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Free and confined aquifer

Confined aquifer : The lower and upper surfaces of the aquifer are impermeable.

Free aquifer : The upper surface is constituted with a permeable layer. This aquifer are
rechargeable in water with the raining falls but more sensitive to the pollution problem.
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Fundamental laws

The classical Darcy law for porous media gives

q = −K ∇(ρgH), H =
P

ρg
+ z , K =

κ

µ
,

where q is the Darcy’s flux, H the hydraulic head, K is the hydraulic conductivity and κ
is the permeability tensor of the porous medium.

The conservation of mass is given by the following equation :

∂(φρ)

∂t
+∇ · (ρq) = ρQ,

where φ is the porosity of the medium and Q denotes a generic source term (for
production and replenishment).
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2D models for unconfined aquifer

2D Sharp interface model:

φ
∂h

∂t
−∇ · (αK (h − h2)∇h)−∇ · (K (h − h2)∇h1) = Qs ,

φ
∂h1

∂t
+∇(K (h2 − h1)∇h1) +∇ · (αK (h − h2)∇h) = Qf + Qs .

2D Sharp-diffuse interface model:

φ
∂h

∂t
−∇ · (αK (h − h2)∇h)−∇ ·

(
δ∇h

)
−∇ · (K (h − h2)∇h1) = Qs ,

φ
∂h1

∂t
+∇(K (h2 − h1)∇h1)−∇ ·

(
δ∇h1

)
+∇ · (αK (h − h2)∇h) = Qf + Qs .

( C. Choquet, M. Dhiédhiou, C.R., SIAM J. Appl. Math. 2016.)
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2D models for confined aquifer

φ∂th −∇ ·
(
αK (h2 − h)∇h

)
−∇ ·

(
δ∇h

)
+∇ ·

(
K (h2 − h)∇f

)
= −Qs , (1)

−∇ ·
(

h2K∇f
)

+∇ ·
(

K (h2 − h)∇h
)

= Qf + Qs . (2)

We introduce function Ts defined by Ts(h) = h2 − h ∀h ∈ (δ1, h2) which is extended
continuously and constantly outside (δ1, h2). The extension of Ts for h ≤ δ1 enables to
ensure a thickness of freshwater zone always greater than δ1 inside the aquifer.
Assuming that there exist two positive real numbers, 0 < K− ≤ K +, such that

0 < K−|ξ|2 ≤ Kξ · ξ =
N∑

k,l=1

Kklξkξl ≤ K +|ξ|2, ∀ξ ∈ RN \ {0}. (3)

Functions (hD , fD) ∈
(
L2(0,T ; H1(Ω)) ∩ H1(0,T ; (H1(Ω))′)

)
× L2(0,T ; H1(Ω)) while

the function h0 ∈ H1(Ω). They satisfy conditions on the hierarchy of interfaces depth:

0 < δ1 ≤ hD ≤ h2 a.e. in Γ× (0,T ), 0 < δ1 ≤ h0 ≤ h2 a.e. in Ω.
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Global existence in confined case

C. Choquet, J. Li, C.R., (EJDE, 2015)

Theorem:

Assume a low spatial heterogeneity for the hydraulic conductivity:

K+ <
h2

h2 − δ1
inf
(√δK−

3 h2
,K−

)
.

Then for any T > 0, problem (1)-(2) admits a weak solution (h, f ) satisfying

(h − hD , f − fD) ∈W (0,T )× L2(0,T ; H1
0 (Ω)).

Furthermore the following maximum principle holds true:

0 < δ1 ≤ h(t, x) ≤ h2 for a.e. x ∈ Ω and for any t ∈ (0,T ).
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Global existence in confined case

Remark:

We emphasize that the depth h is uniformly bounded as shown by the maximum
principle. This result is specific to confined aquifers, it is no longer valid in the case of
free aquifers for which we can face the situation where the aquifer overflows.

The uniqueness result is a consequence of a Lp(0,T ; W 1,p(Ω)), p > 2, regularity result
proved for the solution of (1)-(2). This regularity is a generalization of the Meyers
regularity results given in elliptic case and extended in parabolic case by Bensoussan et
al..
( C. Choquet, J. Li, C.R., (EJDE, 2017))
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General Cross-Diffusion system

∂tui =
N∑

k=1

∂

∂xk

( m∑
j=1

K k
i ,j(u)

∂uj

∂xk

)
=: ∇ · Ji , in ΩT , for i = 1, ...,m, (4)

Seawater intrusion problem (N=m=2)

K := K 1 = K 2 =

(
νu1 + δ ν u1

ν u2 u2 + δ

)
J. Alkhayal, S. Issa, M. Jazar, R. Monneau (ESAIM Control Optim. Calc. Var., 2018)

Definition of the nonnegative entropy function Ψ:

Ψ(a) − 1

e
=


a ln(a) if a > 0,
0 if a = 0,
+∞ if a < 0.

Remark: ui ≥ 0, i = 1, 2 implies that the hierarchy between interfaces is preserved
h1 ≤ h ≤ h2.



Introduction
Well-posedness of the seawater intrusion problem

Applications

Entropy method
Global existence in the case of sharp-diffuse interface approach
Regularity result and uniqueness
Boundedness of the solution

The boundedness by entropy method

N. Zamponi, A. Jüngel (since 2013), L. Desvillettes, T. Lepoutre, A. Moussa, A. Trescases
(2015), Daus E., Milisić J.P. , N. Zamponi (2019, 2020)...
The main assumption is that system (4) has a formal gradient flow structure

∂tu − div
(
B∇Dh(u)

)
= f (u),

h : D → [0,∞) is a function assumed to be convex (entropy density)

B is a positive semi-definite matrix (depending on K and h), more precisely
B = K (u)(D2h(u))−1 ∈ Rn×n and D2h(u) ∈ Rn×n is the Hessian of h.

Remark: For the seawater intrusion problem

h(u) = u1(logu1 − 1) + u2(logu2 − 1), D =]0,∞)2, Dh−1(u) = (eu1 , eu2).

The matrix B(u) is positive semi-definite for all u ∈ D
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Shigesada-Kawasaki-Teramoto system for population dynamics

J. Kim (1984), H. Amann (1993), A. Yagi (1993), L. Chen, A. Jüngel (2004, 2016, 2017,
2018), M. Bendahmane, B. Perthame (2009), L. Desvillettes, T. Lepoutre (2014, 2015), M.
Pierre, G. Rolland (2012); S. Kouachi, K.E. Yong, R.D. Parshadz (2014), D. Pham, R.
Temam (2017, 2018)...

K :=

(
α10 + 2α11u1 + α12 u2 α12 u1

α21 u2 α20 + 2α22 u2 + α21 u1

)
The unknown ui , for i = 1, 2, stands for the population density of the i-th species.

Uniqueness for SKT system in the diffusive case: Hypothesis : αi0 6= 0, i = 1, 2
D. Pham, R. Temam, Adv. Nonlinear Anal. (2017)

K (u)ξ.ξ ≥ α
(
(u1 + u2)|ξ|2 + |ξ|2

)
, with 0 < α < min(αij). (5)
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∂tui −∇ ·
(
δi ∇ui + ui

2∑
j=1

Ki ,j∇uj

)
= Qi (u) in ΩT , for i = 1, 2. (6)

The tensors Ki ,j describe the permeability of the underground.
For any 1 ≤ i , j ≤ m, there exist two positive real numbers, 0 < K−i ,j ≤ K +

i ,j , such that

0 < K−i ,j |ξ|
2 ≤ Ki ,jξ · ξ =

N∑
k,l=1

(Ki ,j)klξkξl ≤ K +
i ,j |ξ|

2, ∀ξ ∈ RN \ {0}. (7)

Remark :

The SKT system reads (for N = m = 2 )

∂tui −∇ ·
(
δi∇ui + ui (2αii∇ui + αij∇uj) + αijuj∇ui

)
= Qi (u), i = 1, 2, j 6= i .

1) The loss of a nonlinearity involving uj∇ui , j 6= i implies that the form chosen for (6)
does not satisfy the assumption (5).
2) The terms uj∇ui · ∇ui and uj∇uj · ∇uj may be used with the Cauchy-Schwarz and
Young inequalities for containing the term uj∇uj · ∇ui when deriving a priori estimates
for the SKT system and there is no hope to get similar results with System (6).
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Global in time existence

C. Choquet, C. R., L. Rosier

∂tui −∇ ·
(
δi ∇ui + T`(ui )

2∑
j=1

Ki ,j∇uj

)
= Qi (u) in ΩT , for i = 1, 2. (8)

with T`(u) = u continuously and constantly extended outside the interval [0, `].

Theorem 1 :

Assume that the tensor satisfy:

(K +
1,2)2

K−1,1
<

4δ2

`
,

(K +
2,1)2

K−2,2
<

4δ1

`
.

Pick u0
i ∈ L2(Ω) with 0 ≤ u0

i a.e. in Ω. Then for any T > 0, the problem (8) admits a weak
solution (ui )i=1,2 ∈W (0,T )2. Furthermore, the following maximum principle holds true:

0 ≤ ui (t, x) for a.e. x ∈ Ω, for all t ∈ (0,T ) and for all i = 1, 2.
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Idea of the Proof :

Definition of the map F = (F1,F2)
For the fixed point strategy, we define an application F : W (0,T )2 →W (0,T )2 by

F(ū1, ū2) =
(
F1(ū1, ū2),F2(ū1, ū2)

)
= (u1, u2),

where (u1, u2) is the solution of the following initial boundary value problem

∂tu1 −∇ ·
(
δ1∇u1 + T`(ū1)K1,1∇u1 + T`(ū1)K1,2∇ū2

)
= Q1(u),

∂tu2 −∇ ·
(
δ2∇u2 + T`(ū2)K2,2∇u2 + T`(ū2)K2,1∇ū1

)
= Q2(u),

(u1, u2) = (0, 0) in (0,T )× Γ,

(u1(0, x), u2(0, x)) = (u0
1(x), u0

2(x)) in Ω.
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Regularity result

We denote by

Xp = Lp(0,T ; W 1,p
0 (Ω)) and Yp = Lp(0,T ; W−1,p(Ω)),

The space Yp is endowed with the norm ||f ||Yp = infdivxg=f ||g ||(Lp(ΩT ))N . Given F ∈ Yp,
there is a unique solution u ∈ Xp of the following initial boundary value problem

∂tu −∆u = F in ΩT ,

u = 0 on (0,T )× Γ, u(0, x) = 0 in Ω.

We set Λ−1 = ∂t −∆, so that u = Λ(F ). Let g be defined by

g(p) := ||Λ||L(Yp ;Xp).
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N. G. Meyers (1963), A. Bensoussan, J. L. Lions, G. Papanicolaou (1978).

Let Au = −
∑N

i ,j=1
∂
∂xi

(
Aij(t, x) ∂u∂xj

)
. We assume that that there exists γ > 0 s.t.∑N

i ,j=1 Ai ,j(t, x)ξiξj ≥ γ|ξ|2, ∀x ∈ Ω and ξ ∈ RN . We set β := max1≤i ,j≤n ||Ai ,j ||L∞(ΩT ).

Lemma :

Let f ∈ L2(0,T ,H−1(Ω)), u0 ∈ H, and u ∈ L2(0,T ; H1
0 (Ω)) be the solution of{

∂u
∂t + Au = f in ΩT ,
u(0) = u0.

Then there exists p > 2, depending on γ, β and Ω, such that if u0 ∈W 1,p
0 (Ω) and

f ∈ Lp(0,T ; W−1,p(Ω)), then u ∈ Lp(0,T ; W 1,p
0 (Ω)). Furthermore, there exists a constant

C (γ, β, p) > 0 such that

||u||
Lp(0,T ;W 1,p

0 (Ω))
≤ C (γ, β, p)(||f ||Lp(0,T ;W−1,p(Ω)) + ||u0||

W 1,p
0 (Ω)

). (9)

Remark : C (γ, β, p) ≤ g(p)
(1−k(p))β , k(p) = g(p)(1− µ), with µ = γ/β.
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We apply the previous Lemma to tensors (δi Id + T`(ūi )Ki ,i ), i = 1, 2, then γi = δi ,
βi = δi + `K +

i ,i for i = 1, 2.

Let p > 2 such that

ki (p) := g(p)(
`K +

i ,i

δi + `K +
i ,i

) < 1, i = 1, 2, (10)

Proposition

Let (u1, u2) be a solution of Problem (8) and let p > 2 such that (10) holds. Assume that
(`, δ1, δ2) and the tensors K satisfy

K +
i ,j <

1

g(p)`

(
1− g(p)

`K +
i ,i

δi + `K +
i ,i

)
βi , i = 1, 2, i 6= j , (11)

and that (u0
1 , u

0
2) ∈ (W 1,p(Ω))2. Then ∇u1 and ∇u2 belong to (Lp(ΩT ))N .
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Uniqueness

The L4-regularity of the gradient of the solution combined with Gagliardo-Nirenberg
inequality for p = 4 allows to prove the uniqueness.

Theorem 2 :

We assume that the parameters (`, δ1, δ2) and the tensor K satisfy

K +
i ,i <

1

g(4)− 1

δi
`
, i = 1, 2,

(K +
1,2)2

K−1,1
<

3 δ2

`
and

(K +
2,1)2

K−2,2
<

3 δ1

`
.

If (u1,0, u2,0) ∈W 1,4(Ω)2, then the solution (u1, u2) is unique in W (0,T )2.



Introduction
Well-posedness of the seawater intrusion problem

Applications

Entropy method
Global existence in the case of sharp-diffuse interface approach
Regularity result and uniqueness
Boundedness of the solution

Theorem 3 :

Assume the assumptions in Theorem 2 fulfilled. Assume 0 ≤ u0
i ≤ ` a.e. in Ω and

0 ≤ ui ,D ≤ ` a.e. in ΩT . There exists source terms Qi ∈ L2(0,T ; (H1(Ω)′)), i = 1, 2, such
that the system (6) completed by the initial and boundary conditions admits a unique
bounded weak global solution.

Proof : Step 1. Existence of a weak solution for a penalized problem

Let the function U` defined in R by U`(x) = max(`, x). and let ε > 0.

∂tu
ε
i −∇ ·

(
δi∇uεi + T`(uεi )

2∑
j=1

Ki ,j∇uεj
)

+
1

ε
∆U`(uεi ) = Qi (uε) in ΩT , (12)

uεi = ui ,D , in (0,T )× Γ, uεi (0, x) = u0
i (x) in Ω. (13)

Step 2. Uniform estimates of any solution of the penalized problem

Step 3. Letting the penalization blow up
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P1 Lagrange Finite element scheme.

If hn
b et hn

1,b are in (Ib(hD) + V k
b )× (Ib(h1,D) + V k

b ),

0 6 hn
1,b 6 hn

b 6 h2,

Semi-implicit in time scheme :
Find (hn+1

1,b , h
n+1
b ) ∈ (Ib(h1,D) + V k

b )× (Ib(hD) + V k
b ), ∀w ∈ V k

b .

φ
hn+1

1,b − hn
1,b

δt
−∇.(δ∇hn+1

1,b )−∇.(Tf (hn
b − hn

1,b)∇hn+1
1,b )

−∇.(Ts(hn
b))∇(hn+1

1,b + hn
b) = Qs

n+1 + Qf
n+1

φ
hn+1
b − hn

b

δt
−∇.(δ∇hn+1

b )−∇.(Ts(hn
b)∇(hn+1

b + hn+1
1,b )) = Qs

n+1
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Error estimates for FEM .

Theorem 4:

If
(
φ− 2 h2

2K+

δ
(2 K+ + K−)C (b)2δt

)
> 0, there exists a constant C > 0, s.t. for any

solution (h, h1) in Y (ΩT ) = C 2([0,T ], L2(Ω)) ∩ C 1([0,T ],H1(Ω)). Moreover, we have

max
0≤n≤N

‖h(tn)− hn
b‖L2 ≤ C (b + δt)max(‖h‖Y (ΩT ), ‖h1‖Y (ΩT )),

max
0≤n≤N

‖h1(tn)− hn
1,b‖L2 ≤ C (b + δt)max(‖h‖Y (ΩT ), ‖h1‖Y (ΩT )),

[ 1

δt

N∑
n=1

‖h(tn)− hn
b‖2

H1

] 1
2 ≤ C (b + δt)max(‖h‖Y (ΩT ), ‖h1‖Y (ΩT )),

[ 1

δt

N∑
n=1

‖h1(tn)− hn
1,b‖2

H1

] 1
2 ≤ C (b + δt)max(‖h‖Y (ΩT ), ‖h1‖Y (ΩT )).
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Non confined case, with Dirichlet boundary conditions

We couple the problem with the tides effects. For this simulation we use the parameters in
Cooper’64 after a rescaling to our small aquifer.

H.H. Cooper, A hypothesis concerning the dynamic balance of fresh water and salt water
in a coastal aquifer, U.S. Geological Survey Water-Supply Paper 1613-C, 1–12, 1964.

We impose a Dirichlet boundary condition on the left boundary {x = 0} for the saltwater
elevation h. Its value is computed with the classical tide-produced change model for the
artesian head of Ferris’51. We compare the interface h obtained with FE method with a
reference solution, here derived from the analytic formula of Ferris’51.

J. G. Ferris, Cyclic fluctuations of water level as a basis for determining aquifer
transmissibility, Int. Assoc. Sci. Hydrology Publ., Vol. 1, 97–101, 1951.
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Non confined case
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Figure : Comparison between FE solution and analytic solution derived from Ferris model. Times
t=0,5 day (on the left) and t=1 day (on the right), N=200.
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Existence and characterization of an optimal control

The inverse problem is formulated by an optimization problem whose cost function measures
the squared difference between experimental interfaces depths and those given by the model.
We introduce the following control problem:

(P(K))

{
Find K ∗ ∈ Uadm such that
J (K ∗) = infK∈Uadm

J (K ),

with J (K ) = 1
2 ||h1(K )− h1,obs ||2L2(ΩT ) + 1

2 ||h(K )− hobs ||2L2(ΩT ), where (h1(K ), h(K )) is the

weak solution of system P(K ) and (h1,obs , hobs) are the observed depths.

Theorem

There exists at least one optimal control for the problem (O).

M. H. Tber, M. E. Talibi, D. Ouazar (2007, 2008), Aya Mourad, C. R., JOTA, 2019.
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Description of Numerical simulations

The aquifer is figured by a parallelepiped (x , y) ∈ [0, 100]× [0, 20], z ∈ [−20, 0].

In first step, we take Kexact for the exact value of the hydraulic conductivity, then the
saltwater/freshwater interface depth h and the depth of the interface between dry zone
and saturated zone h1 are computed by solving the exact problem associated with this
value of Kexact ; these numerical values of h and h1 have been considered as observed
data.

Then starting from an arbitrary initial estimate of this parameter, we compute the
optimal solution by the parameters identification procedure.



Introduction
Well-posedness of the seawater intrusion problem

Applications

P1 Lagrange finite element method, Numerical simulations
Hydraulic conductivity identification

Experiment

Figure : Schematization of the aquifer in experiment.
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Experiment

We choose a very wrong initial value of the second hydraulic conductivity K2. The choice of
K2 (instead of the others) will have the greatest impact on the global identification procedure.

Table : Hydraulic condutivities values in experiment.

case Number of wells exact values initial values identified values

i 6 K1= 50 m/d K1= 60 m/d K1= 50.008 m/d
K2= 100 m/d K2= 10 m/d K2= 99.91 m/d
K3= 40 m/d K3= 50 m/d K3= 40.05 m/d

ii 6 K1= 50 m/d K1= 60 m/d K1= 50.07 m/d
K2= 5 m/d K2= 50 m/d K2= 5.0003 m/d
K3= 40 m/d K3= 50 m/d K3= 39.82 m/d
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Experiment 3

The number of iterations needed to reach convergence is of course higher than in the
previous experiment: 20 iterations for experiment 2 versus 40 for experiment 3.
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Figure : Graph representing the convergence of hydraulic conductivity in case i (on the left) case ii
(on the right)
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Figure : Graph representing the convergence of hydraulic conductivity in case i (on the left) case ii
(on the right)
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