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Introduction
Motivation

Many problems from physics correspond to the coupling between a
(dissipative) evolution equation and an ODE:

U = AU + MP, in H,
P, = BP + NU, in X, (1)
U(O) = UOv P(O) = P07

where
@ A is the generator of a Cy semigroup in a Hilbert space H,
@ Bis a bounded operator from another Hilbert space X,
@ M: X — H,N: H— X bd operators.
Examples:
@ dispersive medium models,
@ generalized telegraph equations,
@ Volterra integro-differential equations,
@ cascades of ODE-hyperbolic systems.
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Introduction
Main questions

@ Strong stability of the solution.
@ Uniform Stability.
@ Polynomial Stability.
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Well Posedness
The energy space

Introduce the (unbounded) operator A from H x X into itself as follows:

AU+ MP

AU P)" = < BP + NU

) N(U,P)T € D(A) = D(A) x X.
This allows to recast (1) as the Cauchy problem: Find U = (U, P) " s. t.

U= AUIn H x X,
{ f @)

U(0) = (Up, Po)".

As

Ag(U,P)T = < 64U ) (U, P)T € D(A).

generates a Cyp-semigroup on H x X and A — A is a bounded
operator, a standard perturbation argument allows to conclude that A
also generates a Cyp-semigroup on H x X.
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Strong stability

Arendt-Batty/Lyubich-Vi’s thm

One simple way to prove the strong stability is to use the following

Theorem (Arendt-Batty/Lyubich-Vi: Thm 1)

Let X be a reflexive Banach space and (T (t)):>o be a bounded
semigroup generated by A on X. Assume that no eigenvalues of A lies
on the imaginary axis. If 7(A) NiR is countable, then (T(t)):o is stable.

Since the resolvent of our operator is not compact (if dim X = +o0), we
need to analyze the full spectrum on the imaginary axis.

[ W. Arendt and C. J. K. Batty.
Tauberian theorems and stability of one-parameter semigroups.
Trans. Amer. Math. Soc., 305(2):837-852, 1988.

[§ Y. 1. Lyubich and Q. P. V.
Asymptotic stability of linear differential equations in Banach
spaces. Studia Math., 88(1):37-42, 1988.
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Strong stability
Dissipativeness

To prove the boundedness property of the semigroup, we can use a
criterion on the resolvent of A, which may be a difficult task. A more
restrictive condition, but satisfied in many applications, is to assume
that A is dissipative, namely that

RAU,P)T. (U, P) uxx <OY(U,P)T € D(A) x X.  (3)

Indeed in such a case, by Lumer-Phillips’ theorem it generates a
Co-semigroup of contractions on H x X.
Therefore the use of Theorem 1 is reduced to the analysis of p(A) N:R.

Serge Nicaise (LAMAV) Stabilization PDE/ODE 24 june 2021, 8th ECM 7/20



Strong stability

The point spectrum: one criterion

Lemma (Le 2)
If

§R(A(U? P)Tv (U7 P)T)HXX SJ _”PH§(7V(U7 P)T S D(A) x X (4)

holds, then for all ¢ € R, one has
ker(161 — A) = {(U,0) " | U € ker N N ker(:£1 — A)}. (5)
In particular op(A) N R = ( iff

ker N N ker(:£1 — A) = {0}, V¢ € R. (6)

4

Pf. (U,P)" € ker(:£1 — A) iff

U — AU - MP =0,
1P — BP — NU = 0.

By (4), P =0, hence (:{ — A)U =0 and NU = 0.
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Strong stability

Closedness of the range

Corollary

Let (4) be satisfied and suppose given a bd operator C : X — H. If
£eRiss. t i € p(A+ CN), then & & op(A) and 3c(§) > 0 s. t.

(€L — A)(U, P)llmxx = ()Y, P) " llxx, ¥(U, P)T € D(A) x X,

in particular R(:£1 — A) is closed.

Pf. Based on a contradiction argument.

Corollary (Coro 3)

Let (4) and (6) be satisfied and suppose 3 bdop. C: X — Hs. t.
p(A+ CN)Nop(—A*) NR = (. Then

a(A)NiR C o(A+ CN)NR,
and if additionally o(A + CN) N R is countable, the semigroup T(t)
generated by A is stable.
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Energy decay

Frequency domain approach: exponential decay

Lemma (Priss/Huang)

A Cqy semigroup (e’A)tzo of contractions on a Hilbert space H is
exponentially stable, i.e., satisfies

1e”Uol| < Ce™!||Uolln, VUp€H, Vt>0,

for some positive constants C and w if and only if

p(A) o{iB | B € R} = iR, (7)

sup [|(iB — A) M| gemy < oo (8)
BeR
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Energy decay

Frequency domain approach: polynomial decay

Lemma (Borichev-Tomilov)

A Cy semigroup (€0 of contractions on a Hilbert space H satisfies

€A Up|| < Ct#||Ubllp(ay, YU € D(A), Vt>1,

for some constant C > 0 and for some positive integer ¢ if (7) holds

and if
(iB = A gy < oo (9)

i 1 ||
imsup ——

v

[1 A. Borichev and Y. Tomilov.
Optimal polynomial decay of functions and operator semigroups.

Math. Ann., 347(2):455-478, 2010.
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Energy decay
The exponential case

Assume that A (resp. A) generates a bounded Cy semigroup T (t)
(resp. S(t)) on H x X (resp. H) satisfying (7), namely iR C p(A) (resp.
IR C p(A)). Then

T(t) is exponentially stable iff S(t) is exponentially stable.

Pf. We show that

(€0 = A) 7| S 1
iff

(T —A) T S 1.

for |¢] large. Then we use Pruss/Huang’s Theorem.
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Energy decay

The polynomial case: one criterion

Theorem (Thm 4)

Assume that3 abdop. C: X — H s. t. A+ CN generates a bounded
Co semigroup on H satisfying (7), namely iR C p(A + CN), and

1
sup ——— ||(2€ — (A+ CN)) || < oo, 10
sup e 106 = (A+ CN) | (10)
for some non negative real number m. Assume that (4) holds and that
A generates a bounded Cy semigroup T(t) on H x X satisfying (7),
namely iR C p(A). Then T(t) is polynomially stable, i.e.,

1
I T(1)(Uo, Po) "llHxx < t211(Uo, Po) " lpgayxx, ¥t > 1,

with ¢ = max{m,2(m+1)}.

Use Borichev-Tomilov’s Theorem and a contradiction argument.
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The generallzed telegraph equation on networks

Figure: A tree shaped network and one with two cycles
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The generalized telegraph equation on networks
The pb

A coupling between the telegraph equation and a first order ODE:

Vit + gV + ailix + kW = 0, in @ := (0, ) x (0,00),Vj € J,
/j,t+q/j+bj\47X:0, in Qj,VjEJ,

Wii+cW —V,=0, in Qj,VjEJ,

Sieu YKV, ) =0, YV € Vi, t > 0,

Vi(v,t) — Vk(v,t) =0, Vi, k € Jy,YVv € Vip, t > 0,

Vi, (v,t) =0, Yv e VBRIt >0,

Vi, (v, t) — avj, (V) (v, t) =0, Vv e VDis t >0,

V(-,0) = Vo, I(-,0) = I, W(-,0) = Wy inN.

[4 S.Imperiale and P. Joly. Mathematical modeling of electromagnetic
wave propagation in heterogeneous lossy coaxial cables with
variable cross section. Appl. Numer. Math., 79:42-61, 2014.
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The generalized telegraph equation on networks
The Hilbert setting

Unknowns: on each edge e; = (0, ¢;),
@ the electric potential V;,

@ the electric current /;,
@ the non-local effects variable W;.

boundary conditions: Kirchoff cdt on interior nodes, dissipative cdt on
V/Diss.

Assumptions: a;, bj, ¢;, kj, ry and g; in L*(0, ;) are real valued and
non-negative functions satisfying

a1, bz21,¢21, k+g 21 ae in(0,), vVi=1,...,N.

These assumptions are in agreement with the physical setting from
[Imperiale Joly’ 14].
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The generalized telegraph equation on networks
The Hilbert setting

Our system enters in the abstract framework (1) by defining H, X, A,
B, M and N as follows: H = L2(N)2, X = L2(N),

B: X—X:W-—> —cW,
M:X—H:W— (—kW,0)",
N:H-=X:(V,)T =V,

and are indeed bounded. Finally the operator A is defined as follows:
the domain D(.A) of A is given by

D(A) = {(V, )T e PH'(N)? satisfying the above bc},

AWV, DT = —(aly + gV, bV + )T ,Y(V, )T € D(A).
With an appropriate choice of the inner products in H and X, A is

dissipative, in particular (4) holds. Hence by Lemma 2, we obtain the
next result.
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The generalized telegraph equation on networks

The kernels on the imaginary axis

Lemma
One has
ker(2£1 — A) = {0}, V¢ € R¥, (11)
while
ker A = {0} x Ky x {0}, (12)
where
Ko = {I € PPy(N) satisfying the above bc and rl = 0}.

Rk Different sufficient conditions on the network A/, the coefficient r
and the choice of VPir, VDiss guarantee that Ky = {0} (hence

ker A = {0}). For instance, if V' is a tree and VDiss contains the set V7,
of all other exterior vertices except one, then ker A = {0}.
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The generalized telegraph equation on networks

The polynomial stability result

Let us set
Hy = L3(N) x {l € L3(N\)| / b="IT dx =0,VI € Ky},
N

then one can show that the restriction Ay of A to Hy x X is well
defined. Using Corollary 3 and Theorem 4 with C defined by
CW = —(kW,0)", YW € X,

we get the next result.

Theorem

The semigroup Ty(t) generated by A is polynomially stable, namely
ITo(O(V. 1, P) [lksx < 211V, 1 P) T llpgayex: ¥t > 1,

andall (V,1,P)" € (D(A) N Hp) x X.

v
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The generalized telegraph equation on networks
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