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The surface quasigeostrophic system (SQG) is

00+ u-VO=—(—A)20
u="R" :=VEH(-A)"39.

Here 6 : R? x (0,00) — R represents the temperature and
u:R? x (0,00) — R2 the velocity.
We are interested in the Cauchy problem

0(-,0) = b .

It is an advection-diffusion equation, with an incompressible vector
field divu = 0. More in general, we consider a fractional dissipation:

~

(—A)*0 = F~1(|€]2%0) for o € (0,1).
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@ The Hamiltonian of the system is conserved, i.e. for t > 0

H(t) = 0072 + 2/0 10(5) 1012 ds = H(0).

@ The total energy is conserved, i.e. for t > 0

£(t) = 0(t)1E> + 2/0 I(=2)*"26(s)|I7. ds = £(0).

© Maximum principle:

10()[|L= < |60l fort>0.
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SQG-« obeys a scaling symmetry: if (0, u) solves it, then also
Ox(x, 1) := A22710(Mx, A\22t)  un(x, t) = X227 Tu(Ax, A2°t).
We can compute the scaling of controlled quantities:

[6allLoe = N2> 16|,

E[OA](t) = N2272£[0)(¢).

« = 1/2 is critical for the best controlled quantity. We are interested
in the supercritical regime a < 1/2.
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0:0+u-Vo=0

u=RY9 :=V(-A)":0.
(where w = curl u represents the vorticity of u).
[Constantin-Majda-Tabak '94] proposed inviscid SQG as a simplified
model for 3d Euler

Oiu+u-Vu+Vp=20
divu=0,

describing the potential to form finite-time singularities. The proposed
blow-up scenario was ruled out by [Cordoba '98].

Even when dissipation is added SQG is a simplified model for
Navier-Stokes, with conserved total energy, and a similar scaling
analysis.
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@ Classical solutions: local existence, blow-up problem.
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/9(8t<p— (=A)*¢ + u-Vo)dxdt = /ﬁo(x)cp x,0) dx.

@ Classical solutions: local existence, blow-up problem.
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/9(8t<p— (=A)*¢ + u-Vo)dxdt = /ﬁo(x)cp x,0) dx.

@ Leray - Hopf solutions: distributional solutions with global energy
inequality for a.e. t >0

t
%/|€(t)|2dx+/ /|(—A)a/29|2dxdTg %/|00|2dx.
0

Existence was proved by [Leray '34].

@ Classical solutions: local existence, blow-up problem.
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/9(8t<p— (=A)*¢ + u-Vo)dxdt = /ﬁo(x)cp x,0) dx.

We can rewrite [(uf) - Vo dx dt = 5 [G[RL-, V] dx dt.
Global existence from 6y € H~1/2 [Resnick '95, Marchand '08],
and even in the inviscid case from 6y € LP with p > %

@ Leray - Hopf solutions: distributional solutions with global energy
inequality for a.e. t >0

t
%/|€(t)|2dx+/ /|(—A)a/29|2dxdTg %/|00|2dx.
0

Existence was proved by [Leray '34].

@ Classical solutions: local existence, blow-up problem.
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'07] and [Caffarelli-Vasseur '10] for ax = 1/2)

Let a > 1/2 and let 6y € L?(R?). Then there exists a smooth solution
(6, u) of SQG starting from 0.

For oo < 1/2 this is a fascinating open problem. It is known:

o eventual regularization [Silvestre '10, Dabkowski '11, Kiselev '11]:
Solutions are smooth for t sufficiently large.

e [? — [°° [Constantin-Wu '08] Leray-Hopf solutions are bounded
for t > 0, via the De Giorgi method.

o conditional regularity [Constantin-Wu '09, ...] e.g.
uelEC)y withy>1-2a=60¢c C™®.

[Buckmaster-Vicol-Shkoller '16] proved "distributional non-uniqueness"
for o < 3/4.
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For o < 1/2, can we still say something about the singular set
Sing 6 := {(x, t) : § is not locally smooth around (x,t)} ?
Is it compact, is it still a null set?

For Navier-Stokes, it holds dimy (Sing ru) < 1 [Leray '34] and even
P1(Sing u) = 0 [Scheffer, Caffarelli-Kohn-Nirenberg '82].
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Theorem (C.-Haffter '20)

e Let a > g := %ﬁ ~ 0.42. For any 0y € L2(R?) there exists a
Main result Leray-Hopf weak solution (0, u) of SQG-a and a relatively closed set
P Sing 0 such that

e 0 € C([R? x (0,00)] \ Sing¥d),
e for every t > 0 Sing# N [R? x [t,0)] is compact,
o dimy Sing§ < - (1£2(1-2a) +2).
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Theorem (C.-Haffter '20)

. Let a > g := %ﬁ ~ 0.42. For any 0y € L2(R?) there exists a
Main result Leray-Hopf weak solution (0, u) of SQG-«w and a relatively closed set
: Sing 0 such that

e 0 € C([R? x (0,00)] \ Sing¥d),

e for every t > 0 Sing# N [R? x [t,0)] is compact,

o dimy Sing§ < - (1£2(1-2a) +2).

@ In particular, 0 is smooth almost everywhere;

@ Sing 6 is compact if q is sufficiently regular to ensure local
smooth existence;

@ the partial regularity holds for every "suitable weak solution".
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The result is a corollary of

Theorem (e-regularity)

Let o > ap,and p := 12 Set := L (p(1 —2a) +2).
Let (6, u) be a suitable weak solution of SQG-a with

/ / V0P dz ds < (a).
Bjlull oo (%)

Then 0 is smooth on B /ee (X) X [t —r/8,t + r/8].
8

\9||
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@ L norms are on R? x [t —r,t + r].

@ The choice of  is determined by scaling invariance.
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The statement is not precise for two reasons:

@ ||ul|re is not under control since in the limiting case CZ reads as
lullemo < ||6]|Le. It can be solved by replacing || u||ir with

||U||Lqr1_°+q for arbitrarily large q.
@ When writing
|V0|? dz
Br

we really mean a localized quantity that involves the
Caffarelli-Silvestre extension 6* of 6

/ yP|VO* ? dz dy.
Bgr % [O,R]
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The parabolic cylinders are defined to respect the scaling of the
equation
Qr(x,t) = B/(x) x (t — r**, 1]

For o < %
diam Q,(x, t) = \/r* + (2r)2 < 2

and hence at scale r we work with Q,1/¢a (X, t) .
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@ a globally bounded quantity in the form of a spacetime integral;

@ an e-regularity criterion that involves in its smallness assumption
a localized version of this integral quantity (on a spacetime set of
diameter ~ r, such as Q,1/eq))

Then

dimy Sing 6 = scaling of this integral quantity on Q,1/a) -

Conjecture (C.-Haffter '20)

Any suitable weak solution of SQG-« satisfies

dimy Sing 6 < M .
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Excess decay

(el ozt ity We now define the "excess" of a suitable weak solution

for SQG
E(0,u;x, t,r) ::(][ 10— (0)qx.0)|° dz ds)E
Qr(x,t)
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+ ( 7[ |u— [u]g,x|P dz ds) * + tails...
Qr(x,t)

Proof of the
e-regularity
Theorem

Theorem (Excess decay)

Let a € (0,1) and p > =2 . For any v € (0,2a(1 — ;la)) there exists
g0 € (0,1) and po € (0,1) s.t. if (0, u) is a suitable weak solution of
SQG-a satisfying

o [u(s)]g,(x) =0 for all s € [t — r*, ],

o E(0,u;x,t,r) < ri-20g,

then the excess decays at scale 1y with rate ~y, that is

E(9,u;x,t,por) < pd E(0, u; x, t,r).
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@ Excess decay argument with 2 new ingredients.

To prevent the lack of compactness of the local El, we perform
energy estimates of nonlinear type controlling [#|P~! p > 3.
Hence we use L*° bound and a new notion of suitable weak solution.

el Change of variable along the flow to set certain averages of u to 0,
Proof of the . o
since we lack other controls on the averages of the velocity.

e-regularity
Theorem
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@ Excess decay argument with 2 new ingredients.

To prevent the lack of compactness of the local El, we perform
energy estimates of nonlinear type controlling [#|P~! p > 3.
Hence we use L*° bound and a new notion of suitable weak solution.

Main result

Change of variable along the flow to set certain averages of u to 0,
Proof of the . o
e-regularity since we lack other controls on the averages of the velocity.

Theorem
@ reach initial smallness of the excess. Strategies:

We pass from an LP-based excess to a differential quantity via a
nonlinear Poincaré inequality of parabolic type.

We need again to control the effect of the "flow", which guarantees
zero-average assumption by enlarging spacetime cylinders to contain
the effect of the flow.
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Thank you for your attention!
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