {u"*,v**!, p**1} e V) x Vi, x Qy satisfying b.c. and [2¢], . =V on Iy,

/ps {@] 1/:dQ+/ JRF@@R)S(URT, TF) - v dQ +
Qs ot kR+1 Qs

ov g1 Ry (o _ [ OU
/pfjk|:6t:| wdﬂ-&-/ﬂfpf/va F (u)(v {&])wdﬂ—i—

/Q 24u5)pDgeVF ! - Dgeap dQ2 —/Q P FT (@) : VpdQ =0 Vap € VO
f f

/ [@} pdQ— [ VpdQ+ [ GuFpdQ =0 V¢ eV
It | Qs o

JoWWET L FT(MR)qdQ =0 Vg e,
Qf

Jo =)@, =2 — 71 Dyvi= {VF(u)}s, {A}s:= %(A+AT)



Numerical scheme

o JRFERS(URT TR s Ve dQ
Qs

- St. Venant=Kirchhoff model weometricaty noninear:
S(uq, uz) = Astr(E(uq, up))l + 2usE(uq, uy);
E(uq, up) = {F(up)"F(uy) — 1}s
- inc. Blatz-Ko model:
S(ur, uz) = ps(tr({F(un) F(u2)}s)! — {F(u1)"F(u2)}s)
- inc. Neo-Hookean model:

S(ur, uy) = psl; F(UF) — F(uF)

{A}s = J(A+AT)



Numerical scheme

The scheme

- provides strong coupling on interface

- semi-implicit

- produces one linear system per time step
- may be first or second order in time

- unconditionally stable (stability estimate without CFL
restriction), proved with assumptions:
- st order in time
- St. Venant=Kirchhoff inc./comp. (experiment Neo-Hookean inc comp)
- extension of u to Qy guarantees Jp > 0
- Atis not large

A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable semi-implicit FSI
finite element method. Comput.Methods Appl.Mech.Engrg., 297, 2015



3D: pressure wave in flexible tube

L.Formaggia et al., CMAME 191: 561-582, 2001

t = 0.004s

t=0.0085 - = =001

Pressure wave: middle cross-section velocity field, pressure distribution, velocity vectors and 10 x
enlarged structure displacement for several time instances

- The tube (fixed at both ends) is 50mm long, it has inner diameter of 10mm and the wall
(SVK) is Tmm thick.
Left end: external pressure pey: is set to 1.333 - 10°Pa fort € 0,3 10_3)5 and zero
afterwards, a,F’Tn = pextN. Right end: open boundary

- Simulation was run with At =107*s

- #Tets(s) = 6336/11904 /38016, #TetS(Qf) = 13200/29202/89232



3D: pressure wave in flexible tube

L.Formaggia et al., CMAME 191: 561-582, 2001

>
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Pressure wave: The radial and axial components of displacement of the inner tube wall at half the

length of the pipe. Solutions are shown for three sequentially refined meshes. The plots are
almost indistinguishable.



3D: silicone filament in glycerol

Benchmark challenge for CMBE 2015, Paris

Inlet pipes
Reservoir

FSI section
Data points

Image from A. Hessenthaler et al. Experiment for validation of fluid-structure interaction models
and algorithms. Int. J. for Numer. Meth. Biomed. Engng., 2017



3D: silicone filament in glycerol

Poece

Meshed volume: original and extended domains.




3D: silicone filament in glycerol

- Steady and pulsatile flow regimes

- Simulation was run with At =107 s, t € [0,12]

- #Tets(Qs) = 733, #Tets(Qy) = 28712, #unknowns = 254439

- The filament (SVK) is lighter than the fluid and deflects upward

- Linear elasticity model is used for the update? of the displacement
extension in Qy, the Lame parameters are element-volume dependent

2M,Ldﬂdd}u0\d et al. Coupling schemes for the FSI forward prediction challenge: comparative study and validation. Int. J. for Numer. Meth.
in Biomed. Engng., 33, 2017.



3D: silicone filament in glycerol
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Velocity Magnifude:
Velocity Magnitude

Streamlines colored by the velocity magnitude t = 0.721s (left), t = 2.017s (right)

time

Track of the computed y-displacement of the point in the structure with coordinate z & 53, x = 0
fort € [0, 6] and recorded experimental data

A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. Analysis and assessment of a monolithic FSI finite element method. Computers & Fluids, 179, 2019




Fluid-structure interaction: pros and cons

Pros:

- FSlis the accurate model providing 3D fields of p,v in fluid, u, o5 in
structure

- Unconditionally stable semi-implicit FE scheme for FSI is proposed
- Only one linear system is solved per time step
- The scheme can incorporate diverse elasticity models

- Works robustly in 2D and 3D and handles relatively large time steps

1



Fluid-structure interaction: pros and cons

Cons:

- FSlis computationally expensive (hours of computation on a parallel
cluster with ~ 100 cores )

- Long simulation is not relevant to clinical practice
- Unknown elastic properties of structure

- Boundary conditions for fluid are speculative

1



Fluid-structure interaction: pros and cons

Cons:

- FSlis computationally expensive (hours of computation on a parallel
cluster with ~ 100 cores )

- Long simulation is not relevant to clinical practice
- Unknown elastic properties of structure

- Boundary conditions for fluid are speculative

Simpler models?

1



Example 1



Incompressible fluid flow in a moving domain

Let &€ mapping Qo to Q(t), F = V& =1+ Vu, J = det(F) be given

Dynamic equations

ov 1. - - ou .
ot = U 'div (JogFT) — Vv (F ! (v - E)) in Qo

Fluid incompressibility
div(JF"'v)=0 inQo or JVV:F =0 inQ
Constitutive relation for the fluid stress tensor

or = —prl + ur(VV)F + F(VV)') in Qo

Mapping & does not define material trajectories — quasi-Lagrangian
formulation



Finite element scheme

Let V,, Q@ be Taylor-Hood P, /P, finite element spaces.
Find {vk,pf} € V), x Qj satisfying b.c.

("do nothing’eF~"n = 0 or no-penetration no-slip v = (& — ¢"=")/At)

Vk’ _ Vh’f‘\ 5’? _ £I?7'|
h h Re—1 | k=1
—h h and VVEF —_ > 5> | .pdx—
Qohe o P X+/onfe ViFe | Vi At P dx

JPfF T Vapdx+ [ JpGF, T VVE dx+
Qg Qo
/ VIe(VVEF P T + F T (VVE)TFT) - Vapdx = 0
J Qo

JeWWRFrTgdQ =0
J Qo

for all 4 and g from the appropriate FE spaces “‘



Finite element scheme

The scheme
- semi-implicit
- produces one linear system per time step
- first order in time (may be generalized to the second order)

- unconditionally stable (stability estimate without CFL
restriction) and 2nd order accurate, proved with assumptions:

- info) > ¢ >0, supg(||Flle + IF"[lr) < C
- LBB-stable pairs (e.g. P,/ P;)
- Atis not large

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes

equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017

A.Lozovskiy, M.Olshanskii, YuVassilevski. A quasi-Lagrangian finite element method for the
Navier-Stokes equations in a time-dependent domain. Comput.Methods Appl.Mech. Engrg.333,2018



Stability estimate for the FE solution

Let 9Q(t) = 9Q™(t) and &, be given on 9Q™(t). Then there exists
vi € CY(Q), vi = &,, div (JF'v1) = 0 [Miyakawa1982]

and we can decompose the solution v =w + vy, w = 0 on 9Q™

Energy balance for w® FE approximation of w’:

1 1 1 5 1 2 At) || 1 2
aaz (it = i) 2w [pfonco)| + 52 i
variation of energy of O(At) dissipative
kinetic energy viscous dissipation term
(VIR )WE, wh) = (F, )
——
intensification work of
due to b.c. ext. forces

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J. 16
Numer. Anal. Math. Modelling, 32, 2017



Stability estimate for the FE solution

Stability estimate for wj FE approximation of w":
GV < v/2:
1 i 1 L
S IWAIE + 2>~ AID(Wh)IE < 5 lwoll§ +C - At

k=1 k=1

Di(V) := J(VVF, '+ F,(Vv)")

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017

16



Stability estimate for the FE solution

Stability estimate for wj FE approximation of w":
GV < v/2:
T 2 : Ry(2 - 2 . T2
5 hiln R h)llk = 5 0flo
5 lIwhll +v ) At|Dy(wh); < 5 l[woll +CY Atf
k=1 k=1
Di(v) := S(VVF '+ FT(VV)')
GIIVVE| > v/2:
T . oz o 2t (1 L,
5 W[ + vy At|Dy(wi)i < e 5 lIwollo + Cy At ),
k=1 k=1

if (1— 2G40 =a >0

A.Danilov, A.Lozovskiy, M.Olshanskii, Yu.Vassilevski. A finite element method for the Navier-Stokes
equations in moving domain with application to hemodynamics of the left ventricle. Russian J.
Numer. Anal. Math. Modelling, 32, 2017
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Convergence of the FE solution

Assume

1. LBB stable FE pair Pmy1-Pm;

2. Qo is a convex polyhedron;

3. Uy € (), u(t) € H™2(Q), p(t) € H™(Q) for all t € [0, T];
4. cAt > h?™* with some ¢ independent of h, At;

5

. either At issmall enoughst. 1 —CAt>0 or v>CC

Then
N
JEPS He Ik +2vAt > [IDe(e")]7 < C (hz (M) 1 (At)’ + (At)”hz(m“)) .
h=

In particular, for Taylor-Hood pair, m = 1:
N
max He I3 —|—2VAIZ IDr(e™)|I7 < Cmax{h?*; At} if h* < cAt.
k=1

A.Lozovskiy, M.Olshanskii, YuVassilevski. A quasi-Lagrangian finite element method for the
Navier-Stokes equations in a time-dependent domain. Comput. Methods Appl. Mech. Engrg. 333,
2018 17



3D: left ventricle of a human heart

Volume (ml)

L L L L L L
0 200 400 600 800 1000 1200 1400
Time (ms)

Puc. 1: Left ventricle Puc. 2: Ventricle volume
The law of motion for the ventricle walls is known thanks to ceCT
scans — 100 mesh files with time gap 0.0127 s — u given as input

- 2 - aortic valve (outflow)
- 5 - mitral valve (inflow)



3D: left ventricle of a human heart

- Quasi-uniform mesh: 14033 vertices,
69257 elements, 88150 edges.

- Boundary conditions: Dirichlet v = %

except:
- Do-nothing on aortal valve
during systole
- Do-nothing on mitral valve
during diastole
- Time step 0.0127 s is too large! =

refined to At = 0.0127/20 s —
Cubic-splined u.

- Blood parameters: p; = 103 kg/m?,
pg=4-1073Pa s,



3D: left ventricle of a human heart




Example 2

19



Navier-Stokes equations for flows in rigid walls

T.Dobroserdova

- 1D hemodynamic simulations are low-cost and are appealing in clinical applications
But they do not provide 3D fields

-+ 3D Navier-Stokes equations for incompressible flows in rigid walls are easier-to-solve than
FSI, give 3D fields
But they can not give correct averaged flow rates and pressures for a straight vessel
However, in case of a bifurcation, 3D NS eq. can provide 3D fields and correct averaged flow
rates and pressures within a multiscale framework

T.Dobroserdova, F.Liang, G.Panasenko, YuVassilevski. Multiscale models of blood flow in the compliant aortic bifurcation Applied

Mathematics Letters 93C, 2019 20



Navier-Stokes equations in aortic bifurcation

- 3D Navier-Stokes equations for flow in rigid wall in bifurcation vicinity

- 1D hemodynamic equations (cross-area averaged flow in collapsible
tubes)

- 0D lumped model (elastic sphere filled by fluid)

— O=50 —

21



Navier-Stokes equations in aortic bifurcation

Mass and momentum balance in each vessel

6Sk/8t + 8(Shu;?) /6)(

Ou

8
3uk/3t+8(ui/2+ﬁ)k/ﬂ) Jox = — ”S‘:u**,

p is the blood density (constant), S(t, x) is the cross-section area, u(t, x) is the linear velocity

averaged over the cross-section, p(S) is the blood pressure

21



Navier-Stokes equations in aortic bifurcation

Elastic sphere with volume V = V(t) filled with fluid is the 0D absorber

pop (t) = Pivid — Pext

The kinematics of the sphere is:

Y R Y
gz gt c 72

21



Navier-Stokes equations in aortic bifurcation

The conservation of mass:

dv
v Qip — Qsp,

Qip =S5V, Qsp = —frV~ nds

Poiseuille law links the flow rate to the pressure drop:

P —pop = RipopQip  atx=b,
pop —p = RopspQp  onT,

where Ripop and Ropsp are the resistance coefficients introducing additional dissipation in the
cumulative energy balance of the complete 1D-0D-3D system

T.Dobroserdova, M.Olshanskii, S.Simakov. Multi-scale coupling of compliant and rigid walls blood flow models. IntJ.Num.Meth.Fluids,

82(12):799-817, 2016

21



Navier-Stokes equations in aortic bifurcation

100 18
3dFSI —— 3dFSI ——
3dNS —— 3dNS ——

80 10301d —— 7 10301d ——

16
60
o o 1°
é 40 E‘{ 14
8 g
: » ﬁ 13
w oo
0
1
20
10
40 9
0 02 04 06 08 1 02 04 06 08 1
time, s time, s
Errorin flux pressure
Method | avg% | max% | avg% | max%
1dHem | 0.78 3.53 0.41 0.74
3dNS | 9.15 | 30.02 1.41 8.31
10301d | 1.15 4.49 2.02 3.48
T.Dobroserdova, F.Liang, G.Panasenko, YuVassilevski. Multiscale models of blood flow in the compliant aortic bifurcation Applied 21

Mathematics Letters 93C 2019



For details refer to

Yuri Vassilevski - Maxim Olshanskii
Sergey Simakov - Andrey Kolobov
and Alexander Danilov

PERSONALIZED

COMPUTATIONAL
HEMODYNAMICS
] Models, Methods, and i
Applications for Vascular Surgery
and Antitumor Therapy

YVassilevski, M.Olshanskii,
S.Simakov, A.Kolobov, A.Danilov

Personalized Computational Hemodynamics:
Models, Methods, and Applications for
Vascular Surgery and Antitumor Therapy

Academic Press 2020, ISBN: 9780128156537
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Example 3
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Patient-specific modeling of aortic valve closing

V.Salamatova, A.Danilov, A.Lyogkii, R.Pryamonosov

Healthy heart Stenosis of the aortic valve of the heart

Aortic valve
can not fully
open, which
complicates the
blood flow

A healthy aortic valve /\\\ The aortic valve does
is closed and blood | | not close completely,
flow is stopped. causing blood to flow ||

7 /’ back into the venmcle

Aortic valve cusps replacement by leaflets cut from pericardium:

no immune response
- efficient, low-cost
- all measurements and cuttings are made during operation

24



Patient-specific modeling of aortic valve closing

Objectives of modeling:

- degree of regurgitation
- height of coaptation

24



Patient-specific modeling of aortic valve closing

The mass-spring model (MSM) computes
leaflet deformation under diastolic
pressure:

- leaflet is an oriented triangulated
surface

- each edge is a spring with given
stiffness

- each node has a point mass at which
forces due to springs and pressure

are applied
ri—r
FU = kf/('lrf - er - LU) Hr/ _ r'”
j i
E(E,Ozo)HA,'j
M=
ij

- we search static equilibrium

NN
RRBOKS

AN
KSR

AVanGelder. Approximate simulation of elastic membranes by
triangulated spring meshes

J. Graph. Tools. 1998

24



Patient-specific modeling of aortic valve closing

Size Isotropic 0 — Ve
22 h 14.3 14.3 142 4.2
26 h 16.4 16.2  16.3 16.6
28 h 16.8 16.2  17.0 16.9
22 he 0 0 0 0
26 he 11.6 10 101 12.2

28  he 1.9 3.4 127 13.2

Coaptation height (mm) for 3 leaflet sizes

(mm) and anisotropy directions
Hyperelastic nodal force method
(v.Salamatova) allows us to simulate
coaptation of cusps from hyperelastic
materials

V.Salamatova, A.Liogky, PKaravaikin et al. Numerical assessment of coaptation for auto-pericardium based aortic valve cusps. Russian J.
Numer. Anal. Math. Modelling, 34, 2019
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Patient-specific modeling of aortic valve closing

Coaptation profiles for different elasticity models and elastic modulii (upper row), suturing paths

and commissures on the aorta (bottom).

V.Salamatova, A.Liogky, PKaravaikin et al. Numerical assessment of coaptation for auto-pericardium based aortic valve cusps. Russian J.
Numer. Anal. Math. Modelling, 34, 2019
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Thank you for your attention!
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