Optimizing conditional entropies for quantum correlations

Omar Fawzi

ECM, Computational aspects of commutative and noncommutative positive polynomials

Based on joint works with Peter Brown and Hamza Fawzi arXiv:2007.12575 and arXiv:2106.13692

Device-independent quantum cryptography

Bell-nonlocality

- Defines a conditional distribution p(ab|xy)
- Noncommutative polynomial optimization (NPA hierarchy): decide if $p(ab|xy) \in Q$ $Q = \{p(ab|xy) : \exists \text{ quantum strategy achieving } p\}$

Device-independent quantum cryptography

Bell-nonlocality

- Defines a conditional distribution p(ab|xy)
- Noncommutative polynomial optimization (NPA hierarchy): decide if p(ab|xy) ∈ Q
 Q = {p(ab|xy) : ∃ quantum strategy achieving p}
- Nonlocal correlations \implies randomness in the outcomes
- Foundation for device-independent protocols (key distribution, randomness expansion,...)
- This talk: For the analysis of protocols, want to compute more complicated properties related to quantum strategies

Device-independent randomness expansion

A randomness expansion protocol

- **①** Choose $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ at random w.p. γ_i set $X_i Y_i \sim \mu(x, y)$ and w.p. 1γ set $X_i = x^*$ and $Y_i = y^*$
- Device interaction

- **9** From the outputs $A_1, \ldots, A_n, B_1, \ldots, B_n$, estimate p(ab|xy) (for one round)
- If p(ab|xy) is sufficiently non-local, extract the randomness by applying f $f(A_1, \ldots, A_n, B_1, \ldots, B_n) \in \{0, 1\}^{\ell}$

Question: How large can we take ℓ ?

Device-independent randomness expansion

A randomness expansion protocol

- **Q** Choose $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ at random w.p. γ , set $X_i Y_i \sim \mu(x, y)$ and w.p. 1γ set $X_i = x^*$ and $Y_i = y^*$
- ② Device interaction

- **9** From the outputs $A_1, \ldots, A_n, B_1, \ldots, B_n$, estimate p(ab|xy) (for one round)
- If p(ab|xy) is sufficiently non-local, extract the randomness by applying f $f(A_1, \ldots, A_n, B_1, \ldots, B_n) \in \{0, 1\}^{\ell}$

Question: How large can we take ℓ ?

One can show

 $\ell = n imes$ randomness generated by device compatible with $p - O(\sqrt{n})$

Randomness generated per round

A strategy (i.e., implementation of the boxes) is a tuple

$$(Q_A \otimes Q_B \otimes Q_E, \rho_{Q_AQ_BE}, \{\{M_{\mathsf{a}|\mathsf{x}}\}_{\mathsf{a}}\}_{\mathsf{x}}, \{\{N_{\mathsf{b}|\mathsf{y}}\}_{\mathsf{b}}\}_{\mathsf{y}})$$

With each strategy we can associate a post-measurement state

$$\rho_{ABXYE} = \sum_{abxy} \mu(xy) |abxy\rangle \langle abxy| \otimes \operatorname{tr}_{Q_AQ_B} \left[(M_{a|x} \otimes N_{b|y} \otimes I_E) \rho_{Q_AQ_BE} \right].$$

It is **compatible** with p(ab|xy) if

$$p(ab|xy) = \operatorname{tr}\left[(M_{a|x} \otimes N_{b|y} \otimes I_E) \rho_{Q_A Q_B E} \right] \qquad \forall x, y, a, b.$$

Randomness generated per round

A **strategy** (i.e., implementation of the boxes) is a tuple

$$\left(\mathit{Q}_{A} \otimes \mathit{Q}_{B} \otimes \mathit{Q}_{E}, \rho_{\mathit{Q}_{A}\mathit{Q}_{B}E}, \{\{\mathit{M}_{\mathsf{a}|x}\}_{\mathsf{a}}\}_{\mathsf{x}}, \{\{\mathit{N}_{b|y}\}_{\mathsf{b}}\}_{\mathsf{y}} \right)$$

With each strategy we can associate a post-measurement state

$$\rho_{ABXYE} = \sum_{abxy} \mu(xy) |abxy\rangle \langle abxy| \otimes \operatorname{tr}_{Q_AQ_B} \left[(M_{a|x} \otimes N_{b|y} \otimes I_E) \rho_{Q_AQ_BE} \right].$$

rand. gen. per round =
$$\inf_{\text{strategies}} H(AB|X = x^*, Y = y^*E)_{\rho_{ABXYE}}$$

s.t. $\operatorname{tr}\left[(M_{a|x} \otimes N_{b|y} \otimes I_E)\rho_{Q_AQ_BE}\right] = p(ab|xy) \quad \forall xyab$

For a quantum state ρ_{AE} ,

$$H(A|E)_{\rho} = -\mathrm{tr}\left[\rho_{AE}\log\rho_{AE}\right] + \mathrm{tr}\left[\rho_{E}\log\rho_{E}\right] \; ,$$

where $\rho_E = \operatorname{tr}_A[\rho_{AE}]$.

Objective: Good lower bounds Difficulty: Objective function is not linear in $\rho_{Q_AQ_BE}$

Replacing the logarithm with powers: Rényi entropy

Trial 1: Approximate log with powers

Rényi conditional entropy with $\alpha \in (1,2]$

$$H(A|E)_{\rho} \geq H_{\alpha}(A|E)_{\rho} = \frac{1}{1-\alpha} \log \operatorname{tr} \left[\rho_{AE}^{\alpha} \rho_{E}^{1-\alpha} \right] ,$$

Objective becomes:

$$\begin{bmatrix} \sup_{\text{strategies}} & \sum_{ab} \operatorname{tr} \left[\left(\operatorname{tr}_{Q_A Q_B} \left[(M_{a|x^*} \otimes N_{b|y^*} \otimes I_E) \rho_{Q_A Q_B E} \right] \right)^{\alpha} \rho_E^{1-\alpha} \right] \\ \text{s.t.} & \operatorname{tr} \left[(M_{a|x} \otimes N_{b|y} \otimes I_E) \rho_{Q_A Q_B E} \right] = p(ab|xy) \end{bmatrix}$$

Replacing the logarithm with powers: Rényi entropy

Trial 1: Approximate log with powers

Rényi conditional entropy with $\alpha \in (1,2]$

$$H(A|E)_{
ho} \geq H_{lpha}(A|E)_{
ho} = rac{1}{1-lpha} \log \operatorname{tr} \left[
ho_{AE}^{lpha}
ho_{E}^{1-lpha}
ight] \; ,$$

Objective becomes:

$$\begin{bmatrix} \sup_{\text{strategies}} & \sum_{ab} \operatorname{tr} \left[\left(\operatorname{tr}_{Q_A Q_B} \left[(M_{a|x^*} \otimes N_{b|y^*} \otimes I_E) \rho_{Q_A Q_B E} \right] \right)^{\alpha} \rho_E^{1-\alpha} \right] \\ \text{s.t.} & \operatorname{tr} \left[(M_{a|x} \otimes N_{b|y} \otimes I_E) \rho_{Q_A Q_B E} \right] = p(ab|xy) \end{bmatrix}$$

Difficulties: Handle partial trace? Rational powers?

Dimension-free variational expressions

Trial 2: Use specific properties of $H(A|E)_{\rho}$

Fact: $\rho \mapsto H(A|E)_{\rho}$ is concave $\implies \exists \mathcal{F} \text{ s.t. } H(A|E)_{\rho} = \inf_{(Z,z) \in \mathcal{F}} \operatorname{tr}[\rho Z] + z$

Recall the problem

$$\begin{split} &\inf_{\text{strategies}} & & H(AB|X=x^*,Y=y^*E)_{\rho_{ABXYE}} \\ &\text{s.t.} & & \text{tr}\left[(M_{a|x}\otimes N_{b|y}\otimes I_E)\rho_{Q_A}Q_{B}E\right] = \rho(ab|xy) \end{split}$$

$$\begin{split} H(AB|X = x^*, Y = y^*E)_{\rho} &= \inf_{(Z,z) \in \mathcal{F}} \operatorname{tr} \left[\rho_{ABXYE} Z \right] + z \\ &= \inf_{(Z,z) \in \mathcal{F}} \sum_{a,b} \operatorname{tr} \left[\operatorname{tr}_{Q_A Q_B} [M_{a|x^*} \otimes N_{b|y^*} \rho_{Q_A Q_B E}] \langle ab|Z|ab \rangle \right] + z \\ &= \inf_{(Z,z) \in \mathcal{F}} \sum_{a,b} \operatorname{tr} \left[\rho_{Q_A Q_B E} M_{a|x^*} \otimes N_{b|y^*} I_{Q_A Q_B} \otimes \langle ab|Z|ab \rangle \right] + z \end{split}$$

If $\mathcal F$ is described by dimension-free polynomial constraints \implies can use NC poly optimization machinery

Approaches to obtain dimension-free variational expressions

We proposed two methods to give dimension-free variational lower bounds on $H(A|E)_{\rho}$

Based on SDP representations of the matrix geometric mean

[Nat Commun 12, 575 (2021)]

Rényi entropy: $\operatorname{tr}[\rho_{AE}^{\alpha}\rho_{E}^{1-\alpha}] \leq \operatorname{tr}[\rho_{AE}\#_{1-\alpha}(I_{A}\otimes\rho_{E})]$

$$X \# Y := X^{1/2} (X^{-1/2} Y X^{-1/2})^{1/2} X^{1/2} = \max \left\{ W : \begin{pmatrix} X & W \\ W & Y \end{pmatrix} \ge 0 \right\}$$

Use this idea to **define** new Rényi entropies (iterated mean) $\leq H(A|E)$

Approaches to obtain dimension-free variational expressions

We proposed two methods to give dimension-free variational lower bounds on $H(A|E)_{\rho}$

Based on SDP representations of the matrix geometric mean

[Nat Commun 12, 575 (2021)]

Rényi entropy: $\operatorname{tr}[\rho_{AE}^{\alpha}\rho_{E}^{1-\alpha}] \leq \operatorname{tr}[\rho_{AE}\#_{1-\alpha}(I_{A}\otimes\rho_{E})]$

$$X \# Y := X^{1/2} (X^{-1/2} Y X^{-1/2})^{1/2} X^{1/2} = \max \left\{ W : \begin{pmatrix} X & W \\ W & Y \end{pmatrix} \ge 0 \right\}$$

Use this idea to **define** new Rényi entropies (iterated mean) $\leq H(A|E)$

Based on approximating log via rational functions
 [Soon on arXiv]

Rest of talk: focus on this approach

Dimension-free variational expressions via rational functions

Note that $H(A|E)_{\rho} = -D(\rho_{AE}||I_A \otimes \rho_E)$ where $D(\rho||\sigma) = \operatorname{tr}[\rho \log \rho] - \operatorname{tr}[\rho \log \sigma]$

From now: work with the divergence D (called quantum relative entropy or Umegaki divergence)

Property: For any ρ, σ , there exists a measure $\nu_{\rho,\sigma}$ on \mathbb{R}^2_+ such that

$$D(
ho\|\sigma) = \int_{\mathbb{R}^2} y \log(y/x) d
u_{
ho,\sigma}(x,y)$$

For $ho=\sum_j p_j |\psi_j\rangle\!\langle\psi_j|$ and $\sigma=\sum_k q_k |\phi_k\rangle\!\langle\phi_k|$, then $\nu_{
ho,\sigma}=\sum_{j,k} |\langle\psi_j|\phi_k\rangle|^2 \delta_{q_k,p_j}$

Dimension-free variational expressions via rational functions

Note that $H(A|E)_{\rho} = -D(\rho_{AE}||I_A \otimes \rho_E)$ where $D(\rho||\sigma) = \text{tr}[\rho \log \rho] - \text{tr}[\rho \log \sigma]$

From now: work with the divergence D (called quantum relative entropy or Umegaki divergence)

Property: For any ho,σ , there exists a measure $u_{
ho,\sigma}$ on \mathbb{R}^2_+ such that

$$D(
ho\|\sigma) = \int_{\mathbb{R}^2_+} y \log(y/x) d
u_{
ho,\sigma}(x,y)$$

For $ho=\sum_j p_j |\psi_j\rangle\!\langle\psi_j|$ and $\sigma=\sum_k q_k |\phi_k\rangle\!\langle\phi_k|$, then $\nu_{
ho,\sigma}=\sum_{j,k} |\langle\psi_j|\phi_k\rangle|^2 \delta_{q_k,p_j}$

Approximate log by a sum of rational functions via Gauss-Radau quadrature:

$$\ln(z) = \int_0^1 \frac{z-1}{t(z-1)+1} dt \ge \sum_{i=1}^m w_i \frac{z-1}{t_i(z-1)+1}$$

for some well-chosen nodes $t_i \in (0,1]$ and weights $w_i > 0$ Approximation gets arbitrary good as $m \to \infty$

Dimension-free variational expressions via rational functions

Note that $H(A|E)_{\rho} = -D(\rho_{AE}||I_A \otimes \rho_E)$ where $D(\rho||\sigma) = \text{tr}[\rho \log \rho] - \text{tr}[\rho \log \sigma]$

From now: work with the divergence D (called quantum relative entropy or Umegaki divergence)

Property: For any ρ, σ , there exists a measure $\nu_{\rho,\sigma}$ on \mathbb{R}^2_+ such that

$$D(
ho\|\sigma) = \int_{\mathbb{R}^2} y \log(y/x) d
u_{
ho,\sigma}(x,y)$$

For $ho=\sum_j p_j |\psi_j\rangle\!\langle\psi_j|$ and $\sigma=\sum_k q_k |\phi_k\rangle\!\langle\phi_k|$, then $\nu_{
ho,\sigma}=\sum_{j,k} |\langle\psi_j|\phi_k\rangle|^2 \delta_{q_k,p_j}$

Approximate log by a sum of rational functions via Gauss-Radau quadrature:

$$\ln(z) = \int_0^1 \frac{z-1}{t(z-1)+1} dt \ge \sum_{i=1}^m w_i \frac{z-1}{t_i(z-1)+1}$$

for some well-chosen nodes $t_i \in (0,1]$ and weights $w_i > 0$ Approximation gets arbitrary good as $m \to \infty$

$$(\ln 2)D(\rho\|\sigma) = -\int_{\mathbb{R}^2_+} y \ln(x/y) d\nu_{\rho,\sigma}(x,y) \le -\sum_{i=1}^m w_i \int_{\mathbb{R}^2_+} \frac{y(x-y)}{t_i(x-y)+y} d\nu_{\rho,\sigma}(x,y)$$

Dimension-free variational expressions for rational functions

Want a variational expression for the "rational function divergence"

$$D_t(
ho\|\sigma) := \int_{\mathbb{R}^2_+} \frac{y(x-y)}{t(x-y)+y} d
u_{
ho,\sigma}(x,y)$$

$$\frac{y(x-y)}{t(x-y)+y} = \frac{1}{t} \frac{1}{(t(x-y))^{-1}+y^{-1}} = \frac{1}{t} M_{-1}(t(x-y),y)$$
 with M_{-1} is the harmonic mean

There exists a vector v and operators A, B on some Hilbert space such that

$$D_t(\rho||\sigma) = \langle v, M_{-1}(t(A-B), B)v \rangle$$

 $A = \text{left multiplication by } \sigma \text{ and } B = \text{right multiplication by } \rho$

 $\textbf{Var. expression for harmonic mean: } \langle v, M_{-1}(X,Y)v \rangle = \inf_{z+z'=v} \langle z, Xz \rangle + \langle z', Yz' \rangle$

$$D_{t}(\rho \| \sigma) = \inf_{z} \langle z, t(A - B)z \rangle + \langle v - z, B(v - z) \rangle$$

$$= \inf_{z} t \operatorname{tr}[z^{*}\sigma z] - t \operatorname{tr}[z^{*}z\rho] + \operatorname{tr}[(v - z)^{*}(v - z)\rho]$$

$$= \inf_{z} t \operatorname{tr}[zz^{*}\sigma] + (1 - t)\operatorname{tr}[z^{*}z\rho] + \operatorname{tr}[\rho] - \operatorname{tr}[(z + z^{*})\rho]$$

using the fact that v = I

Back to the quantum relative entropy

Putting things together

$$(\ln 2)D(\rho\|\sigma) \leq -\sum_{i=1}^{m} w_i D_{t_i}(\rho\|\sigma)$$

$$\leq \left[-\inf_{z_1,\ldots,z_m} \sum_{i=1}^{m} w_i \left(t_i \operatorname{tr}[z_i z_i^* \sigma] + (1-t_i) \operatorname{tr}[z_i^* z_i \rho] + \operatorname{tr}[\rho] - \operatorname{tr}[\left(z_i + z_i^*\right) \rho]\right)\right]$$

Exactly the form we wanted when $m \to \infty$, we get equality

Back to the quantum relative entropy

Putting things together

$$(\ln 2)D(\rho\|\sigma) \leq -\sum_{i=1}^{m} w_i D_{t_i}(\rho\|\sigma)$$

$$\leq \left[-\inf_{z_1,\ldots,z_m} \sum_{i=1}^{m} w_i \left(t_i \operatorname{tr}[z_i z_i^* \sigma] + (1-t_i) \operatorname{tr}[z_i^* z_i \rho] + \operatorname{tr}[\rho] - \operatorname{tr}[\left(z_i + z_i^*\right) \rho]\right)\right]$$

Exactly the form we wanted

when $m o \infty$, we get equality

Back to motivating problem

$$\inf_{\text{strategies}} H(AB|X = x^*, Y = y^*E)_{\rho_{ABXYE}}$$

$$\text{s.t.} \quad \text{tr}\left[(M_{a|x} \otimes N_{b|y} \otimes I_E)\rho_{Q_AQ_BE}\right] = p(ab|xy)$$

Apply formula for $\rho \leftarrow \rho_{ABE}$ and $\sigma \leftarrow I_{AB} \otimes \rho_{E}$ (all conditioned on $X = x^{*}, Y = y^{*}$)

$$H(AB|X = x^*, Y = y^*E)_{\rho}$$

$$\geq \inf_{Z_1,\ldots,Z_m} \sum_{i=1}^m w_i \left(1 + \operatorname{tr}\left[\rho_{ABE}(Z_i + Z_i^* + (1-t_i)Z_i^*Z_i)\right] + t \operatorname{tr}[I_{AB} \otimes \rho_E Z_i Z_i^*]\right)$$

$$=\inf_{Z_{i,ab}}\sum_{i=1}^{m}w_{i}\left(1+\sum_{ab}\operatorname{tr}\left[\rho_{Q_{A}Q_{B}E}M_{a|x}*N_{b|y}*(Z_{i,ab}+Z_{i,ab}^{*}+(1-t_{i})Z_{i,ab}^{*}Z_{i,ab})\right]+t_{i}\operatorname{tr}[\rho_{E}Z_{i,ab}Z_{i,ab}^{*}]\right)$$

The family of NC poly optimization

Back to motivating problem

$$\begin{split} &\inf_{\text{strategies}} & H(AB|X=x^*,Y=y^*E)_{\rho_{ABXYE}} \\ &\text{s.t.} & \text{tr}\left[(M_{a|x}\otimes N_{b|y}\otimes I_E)\rho_{Q_A}Q_BE \right] = p(ab|xy) \end{split}$$

Parameter $m \ge 1$

$$\inf_{\substack{Z_{i,ab},M_{a|x},N_{b|y},|\psi\rangle\\ \text{s.t.}}} \sum_{i=1}^{m} w_{i} \left(1 + \sum_{ab} \langle \psi | M_{a|x^{*}} N_{b|y^{*}} (Z_{i,ab} + Z_{i,ab}^{*} + (1 - t_{i}) Z_{i,ab}^{*} Z_{i,ab}) | \psi \rangle + t_{i} \langle \psi | Z_{i,ab} Z_{i,ab}^{*} | \psi \rangle \right)$$

$$\text{s.t.} \quad \langle \psi | M_{a|x} N_{b|y} | \psi \rangle = p(ab|xy)$$

$$\sum_{a} M_{a|x} = \sum_{b} N_{b|y} = I \quad M_{a|x}, N_{b|y} \geq 0$$

$$[M_{a|x}, N_{b|y}] = 0$$

$$Z_{i,ab}, Z_{i,ab}^{*} \text{ commute with all } M_{a'|x}, N_{b'|y}$$

The family of NC poly optimization

Back to motivating problem

$$\begin{split} \inf_{\text{strategies}} & & H(AB|X=x^*,Y=y^*E)_{\rho_{ABXYE}} \\ \text{s.t.} & & \text{tr}\left[(M_{a|x}\otimes N_{b|y}\otimes I_E)\rho_{Q_A}Q_{B}E\right] = \rho(ab|xy) \end{split}$$

Parameter $m \ge 1$

$$\begin{split} \inf_{Z_{i,ab},M_{a|x},N_{b|y},|\psi\rangle} & \sum_{i=1}^{m} w_{i} \left(1 + \sum_{ab} \langle \psi | M_{a|x} * N_{b|y} * (Z_{i,ab} + Z_{i,ab}^{*} + (1 - t_{i}) Z_{i,ab}^{*} Z_{i,ab}) | \psi \rangle + t_{i} \langle \psi | Z_{i,ab} Z_{i,ab}^{*} | \psi \rangle \right) \\ & \text{s.t.} & \langle \psi | M_{a|x} N_{b|y} | \psi \rangle = p(ab|xy) \\ & \sum_{a} M_{a|x} = \sum_{b} N_{b|y} = I \quad M_{a|x}, N_{b|y} \geq 0 \\ & [M_{a|x}, N_{b|y}] = 0 \\ & Z_{i,ab}, Z_{i,ab}^{*} \text{ commute with all } M_{a'|x}, N_{b'|y} \end{split}$$

Can give an a priori bound $\|Z_{i,ab}\| \leq lpha_m$ to get convergence of NPA

But the bound α_m grows with m

Application: randomness expansion

Numerically: Tighter bounds and computationally faster that other methods

A sample plot showing tightness

Open problems

- Concrete problem about convergence: NC polynomial p with variables X_j and Z_i with $[X_j, Z_i] = 0$ Assume X_j all bounded and Z_i unrestricted Can one show convergence of SDP hierarchies?
- **More general methods:** We used concavity of entropy, can one construct hierarchies for more general settings? e.g., **maximizing** entropy?