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Overview

1. Napoleon meets Chladni.

2. Three ”elementary” questions about spherical harmonics.

3. Geometry of zero sets of Laplace eigenfunctions, Yau’s
conjecture, Nadirashvili’s conjecture.

4. Harmonic functions: Growth vs Zeroes.

5. Application: Landis’ conjecture on the plane.



Nodal sets were observed in resonance experiments by
Leonardo da Vinci, Galileo Galilei, Robert Hooke, Ernst
Chladni, ...

William Henry Stone (1879), Elementary Lessons on
Sound, Macmillan and Co., London, p. 26, fig. 12;

Chladni patterns published by John Tyndall in 1869.



Chladni meets Napoleon.

In 1808-1810 Ernst Chladni was demonstrating amazing resonance
experiments in Paris. Napoleon Bonaparte ordered the French
Academy of Sciences to set a prize for the mathematical theory
behind Chladni’s sound patterns. In 1816 Sophie Germain derived
the equation describing the vibration of the metal plate. Germain’s
explanation of sound patterns was incomplete, but her work was
acknowledged as essential progress. Robert Kirchhoff resolved the
special case of circular plates, but not before 1850.

“As to the strict mathematical theory, only a few cases are known
in which it yielded results appropriate to be universally applied to
the experiment.”
Quote from Handbuch der Physik (1891).



Nodal sets are zero sets of solutions to
elliptic differential equations.

(I) Nodal sets for the vibration modes of the metal plate are zeroes
of solutions to ∆2u = λ2u.

(II) Eigenfunctions of the Laplace operator: ∆u + λu = 0.
Physical meaning: vibration modes of a membrane = stationary
wave equation = Helmholtz equation; quantum mechanics.

In several situations (I) can be reduced to (II): vibration modes of
a metal plate with half-free boundary conditions, the setting of
manifolds without boundary.

Interesting problem: the behavior of the eigenfunctions as λ→∞.



Laplace eigenfunctions and Fourier series.

To determine the perfect depth to build a wine cellar Joseph
Fourier was solving the heat equation and introduced a very useful
idea.

Any continuous function f on [0, 2π] is a sum of trigonometric
series:

f (x) =
∑
k

ak sin(kx) +
∑
k

bk cos(kx).

The functions sin(kx) and cos(kx) are one-dimensional
eigenfunctions of the Laplace operator with eigenvalue λ = k2.

Given a domain Ω in Rn or a Riemannian manifold, Laplace
eigenfunctions in Ω are analogs of trigonometric polynomials. One
can decompose complicated functions in Ω into series of
eigenfunctions.



Eigenfunctions of the Laplace operator

Let M be a closed Riemannian manifold of dimension n and ∆ be
the Laplace operator on M. There is a sequence of eigenfunctions:

∆ϕk = −λkϕk , 0 = λ0 < λ1 ≤ λ2 ≤ ...

Example 1.
ϕ(x , y) = sin(ax) sin(by)

is an eigenfunction on the torus T2 with eigenvalue λ = a2 + b2.
Linear combinations ∑

a2
k+b2

k=λ

ck sin(akx) sin(bky)

.



Spherical harmonics

Value distribution |ϕ| of a
spherical harmonic. Red and blue
areas represent the sign.

Picture credits:
Matthew de Courcy-Ireland

Example 2. Eigenfunctions on S2 are
restrictions of homogeneous harmonic
polynomials in R3 to S2. They are
called spherical harmonics.

The corresponding eigenvalue is
λ = n(n + 1), where n is the degree of
the polynomial. The multiplicity is
2n + 1.

There is a standard basis of each
eigenspace consisting of relatively
simple polynomials. However, the value
distribution of their (random) linear
combinations can be complicated.



Three ”elementary” questions on eigenfunctions

Value distribution |ϕ| of a
spherical harmonic. Red and blue
areas represent the sign.
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Consider any sequence of eigenfunctions
ϕλ on S2 with λ→∞.

Yau’s Conjecture
The number of critical points of ϕλ
grows to infinity.

Sarnak’s Conjecture

‖ϕλ‖∞
‖ϕλ‖2

→∞.

Symmetry Conjecture

Area(ϕλ > 0)

Area(ϕλ < 0)
→ 1.
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Quasi-Symmetry conjecture
For any smooth closed Riemannian
manifold the sign of all eigenfunctions
satisfies:

c <
Area(ϕλ > 0)

Area(ϕλ < 0)
< C .

Thm(Donnelly and Fefferman). True for
S2, for any algebraic closed manifold
and any real-analytic manifold.

Thm(AL, F.Nazarov, work in progress).
True for any smooth surface (n = 2).



Eigenfunctions of the Laplace operator
Let Ω be a smooth bounded domain in Rn. There is a sequence of
eigenvalues

0 < λ1 ≤ λ2 ≤ ..., λk →∞
and a sequence eigenfunctions ϕk :

∆ϕk = −λkϕk in Ω, ϕk = 0 on ∂Ω.

Figure 8 from Ph.D. thesis of A.Stern, 1925.

Nodal sets separate Ω into several
connected components that are called
nodal domains.

Courants’ theorem. The number of
nodal domains of the k-th eigenfunction
ϕk is at most k .

A. Stern and H. Lewy constructed
examples of high frequency
eigenfunctions with only two nodal
domains and only one nodal curve.



Topology of nodal loops

The sign of a spherical harmonic.

Picture credits: Dmitry Belyaev.

Thm(Eremenko,Nadirashvili,Jacobson).
On S2 every symmetric topological
configuration of nodal loops (without
intersections) is possible.



Nodal domains and Courant’s theorem

The sign of a spherical harmonic.

Picture credits: Dmitry Belyaev.

Thm(Courant, 1923). The k-th
eigenfunction of the Laplace operator
on a closed manifold M has at most k
nodal domains.

Thm(Chanillo, AL, Malinnikova,
Mangoubi, 2019, work in progress)
Local version of Courant’s theorem.
The number of nodal domains of the
k-th eigenfunction, which intersect a
geodesic ball B is bounded by

k |B|/|M|+ Ck1−εd .



Spherical harmonic localized near equator

u(x , y , z) = <(x + iy)n.

ϕ = u|S2 is the k-th eigenfunction on
S2 with

k ∼ λ ∼ n2



Nodal domains and Courant’s theorem

Thm(Courant, 1923). The k-th eigenfunction of the Laplace
operator on a closed manifold M has at most k nodal domains.

Proof is one page long and uses only variational methods (minmax
principle) and the fact that eigenfunctions can not vanish on open
set.



Local version of Courant’s theorem

Thm(Chanillo, AL, Malinnikova, Mangoubi 2019, work in progress)
The number of nodal domains of the k-th eigenfunction, which
intersect a geodesic ball B is bounded by

k|B|/|M|+ Ck1−εd .

The main question in the proof:
Why nodal domains can not be long and narrow?



Local version of Courant’s theorem
The main question in the proof: why nodal domains can not be
long and narrow?

I Well-known ingredient: Estimates of harmonic measure.
Eigenfunctions should grow fast in narrow domains.

I New ingredient: It appears that eigenfunctions can not grow
too fast in narrow domains because of some global reasons:
the function is defined not only in the nodal domain, but on
the whole manifold.

The proof requires to prove sharp BMO bounds
Conjecture(Donnelly, Fefferman)/Thm(AL, Malinnikova):

‖log |ϕλ|‖BMO ≤ C
√
λ

and to resolve a related question of Landis on three balls
inequality for wild sets.
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Two conjectures

The sign of a random spherical
harmonic.

Picture credits: Dmitry Belyaev.

Let M be a compact C∞ -smooth
Riemannian manifold M (without
boundary) of dimension n.
Fact. For any Laplace eigenfunction ϕ,
∆ϕ = −λϕ,
the nodal set Zϕ = {x ∈ M : ϕ(x) = 0}
is C/

√
λ dense.

Yau’s conjecture

c
√
λ ≤ Hn−1(Zϕ) ≤ C

√
λ

Quasi-symmetry conjecture

c ≤ Hn(ϕ > 0)

Hn(ϕ < 0)
≤ C
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Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ

) ≤ C
√
λ

Previous bounds
• Brunning 1978, Yau: Lower bound is true for n = 2.

• Donnelly & Fefferman 1988: True for real analytic metrics.

• Nadirashvili 1988: n = 2, H1(Zϕλ
) ≤ Cλ log λ

• Donnelly & Fefferman 1990, Dong 1992: n = 2,
H1(Zϕλ

) ≤ Cλ3/4

• Hardt & Simon 1989: n ≥ 2, Hn−1(Zϕλ
) ≤ CλC

√
λ

• Colding & Minicozzi 2011, Sogge & Zelditch 2011, 2012,

Steinerberger 2014: cλ
3−n

4 ≤ Hn−1(Zϕλ
).



Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ

) ≤ C
√
λ

New results

Thm(AL, Eu. Malinnikova, 2016). n = 2

H1(Zϕλ
) ≤ Cλ3/4−ε.

Thm(AL, 2016). n ≥ 3

c
√
λ ≤ Hn−1(Zϕλ

) ≤ CλCn .



Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ

) ≤ C
√
λ

Thm(AL, Malinnikova, Nazarov, Nadirashvili, work in progress):
Let Ω be a bounded domain in Rn with smooth boundary. Then
for the eigenfunctions of the Laplace operator in Ω with Dirichlet
boundary conditions

∆ϕ = −λϕ, ϕ|∂Ω = 0

we have

Hn−1(Zϕλ
) ≤ C

√
λ.



Nadirashvili’s conjecture

Let u be a non-constant harmonic function in R3.

Area({u = 0}) =∞?

• Thm(2016). Yes.

• Thm(2016). If u(0) = 0, then

Area({u = 0} ∩ B1(0)) ≥ c > 0,

where c is a universal constant.

• Rescaled version in Rn:
If u(0) = 0, then

Hn−1({u = 0} ∩ BR(0)) ≥ cnR
n−1.
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From Laplace eigenfunctions to harmonic functions

∆ϕ+ λϕ = 0 vs ∆u = 0.

Let ϕ satisfy ∆ϕ+ λϕ = 0 in Rn.

Old trick: define a harmonic function u in Rn+1 by

u(x , t) = ϕ(x) exp(
√
λt),

Zu = Zϕ × R.

The same lifting trick works for eigenfunctions on manifolds.



From Nadirashvili’s conjecture to Yau’s conjecture

• Let ϕ satisfy ∆ϕ+ λϕ = 0 in Rn.
Why Hn−1(Zϕ ∩ {|x | < 1}) ≥ c

√
λ for λ > λ0?

• We will use another fact: Zϕ is C√
λ

dense in Rn.

• One can find ∼ λn/2 disjoint balls B(xi ,
1√
λ

) in B1 such that

ϕ(xi ) = 0.

• Using Nadirashvili’s conjecture on the scale 1/
√
λ and the

lifting trick we have

Hn−1(Zϕ ∩ B1/
√
λ(xi )) ≥ c

(
1√
λ

)n−1

.

Thus Hn−1(Zϕ ∩ {|x | < 1}) ≥ c
√
λ.

• The proof of Nadirashvili’s conjecture is beyond the scope of
this lecture.
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The style of the proofs.

The works of Donnelly and Fefferman brought many ideas to nodal
geometry. In particular they explained how to use complex and
harmonic analysis to study nodal sets and proved Yau’s and
quasi-symmetry conjectures in the case of real-analytic Riemannian
metrics. One of their ideas: geometry of nodal sets is controlled
growth properties of functions.

The proof of Nadirashvili’s conjecture (3D) is a multiscale
induction argument. Complex analysis tools are not working for
Nadirashvili’s conjecture (at least we don’t know how).

Tools in the proof Nadirashvili’s conjecture: monotonicity formulas
and unique continuation for elliptic PDE.



Growth of Laplace eigenfunctions on compact manifolds

∆ϕ+ λϕ = 0

Donnelly-Fefferman growth estimate for Laplace eigenfunctions on
compact Riemannian manifolds:
For any geodesic ball Br (x) ⊂ M

log
maxB2r (x) |ϕ|
maxBr (x) |ϕ|

≤ C
√
λ.

2r is assumed to be smaller than the injectivity radius of M.



Harmonic counterpart of Yau’s conjecture

Yau’s conjecture: Hn−1(Zϕλ
) ≤ C

√
λ.

Lifting trick: u(x , t) = ϕ(x) exp(
√
λt)

satisfies an elliptic PDE of the second order in the divergence form

div(A∇u) = 0.

Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Harmonic counterpart of Yau’s conjecture:

Hn−1(Zu ∩ B1) ≤ CN(B1).

Recent result (2016):

Hn−1(Zu ∩ B1) ≤ CN(B1)Cn .



Zeroes and growth of harmonic functions on the plane

For entire functions one can estimate the number of zeroes from
above in terms of growth. But there is a plenty of holomorphic
functions that have no zeroes.

Let u be a harmonic function (real valued) in R2.
Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Thm(Gelfond, Robertson, Nadirashvili)

cN(B1/4)− C ≤ H1(Zu ∩ B1) ≤ CN(B2) + C



Length of nodal lines and doubling index

Let n = 2. So M is a surface and nodal sets are unions of curves.
Consider an eigenfunction ϕ : ∆ϕ+ λϕ = 0.
Fact. On the scale 1/

√
λ eigenfunctions behave like harmonic

functions.
Estimate of length of nodal lines (Donnelly-Fefferman,
Nadirashvili, Nazarov-Polterovich-Sodin, Roy-Fortin).

cN(B 1
4
√
λ

(x))− C ≤
√
λ · H1(Zϕ ∩ B 1√

λ

(x)) ≤ CN(B 1√
λ

(x)) + C



Distribution of doubling index
Let n = 2. So M is a surface and nodal sets are unions of curves.
Let M be covered by ∼ λ geodesic balls Bi of radius 1/

√
λ so that

each point of M is covered at most 10 times.
Conjecture(Nazarov-Polterovich-Sodin). There is a numerical
constant C (independent of λ and of the covering) such that∑

N(Bi )

#Bi
≤ C .

Weak form. At least half of Bi have a bounded doubling index.

Comment. In the case when the metric is real analytic Donnelly
and Fefferman proved the weak conjecture on the distribution of
doubling indices and used it show that quasisymmetry holds.
Comment. The weak conjecture implies the quasisymmetry
conjecture:

c <
Area(ϕ > 0)

Area(ϕ < 0)
< C .

Comment. The strong NPS conjecture is equivalent to the Yau
conjecture in dimension 2.
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Upper bounds in Yau’s conjecture, n ≥ 3

Yau’s conjecture: Hn−1(Zϕλ
) ≤ C

√
λ.

Lifting trick: u(x , t) = ϕ(x) exp(
√
λt)

satisfies an elliptic PDE of second order in divergence form

div(A∇u) = 0.

Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Harmonic counterpart of Yau’s conjecture:

Hn−1(Zu ∩ B1) ≤ CN(B1).



Lemma on distribution of doubling indices.

Consider a harmonic function u in Rn and let Q be a unit cube.

N = Nu(Q) = log
max
2Q
|u|

max
Q
|u|
.

Let’s partition Q into Kn equal cubes qi of size 1/K .

Lemma on distribution of doubling index.
If K and N are sufficiently large, then there are at least
Kn − 1

2K
n−1 good cubes qi such that N(qi ) ≤ N/2.

A version of the lemma above is used in the multiscale argument
to prove polynomial upper bounds in Yau’s conjecture and the
lower bound.



Toolbox: Monotonicity of the doubling index for harmonic
functions

Nu(rB) ≤ (1 + ε)Nu(B) + C (ε)

for any r ∈ (0, 1) and any harmonic function u in Rn.

Monotonicity of the frequency function.

Hu(x , r) = |∂Br |−1

∫
∂Br (x)

|u|2, Fu(x , r) =
rH ′(r)

H(r)
.

Fu(x , r) is monotone in r .
For more general elliptic equations Garofalo and Lin showed that
Fu(x , r)eCr is a non-decreasing function
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Simplex lemma

Simplex Lemma (informal formulation):
Let u be a harmonic function in R3

such that for each blue ball
N(B i ) ≥ A > 1000, n = 1, 2, 3, 4.

Then the doubling index of the giant
red ball, which contains small blue balls,
is larger than A:

N(B) > A(1 + c), c > 0.



Toolbox: three balls theorem

Let u be a harmonic function. If maxB |u| ≤ 1 and max 1
4
B |u| ≤ ε,

then
max

1
2
B
|u| ≤ Cεα.

for some α ∈ (0, 1) and C that do not depend on u.



Toolbox: quantitative Cauchy uniqueness.

div(A∇u) = 0, A is elliptic

and with Lipschitz coefficients.

If Γ ⊂ ∂Ω is relatively open and K ⊂ Ω
is a compact set, then

max
K
|∇u| ≤ C sup

Γ
|∇u|β sup

Ω
|∇u|1−β



Second question from Nadirashvili’s plan

Cauchy uniqueness problem.
Let u be a harmonic function in a unit ball B ⊂ R3. Assume that
u ∈ C∞(B) and ∇u = 0 on a set S ⊂ ∂B with positive area. Does
it imply that ∇u ≡ 0?

Comment. If S is a relatively open subset the answer is yes. It is
also true in dimension two for any set of positive length. In R3 if
C∞ class of functions is replaced by C 1,ε the answer is no
(Bourgain, Wolff). Attempts to construct C 2 counterexamples
were not successful.



Application of zero sets and quasiconformal mappings:
Landis conjecture

Let u be a solution to ∆u + Vu = 0 in R2,
where V is a bounded potential: |V | < 1.
Landis’ conjecture: if |u(x)| ≤ exp(−|x |1+ε), then u ≡ 0.

Example: The function exp(−|x |) decays exponentially and outside
of the unit ball |∆ exp(−|x |)| ≤ C exp(−|x |). One can construct a
solution in the whole R2, which decays exponentially.
Meshkov: Landis conjecture is false for complex-valued potentials.
There is a non-zero complex solution u: |∆u| ≤ |u| such that
|u(x)| ≤ exp(−c|x |4/3).
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Landis conjecture

Let u be a solution to ∆u + Vu = 0 in R2,
where V is a bounded potential: |V | < 1.
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Thm(AL, Malinnikova, Nadirashvili, Nazarov, work in progress)
Landis’ conjecture is true for real potentials.

The proof is using zero sets and quasiconformal mappings.
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Application of zero sets and quasiconformal mappings:
Landis conjecture

Landis conjecture is a problem about solutions to ∆u + Vu = 0 on
the plane.
Quasiconformal mappings and nodal sets help to reduce the
problem to a simpler one about a harmonic function h : ∆h = 0 on
the plane with holes.



Toy problem. Let {zi} be a set of points in R2 with |zi − zj | > 10.

Ω = R2 \ ∪B1(zi )

Let h be a harmonic function in Ω with

unusual boundary conditions:
h does not change sign in each of the annuli B2(zi ) \ B1(zi ).

Show that |h(z)| cannot be too small near infinity:

|h(z)| ≤ exp(−|x |1+ε) =⇒ h ≡ 0.

One can reduce the quantitative version of Landis conjecture to
the quantitative version of the toy problem using quasiconformal
mappings and nodal sets.
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Question

Can one find a way in higher dimensions to simplify PDEs?
Quasiconformal mappings allow to find a smart change of variables
in 2D, which transforms the solution of

div(A∇u) = 0

to a solution of
∆h = 0.

The change of variables depends on the solution itself, but has
good quantitative estimates that depend on A only.

In higher dimensions there is no hope to simplify the equation to
the equation with constant coefficients.
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Question. Can one find a change of variables for one fixed solution
to div(A∇u) = 0 in R3 such that the new equation has a
symmetry (is not depending on one of the coordinates)?

Non-standard logic: There is one fixed function and we study all
Riemannian metrics such that the function is harmonic with
respect to the metric. So it is the equation for the metric. There
are many metrics, which solve it and we want to find the one,
which is simple.

The change of variables/metric should depend on the solution and
cannot serve for all solutions at the same time.



Question

Thm(AL, Malinnikova, Nadirashvili, Nazarov, work in progress) If
M is a closed Riemannian surface an u is a real-valued function on
M with |∆u| ≤ λ|u|, then the vanishing order of u at any point is
smaller than Cλ1/2+ε

Question If M is a closed Riemannian surface an u is a real-valued
function on M with |∆u| ≤ λ|u| is it true that

H1(Zu) ≤ Cλ1/2+ε?



Thank you!


