Fractional dissipations in fluid dynamics: the surface quasigeostrophic equation

Maria Colombo

 EPFL SB, Institute of Mathematics

June 24th, 2021 ECM 2021, Nonlocal operators and related topics (MS - ID 55)

EPFL Table of contents

Partial regularity for SQG

Maria Colombo

SQ

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

SQG

- Invariances
- Critical case

Main result

- ε -regularity
- A conjecture on the optimal dimension

3 Proof of the ε -regularity Theorem

EPFL The SQG equation

Partial regularity for SQG

Maria Colombo

SQ

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The surface quasigeostrophic system (SQG) is

$$\left\{ egin{aligned} \partial_t \theta + u \cdot
abla heta &= -(-\Delta)^{rac{1}{2}} heta \ u &= \mathcal{R}^\perp heta &:=
abla^\perp (-\Delta)^{-rac{1}{2}} heta \end{aligned}
ight.$$

Here $\theta : \mathbb{R}^2 \times (0, \infty) \to \mathbb{R}$ represents the temperature and $u : \mathbb{R}^2 \times (0, \infty) \to \mathbb{R}^2$ the velocity. We are interested in the Cauchy problem

$$\theta(\cdot,0)=\theta_0\,.$$

It is an advection-diffusion equation, with an incompressible vector field div u = 0. More in general, we consider a fractional dissipation: $(-\Delta)^{\alpha}\theta = \mathcal{F}^{-1}(|\xi|^{2\alpha}\widehat{\theta})$ for $\alpha \in (0, 1)$.

EPFL The SQG equation

Partial regularity for SQG

Maria Colombo

SQ

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The surface quasigeostrophic system (SQG) is

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = -(-\Delta)^{\alpha} \theta \\ u = \mathcal{R}^{\perp} \theta := \nabla^{\perp} (-\Delta)^{\frac{1}{2}} \theta \,. \end{cases}$$

Here $\theta : \mathbb{R}^2 \times (0, \infty) \to \mathbb{R}$ represents the temperature and $u : \mathbb{R}^2 \times (0, \infty) \to \mathbb{R}^2$ the velocity. We are interested in the Cauchy problem

$$\theta(\cdot,0)=\theta_0\,.$$

It is an advection-diffusion equation, with an incompressible vector field div u = 0. More in general, we consider a fractional dissipation: $(-\Delta)^{\alpha}\theta = \mathcal{F}^{-1}(|\xi|^{2\alpha}\widehat{\theta})$ for $\alpha \in (0, 1)$.

EPFL Conservation laws

Partial regularity for SQG

Maria Colombo

SQG

Invariances

. . . .

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem • The Hamiltonian of the system is conserved, i.e. for t > 0

$$H(t) := \|\theta(t)\|_{\dot{H}^{-1/2}}^2 + 2\int_0^t \|\theta(s)\|_{\dot{H}^{\alpha-1/2}}^2 ds = H(0).$$

2 The total energy is conserved, i.e. for t > 0

$$\mathcal{E}(t) := \|\theta(t)\|_{L^2}^2 + 2\int_0^t \|(-\Delta)^{lpha/2} heta(s)\|_{L^2}^2 ds = \mathcal{E}(0) \,.$$

Maximum principle:

$$\| heta(t)\|_{L^\infty} \leq \| heta_0\|_{L^\infty} \qquad ext{for } t>0 \,.$$

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem SQG- α obeys a scaling symmetry: if (θ, u) solves it, then also $\theta_{\lambda}(x, t) := \lambda^{2\alpha - 1} \theta(\lambda x, \lambda^{2\alpha} t) \quad u_{\lambda}(x, t) = \lambda^{2\alpha - 1} u(\lambda x, \lambda^{2\alpha} t).$

We can compute the scaling of controlled quantities:

$$\|\theta_{\lambda}\|_{L^{\infty}} = \lambda^{2\alpha - 1} \|\theta\|_{L^{\infty}},$$

$$\mathcal{E}[\theta_{\lambda}](t) = \lambda^{2\alpha-2} \mathcal{E}[\theta](t).$$

 $\alpha = 1/2$ is critical for the best controlled quantity. We are interested in the supercritical regime $\alpha < 1/2$.

EPFL Analogies with Euler / Navier-Stokes

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The (inviscid) SQG system is

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = 0\\ u = \mathcal{R}^{\perp} \theta := \nabla^{\perp} (-\Delta)^{-\frac{1}{2}} \theta \,. \end{cases}$$

(where $\omega = \operatorname{curl} u$ represents the vorticity of u). [Constantin-Majda-Tabak '94] proposed inviscid SQG as a simplified model for 3d Euler

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p = 0 \\ \operatorname{div} u = 0, \end{cases}$$

describing the potential to form finite-time singularities. The proposed blow-up scenario was ruled out by [Cordoba '98]. Even when dissipation is added SQG is a simplified model for Navier-Stokes, with conserved total energy, and a similar scaling analysis.

EPFL Analogies with Euler / Navier-Stokes

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The (inviscid) 2d Euler system is

$$\begin{cases} \partial_t \omega + u \cdot \nabla \omega = \\ u = \mathcal{R}^{\perp} \theta := \nabla^{\perp} (-\Delta)^{-1} \omega \,. \end{cases}$$

(where $\omega = \operatorname{curl} u$ represents the vorticity of u). [Constantin-Majda-Tabak '94] proposed inviscid SQG as a simplified model for 3d Euler

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p = 0 \\ \operatorname{div} u = 0, \end{cases}$$

describing the potential to form finite-time singularities. The proposed blow-up scenario was ruled out by [Cordoba '98]. Even when dissipation is added SQG is a simplified model for Navier-Stokes, with conserved total energy, and a similar scaling analysis.

EPFL Analogies with Euler / Navier-Stokes

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The (inviscid) SQG system is

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta = 0\\ u = \mathcal{R}^{\perp} \theta := \nabla^{\perp} (-\Delta)^{-\frac{1}{2}} \theta \,. \end{cases}$$

(where $\omega = \operatorname{curl} u$ represents the vorticity of u). [Constantin-Majda-Tabak '94] proposed inviscid SQG as a simplified model for 3d Euler

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p = 0 \\ \operatorname{div} u = 0, \end{cases}$$

describing the potential to form finite-time singularities. The proposed blow-up scenario was ruled out by [Cordoba '98]. Even when dissipation is added SQG is a simplified model for Navier-Stokes, with conserved total energy, and a similar scaling analysis.

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem Distributional solutions: $\theta \in L^2(\mathbb{R}^2 \times [0, +\infty)),$ $\forall \varphi \in C_c^{\infty}(\mathbb{R}^2 \times \mathbb{R})$

$$\int \theta(\partial_t \varphi - (-\Delta)^{\alpha} \varphi + u \cdot \nabla \varphi) \, dx \, dt = -\int \theta_0(x) \varphi(x,0) \, dx \, .$$

We can rewrite $\int (u\theta) \cdot \nabla \varphi \, dx \, dt = \frac{1}{2} \int \theta[\mathcal{R}^{\perp} \cdot, \nabla \varphi] \theta \, dx \, dt$. Global existence from $\theta_0 \in \dot{H}^{-1/2}$ [Resnick '95, Marchand '08], and even in the inviscid case from $\theta_0 \in L^p$ with $p > \frac{4}{3}$!

■ Leray - Hopf solutions: distributional solutions with global energy inequality for a.e. t ≥ 0

$$\frac{1}{2}\int |\theta(t)|^2 \,\mathrm{d}x + \int_0^t \int |(-\Delta)^{\alpha/2}\theta|^2 \,\mathrm{d}x \,\mathrm{d}\tau \le \frac{1}{2}\int |\theta_0|^2 \,\mathrm{d}x \,.$$

Existence was proved by [Leray '34].

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem) Distributional solutions: $\theta \in L^2(\mathbb{R}^2 \times [0, +\infty)),$ $\forall \varphi \in C_c^{\infty}(\mathbb{R}^2 \times \mathbb{R})$

$$\int \theta(\partial_t \varphi - (-\Delta)^{\alpha} \varphi + u \cdot \nabla \varphi) \, dx \, dt = -\int \theta_0(x) \varphi(x,0) \, dx \, .$$

We can rewrite $\int (u\theta) \cdot \nabla \varphi \, dx \, dt = \frac{1}{2} \int \theta[\mathcal{R}^{\perp} \cdot, \nabla \varphi] \theta \, dx \, dt$. Global existence from $\theta_0 \in \dot{H}^{-1/2}$ [Resnick '95, Marchand '08], and even in the inviscid case from $\theta_0 \in L^p$ with $p > \frac{4}{3}$!

Leray - Hopf solutions: distributional solutions with global energy inequality for a.e. $t \ge 0$

$$\frac{1}{2}\int |\theta(t)|^2 \,\mathrm{d}x + \int_0^t \int |(-\Delta)^{\alpha/2}\theta|^2 \,\mathrm{d}x \,\mathrm{d}\tau \le \frac{1}{2}\int |\theta_0|^2 \,\mathrm{d}x \,\mathrm{d}\tau$$

Existence was proved by [Leray '34].

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem **Distributional solutions:** $\theta \in L^2(\mathbb{R}^2 \times [0, +\infty)),$ $\forall \varphi \in C_c^{\infty}(\mathbb{R}^2 \times \mathbb{R})$

$$\int \theta(\partial_t \varphi - (-\Delta)^{\alpha} \varphi + u \cdot \nabla \varphi) \, dx \, dt = -\int \theta_0(x) \varphi(x,0) \, dx \, .$$

We can rewrite $\int (u\theta) \cdot \nabla \varphi \, dx \, dt = \frac{1}{2} \int \theta[\mathcal{R}^{\perp} \cdot, \nabla \varphi] \theta \, dx \, dt$. Global existence from $\theta_0 \in \dot{H}^{-1/2}$ [Resnick '95, Marchand '08], and even in the inviscid case from $\theta_0 \in L^p$ with $p > \frac{4}{3}$!

Leray - Hopf solutions: distributional solutions with global energy inequality for a.e. $t \ge 0$

$$\frac{1}{2}\int |\theta(t)|^2 \,\mathrm{d}x + \int_0^t \int |(-\Delta)^{\alpha/2}\theta|^2 \,\mathrm{d}x \,\mathrm{d}\tau \leq \frac{1}{2}\int |\theta_0|^2 \,\mathrm{d}x \,.$$

Existence was proved by [Leray '34].

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

Distributional solutions: $\theta \in L^2(\mathbb{R}^2 \times [0, +\infty)),$ $\forall \varphi \in C_c^\infty(\mathbb{R}^2 \times \mathbb{R})$

$$\int \theta(\partial_t \varphi - (-\Delta)^{\alpha} \varphi + u \cdot \nabla \varphi) \, dx \, dt = -\int \theta_0(x) \varphi(x,0) \, dx \, .$$

We can rewrite $\int (u\theta) \cdot \nabla \varphi \, dx \, dt = \frac{1}{2} \int \theta[\mathcal{R}^{\perp} \cdot, \nabla \varphi] \theta \, dx \, dt$. Global existence from $\theta_0 \in \dot{H}^{-1/2}$ [Resnick '95, Marchand '08], and even in the inviscid case from $\theta_0 \in L^p$ with $p > \frac{4}{3}$!

Leray - Hopf solutions: distributional solutions with global energy inequality for a.e. $t \ge 0$

$$\frac{1}{2}\int |\theta(t)|^2 \,\mathrm{d}x + \int_0^t \int |(-\Delta)^{\alpha/2}\theta|^2 \,\mathrm{d}x \,\mathrm{d}\tau \leq \frac{1}{2}\int |\theta_0|^2 \,\mathrm{d}x \,.$$

Existence was proved by [Leray '34].

EPFL Regular solutions in the (sub)critical case

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

iviani resui

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

Theorem ([Constantin-Wu '99] for $\alpha > 1/2$, [Kiselev-Nazarov-Volberg '07] and [Caffarelli-Vasseur '10] for $\alpha = 1/2$)

Let $\alpha \ge 1/2$ and let $\theta_0 \in L^2(\mathbb{R}^2)$. Then there exists a smooth solution (θ, u) of SQG starting from θ_0 .

For $\alpha < 1/2$ this is a fascinating open problem. It is known:

- eventual regularization [Silvestre '10, Dabkowski '11, Kiselev '11]: Solutions are smooth for *t* sufficiently large.
- $L^2 \rightarrow L^{\infty}$ [Constantin-Wu '08] Leray-Hopf solutions are bounded for t > 0, via the De Giorgi method.
- conditional regularity [Constantin-Wu '09, ...] e.g.

 $u \in L^{\infty}_t C^{\gamma}_x$ with $\gamma > 1 - 2\alpha \Rightarrow \theta \in C^{\infty}$.

[Buckmaster-Vicol-Shkoller '16] proved "distributional non-uniqueness" for $\alpha < 3/4$.

EPFL The singular set

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem For $\alpha < 1/2$, can we still say something about the singular set Sing $\theta := \{(x, t) : \theta \text{ is not locally smooth around } (x, t)\}$?

Is it compact, is it still a null set?

For Navier-Stokes, it holds $\dim_{\mathcal{H}}(\operatorname{Sing}_{\tau} u) \leq \frac{1}{2}$ [Leray '34] and even $\mathcal{P}^{1}(\operatorname{Sing} u) = 0$ [Scheffer, Caffarelli-Kohn-Nirenberg '82].

EPFL Table of contents

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

SQG

- Invariances
- Critical case

Description Main result

- ε -regularity
- A conjecture on the optimal dimension

3 Proof of the ε -regularity Theorem

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

Theorem (C.-Haffter '20)

Let $\alpha > \alpha_0 := \frac{1+\sqrt{33}}{16} \approx 0.42$. For any $\theta_0 \in L^2(\mathbb{R}^2)$ there exists a Leray-Hopf weak solution (θ, u) of SQG- α and a relatively closed set $\operatorname{Sing} \theta$ such that

- $\theta \in C^{\infty}([\mathbb{R}^2 \times (0,\infty)] \setminus \operatorname{Sing} \theta)$,
- for every t > 0 $\operatorname{Sing} \theta \cap [\mathbb{R}^2 \times [t, \infty)]$ is compact,
- dim_{\mathcal{H}} Sing $\theta \leq \frac{1}{2\alpha} (\frac{1+\alpha}{\alpha}(1-2\alpha)+2)$.
- In particular, θ is smooth almost everywhere;
- Sing θ is compact if θ₀ is sufficiently regular to ensure local smooth existence;
- the partial regularity holds for every "suitable weak solution".

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

Theorem (C.-Haffter '20)

Let $\alpha > \alpha_0 := \frac{1+\sqrt{33}}{16} \approx 0.42$. For any $\theta_0 \in L^2(\mathbb{R}^2)$ there exists a Leray-Hopf weak solution (θ, u) of SQG- α and a relatively closed set $\operatorname{Sing} \theta$ such that

- $\theta \in C^{\infty}([\mathbb{R}^2 \times (0,\infty)] \setminus \operatorname{Sing} \theta)$,
- for every t > 0 $\operatorname{Sing} \theta \cap [\mathbb{R}^2 \times [t, \infty)]$ is compact,
- dim_{\mathcal{H}} Sing $\theta \leq \frac{1}{2\alpha} \left(\frac{1+\alpha}{\alpha} (1-2\alpha) + 2 \right)$.
- In particular, θ is smooth almost everywhere;
- Sing θ is compact if θ₀ is sufficiently regular to ensure local smooth existence;
- the partial regularity holds for every "suitable weak solution".

EPFL ε -regularity Theorem

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

The result is a corollary of

Theorem (ε -regularity)

Let $\alpha > \alpha_0$, and $p := \frac{1+\alpha}{\alpha}$. Set $\beta := \frac{1}{2\alpha}(p(1-2\alpha)+2)$. Let (θ, u) be a suitable weak solution of SQG- α with

$$\frac{\|\theta\|_{L^{\infty}}^{p-2}}{r^{\beta}}\int_{t-r}^{t+r}\int_{B_{\|u\|_{L^{\infty}}r}(x)}|\nabla^{\alpha}\theta|^{2}\,dz\,ds\leq\varepsilon(\alpha)\,.$$

Then θ is smooth on $B_{\frac{r^{1}/(2\alpha)}{8}}(x) \times [t - r/8, t + r/8].$

• L^{∞} norms are on $\mathbb{R}^2 imes [t-r,t+r]$.

• The choice of β is determined by scaling invariance.

EPFL ε -regularity Theorem

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

The result is a corollary of

Theorem (ε -regularity)

Let $\alpha > \alpha_0$, and $p := \frac{1+\alpha}{\alpha}$. Set $\beta := \frac{1}{2\alpha}(p(1-2\alpha)+2)$. Let (θ, u) be a suitable weak solution of SQG- α with

$$\frac{\|\theta\|_{L^{\infty}}^{p-2}}{r^{\beta}}\int_{t-r}^{t+r}\int_{B_{\|v\|_{L^{\infty}}r}(x)}|\nabla^{\alpha}\theta|^{2}\,dz\,ds\leq\varepsilon(\alpha)\,.$$

Then θ is smooth on $B_{\frac{r^{1}/(2\alpha)}{8}}(x) \times [t - r/8, t + r/8].$

- L^{∞} norms are on $\mathbb{R}^2 \times [t r, t + r]$.
- The choice of β is determined by scaling invariance.

EPFL Comments on the statement

Partial regularity for SQG

Maria Colombo

sQG

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The statement is not precise for two reasons:

- $\|u\|_{L^{\infty}}$ is not under control since in the limiting case CZ reads as $\|u\|_{BMO} \le \|\theta\|_{L^{\infty}}$. It can be solved by replacing $\|u\|_{L^{\infty}}r$ with $\|u\|_{L^q}r^{1-\frac{1}{\alpha q}}$ for arbitrarily large q.
- When writing

$$\int_{B_R} |\nabla^{\alpha} \theta|^2 \, dz$$

 JB_R we really mean a localized quantity that involves the Caffarelli-Silvestre extension θ^* of θ

$$\int_{B_R\times[0,R]} y^b |\overline{\nabla}\theta^*|^2 \, dz \, dy.$$

EPFL Parabolic geometry

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Main resul

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The parabolic cylinders are defined to respect the scaling of the equation

$$Q_r(x,t) = B_r(x) \times (t - r^{2\alpha}, t]$$

For $\alpha < \frac{1}{2}$

diam
$$Q_r(x,t)=\sqrt{r^{4lpha}+(2r)^2}\lesssim r^{2lpha}$$

and hence at scale r we work with $Q_{r^{1/(2\alpha)}}(x, t)$.

EPFL Is the dimension estimate optimal?

Partial regularity for SQG

Maria Colombo

sQG

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem An estimate on the dimension of the singular set is based on

- a globally bounded quantity in the form of a spacetime integral;
- an ε-regularity criterion that involves in its smallness assumption a localized version of this integral quantity (on a spacetime set of diameter ~ r, such as Q_{r1/(2α)})

Then

 $\dim_{\mathcal{H}} \operatorname{Sing} \, \theta =$ scaling of this integral quantity on $Q_{r^{1/(2\alpha)}}$.

Conjecture (C.-Haffter '20)

Any suitable weak solution of SQG- α satisfies

$$\dim_{\mathcal{H}} \operatorname{Sing} \, \theta \leq \frac{2(1-\alpha)}{\alpha}$$

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

EPFL Table of contents

Partial regularity for SQG

Maria Colombo

SQ

Invariances

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem

) SQG

- Invariances
- Critical case

Main result

- ε -regularity
- A conjecture on the optimal dimension

3 Proof of the ε -regularity Theorem

EPFL Excess decay

Partial regularity for SQG

Maria Colombo

SQ

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem We now define the "excess" of a suitable weak solution

$$E(\theta, u; x, t, r) := \left(\int_{Q_r(x,t)} |\theta - (\theta)_{Q_r(x,t)}|^p \, dz \, ds \right)^{\frac{1}{p}} \\ + \left(\int_{Q_r(x,t)} |u - [u]_{B_r(x)}|^p \, dz \, ds \right)^{\frac{1}{p}} + tails...$$

Theorem (Excess decay)

Let $\alpha \in (0,1)$ and $p > \frac{1+\alpha}{\alpha}$. For any $\gamma \in (0, 2\alpha(1-\frac{1}{p}))$ there exists $\varepsilon_0 \in (0,1)$ and $\mu_0 \in (0,\frac{1}{2})$ s.t. if (θ, u) is a suitable weak solution of $SQG-\alpha$ satisfying

- $[u(s)]_{B_r(x)} = 0$ for all $s \in [t r^{2\alpha}, t]$,
- $E(\theta, u; x, t, r) \leq r^{1-2\alpha} \varepsilon_0$,

then the excess decays at scale μ_0 with rate γ , that is

 $E(\theta, u; x, t, \mu_0 r) \leq \mu_0^{\gamma} E(\theta, u; x, t, r).$

EPFL Main ideas of the proof

Partial regularity for SQG

Maria Colombo

SQG

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The proof has two parts:

Excess decay argument with 2 new ingredients.

To prevent the lack of compactness of the local EI, we perform energy estimates of nonlinear type controlling $|\theta|^{p-1}$ p > 3. Hence we use L^{∞} bound and a new notion of suitable weak solution.

Change of variable along the flow to set certain averages of u to 0, since we lack other controls on the averages of the velocity.

each initial smallness of the excess. Strategies:

We pass from an L^p -based excess to a differential quantity via a nonlinear Poincaré inequality of parabolic type.

We need again to control the effect of the "flow", which guarantees zero-average assumption by enlarging spacetime cylinders to contain the effect of the flow.

EPFL Main ideas of the proof

Partial regularity for SQG

Maria Colombo

SQC

Invariances

Critical case

Main result

 ε -regularity

A conjecture on the optimal dimension

Proof of the ε -regularity Theorem The proof has two parts:

Excess decay argument with 2 new ingredients.

To prevent the lack of compactness of the local EI, we perform energy estimates of nonlinear type controlling $|\theta|^{p-1}$ p > 3. Hence we use L^{∞} bound and a new notion of suitable weak solution.

Change of variable along the flow to set certain averages of u to 0, since we lack other controls on the averages of the velocity.

reach initial smallness of the excess. Strategies:

We pass from an *L^p*-based excess to a differential quantity via a nonlinear Poincaré inequality of parabolic type.

We need again to control the effect of the "flow", which guarantees zero-average assumption by enlarging spacetime cylinders to contain the effect of the flow.

Partial regularity for SQG
Maria Colombo

Thank you for your attention!