Optimizing conditional entropies for quantum correlations

Omar Fawzi

白程

ECM, Computational aspects of commutative and noncommutative positive polynomials

Based on joint works with Peter Brown and Hamza Fawzi arXiv:2007.12575 and arXiv:2106.13692

Device-independent quantum cryptography

Bell-nonlocality

- Defines a conditional distribution $p(a b \mid x y)$
- Noncommutative polynomial optimization (NPA hierarchy): decide if $p(a b \mid x y) \in \mathrm{Q}$
$\mathrm{Q}=\{p(a b \mid x y): \exists$ quantum strategy achieving $p\}$

Device-independent quantum cryptography

Bell-nonlocality

- Defines a conditional distribution $p(a b \mid x y)$
- Noncommutative polynomial optimization (NPA hierarchy): decide if $p(a b \mid x y) \in \mathrm{Q}$ $\mathrm{Q}=\{p(a b \mid x y): \exists$ quantum strategy achieving $p\}$
- Nonlocal correlations \Longrightarrow randomness in the outcomes
- Foundation for device-independent protocols (key distribution, randomness expansion,...)
- This talk: For the analysis of protocols, want to compute more complicated properties related to quantum strategies

Device-independent randomness expansion

A randomness expansion protocol

(1) Choose $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ at random w.p. γ, set $X_{i} Y_{i} \sim \mu(x, y)$ and w.p. $1-\gamma \operatorname{set} X_{i}=x^{*}$ and $Y_{i}=y^{*}$
(2) Device interaction

Secure Laboratory

(3) From the outputs $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$, estimate $p(a b \mid x y)$ (for one round)
(9) If $p(a b \mid x y)$ is sufficiently non-local, extract the randomness by applying f $f\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}\right) \in\{0,1\}^{\ell}$

Question: How large can we take ℓ ?

Device-independent randomness expansion

A randomness expansion protocol

(1) Choose $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ at random w.p. γ, set $X_{i} Y_{i} \sim \mu(x, y)$ and w.p. $1-\gamma \operatorname{set} X_{i}=x^{*}$ and $Y_{i}=y^{*}$
(2) Device interaction

Secure Laboratory

(3) From the outputs $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$, estimate $p(a b \mid x y)$ (for one round)
(9) If $p(a b \mid x y)$ is sufficiently non-local, extract the randomness by applying f $f\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}\right) \in\{0,1\}^{\ell}$

Question: How large can we take ℓ ?
One can show

$$
\ell=n \times \text { randomness generated by device compatible with } p-O(\sqrt{n})
$$

Randomness generated per round

A strategy (i.e., implementation of the boxes) is a tuple

$$
\left(Q_{A} \otimes Q_{B} \otimes Q_{E}, \rho_{Q_{A} Q_{B} E},\left\{\left\{M_{a \mid x}\right\}_{a}\right\}_{x},\left\{\left\{N_{b \mid y}\right\}_{b}\right\}_{y}\right)
$$

With each strategy we can associate a post-measurement state

$$
\rho_{A B X Y E}=\sum_{a b x y} \mu(x y)|a b x y\rangle\langle a b x y| \otimes \operatorname{tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right] .
$$

It is compatible with $p(a b \mid x y)$ if

$$
p(a b \mid x y)=\operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right] \quad \forall x, y, a, b
$$

Randomness generated per round

A strategy (i.e., implementation of the boxes) is a tuple

$$
\left(Q_{A} \otimes Q_{B} \otimes Q_{E}, \rho_{Q_{A} Q_{B} E},\left\{\left\{M_{a \mid \times}\right\}_{a}\right\}_{x},\left\{\left\{N_{b \mid y}\right\}_{b}\right\}_{y}\right)
$$

With each strategy we can associate a post-measurement state

$$
\rho_{A B X Y E}=\sum_{a b x y} \mu(x y)|a b x y\rangle\langle a b x y| \otimes \operatorname{tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right] .
$$

$$
\begin{array}{|ll|}
\hline \text { rand. gen. per round }=\inf _{\text {strategies }} & H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho_{A B X Y E}} \\
\text { s.t. } & \operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]=p(a b \mid x y) \quad \forall x y a b
\end{array}
$$

For a quantum state $\rho_{A E}$,

$$
H(A \mid E)_{\rho}=-\operatorname{tr}\left[\rho_{A E} \log \rho_{A E}\right]+\operatorname{tr}\left[\rho_{E} \log \rho_{E}\right]
$$

where $\rho_{E}=\operatorname{tr}_{A}\left[\rho_{A E}\right]$.
Objective: Good lower bounds
Difficulty: Objective function is not linear in $\rho_{Q_{A} Q_{B} E}$

Replacing the logarithm with powers: Rényi entropy

Trial 1: Approximate log with powers

Rényi conditional entropy with $\alpha \in(1,2]$

$$
H(A \mid E)_{\rho} \geq H_{\alpha}(A \mid E)_{\rho}=\frac{1}{1-\alpha} \log \operatorname{tr}\left[\rho_{A E}^{\alpha} \rho_{E}^{1-\alpha}\right],
$$

Objective becomes:

$$
\begin{aligned}
\sup _{\text {strategies }} & \sum_{a b} \operatorname{tr}\left[\left(\operatorname{tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid x^{*}} \otimes N_{b \mid y *} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]\right)^{\alpha} \rho_{E}^{1-\alpha}\right] \\
\text { s.t. } & \operatorname{tr}\left[\left(M_{a \mid \times} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]=p(a b \mid x y)
\end{aligned}
$$

Replacing the logarithm with powers: Rényi entropy

Trial 1: Approximate log with powers

Rényi conditional entropy with $\alpha \in(1,2]$

$$
H(A \mid E)_{\rho} \geq H_{\alpha}(A \mid E)_{\rho}=\frac{1}{1-\alpha} \log \operatorname{tr}\left[\rho_{A E}^{\alpha} \rho_{E}^{1-\alpha}\right],
$$

Objective becomes:

$$
\begin{aligned}
& \sup _{\text {strategies }} \sum_{a b} \operatorname{tr}\left[\left(\operatorname{tr}_{Q_{A} Q_{B}}\left[\left(M_{a \mid \times *} \otimes N_{b \mid y *} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]\right)^{\alpha} \rho_{E}^{1-\alpha}\right] \\
& \text { s.t. } \operatorname{tr}\left[\left(M_{a \mid \times} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]=p(a b \mid x y) \\
& \hline
\end{aligned}
$$

Difficulties: Handle partial trace? Rational powers?

Dimension-free variational expressions

Trial 2: Use specific properties of $H(A \mid E)_{\rho}$
Fact: $\rho \mapsto H(A \mid E)_{\rho}$ is concave $\Longrightarrow \exists \mathcal{F}$ s.t. $H(A \mid E)_{\rho}=\inf _{(Z, z) \in \mathcal{F}} \operatorname{tr}[\rho Z]+z$

Recall the problem

$$
\begin{aligned}
\inf _{\text {strategies }} & H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho_{A B X Y E}} \\
\text { s.t. } & \operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]=p(a b \mid x y)
\end{aligned}
$$

$$
\begin{aligned}
H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho} & =\inf _{(Z, z) \in \mathcal{F}} \operatorname{tr}\left[\rho_{A B X Y E} Z\right]+z \\
& =\inf _{(Z, z) \in \mathcal{F}} \sum_{a, b} \operatorname{tr}\left[\operatorname{tr}_{Q_{A} Q_{B}}\left[M_{a \mid x^{*}} \otimes N_{b \mid y^{*}} \rho_{Q_{A} Q_{B} E}\right]\langle a b| Z|a b\rangle\right]+z \\
& =\inf _{(Z, z) \in \mathcal{F}} \sum_{a, b} \operatorname{tr}\left[\rho_{Q_{A} Q_{B} E} M_{a \mid x^{*}} \otimes N_{b \mid y^{*}} I_{Q_{A} Q_{B}} \otimes\langle a b| Z|a b\rangle\right]+z
\end{aligned}
$$

If \mathcal{F} is described by dimension-free polynomial constraints
\Longrightarrow can use NC poly optimization machinery

Approaches to obtain dimension-free variational expressions

We proposed two methods to give dimension-free variational lower bounds on $H(A \mid E)_{\rho}$
(- Based on SDP representations of the matrix geometric mean
[Nat Commun 12, 575 (2021)]
Rényi entropy: $\operatorname{tr}\left[\rho_{A E}^{\alpha} \rho_{E}^{1-\alpha}\right] \leq \operatorname{tr}\left[\rho_{A E} \#_{1-\alpha}\left(I_{A} \otimes \rho_{E}\right)\right]$

$$
X \# Y:=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{1 / 2} X^{1 / 2}=\max \left\{W:\left(\begin{array}{cc}
X & W \\
W & Y
\end{array}\right) \geq 0\right\}
$$

Use this idea to define new Rényi entropies (iterated mean) $\leq H(A \mid E)$

Approaches to obtain dimension-free variational expressions

We proposed two methods to give dimension-free variational lower bounds on $H(A \mid E)_{\rho}$
(1) Based on SDP representations of the matrix geometric mean
[Nat Commun 12, 575 (2021)]
Rényi entropy: $\operatorname{tr}\left[\rho_{A E}^{\alpha} \rho_{E}^{1-\alpha}\right] \leq \operatorname{tr}\left[\rho_{A E} \#_{1-\alpha}\left(I_{A} \otimes \rho_{E}\right)\right]$

$$
X \# Y:=X^{1 / 2}\left(X^{-1 / 2} Y X^{-1 / 2}\right)^{1 / 2} X^{1 / 2}=\max \left\{W:\left(\begin{array}{cc}
X & W \\
W & Y
\end{array}\right) \geq 0\right\}
$$

Use this idea to define new Rényi entropies (iterated mean) $\leq H(A \mid E)$
(2) Based on approximating log via rational functions [Soon on arXiv]
Rest of talk: focus on this approach

Dimension-free variational expressions via rational functions

Note that $H(A \mid E)_{\rho}=-D\left(\rho_{A E} \| I_{A} \otimes \rho_{E}\right)$ where $D(\rho \| \sigma)=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$

From now: work with the divergence D (called quantum relative entropy or Umegaki divergence)

Property: For any ρ, σ, there exists a measure $\nu_{\rho, \sigma}$ on \mathbb{R}_{+}^{2} such that

$$
D(\rho \| \sigma)=\int_{\mathbb{R}_{+}^{2}} y \log (y / x) d \nu_{\rho, \sigma}(x, y)
$$

For $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ and $\sigma=\sum_{k} q_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|$, then $\nu_{\rho, \sigma}=\sum_{j, k}\left|\left\langle\psi_{j} \mid \phi_{k}\right\rangle\right|^{2} \delta_{q_{k}, p_{j}}$

Dimension-free variational expressions via rational functions

Note that $H(A \mid E)_{\rho}=-D\left(\rho_{A E} \| I_{A} \otimes \rho_{E}\right)$ where $D(\rho \| \sigma)=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$

From now: work with the divergence D (called quantum relative entropy or Umegaki divergence)

Property: For any ρ, σ, there exists a measure $\nu_{\rho, \sigma}$ on \mathbb{R}_{+}^{2} such that

$$
D(\rho \| \sigma)=\int_{\mathbb{R}_{+}^{2}} y \log (y / x) d \nu_{\rho, \sigma}(x, y)
$$

For $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ and $\sigma=\sum_{k} q_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|$, then $\nu_{\rho, \sigma}=\sum_{j, k}\left|\left\langle\psi_{j} \mid \phi_{k}\right\rangle\right|^{2} \delta_{q_{k}, p_{j}}$
Approximate log by a sum of rational functions via Gauss-Radau quadrature:

$$
\ln (z)=\int_{0}^{1} \frac{z-1}{t(z-1)+1} d t \geq \sum_{i=1}^{m} w_{i} \frac{z-1}{t_{i}(z-1)+1}
$$

for some well-chosen nodes $t_{i} \in(0,1]$ and weights $w_{i}>0$
Approximation gets arbitrary good as $m \rightarrow \infty$

Dimension-free variational expressions via rational functions

Note that $H(A \mid E)_{\rho}=-D\left(\rho_{A E} \| I_{A} \otimes \rho_{E}\right)$ where $D(\rho \| \sigma)=\operatorname{tr}[\rho \log \rho]-\operatorname{tr}[\rho \log \sigma]$

From now: work with the divergence D (called quantum relative entropy or Umegaki divergence)

Property: For any ρ, σ, there exists a measure $\nu_{\rho, \sigma}$ on \mathbb{R}_{+}^{2} such that

$$
D(\rho \| \sigma)=\int_{\mathbb{R}_{+}^{2}} y \log (y / x) d \nu_{\rho, \sigma}(x, y)
$$

For $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|$ and $\sigma=\sum_{k} q_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|$, then $\nu_{\rho, \sigma}=\sum_{j, k}\left|\left\langle\psi_{j} \mid \phi_{k}\right\rangle\right|^{2} \delta_{q_{k}, p_{j}}$
Approximate log by a sum of rational functions via Gauss-Radau quadrature:

$$
\ln (z)=\int_{0}^{1} \frac{z-1}{t(z-1)+1} d t \geq \sum_{i=1}^{m} w_{i} \frac{z-1}{t_{i}(z-1)+1}
$$

for some well-chosen nodes $t_{i} \in(0,1]$ and weights $w_{i}>0$
Approximation gets arbitrary good as $m \rightarrow \infty$

$$
(\ln 2) D(\rho \| \sigma)=-\int_{\mathbb{R}_{+}^{2}} y \ln (x / y) d \nu_{\rho, \sigma}(x, y) \leq-\sum_{i=1}^{m} w_{i} \int_{\mathbb{R}_{+}^{2}} \frac{y(x-y)}{t_{i}(x-y)+y} d \nu_{\rho, \sigma}(x, y)
$$

Dimension-free variational expressions for rational functions

Want a variational expression for the "rational function divergence"

$$
D_{t}(\rho \| \sigma):=\int_{\mathbb{R}_{+}^{2}} \frac{y(x-y)}{t(x-y)+y} d \nu_{\rho, \sigma}(x, y)
$$

$\frac{y(x-y)}{t(x-y)+y}=\frac{1}{t} \frac{1}{(t(x-y))^{-1}+y^{-1}}=\frac{1}{t} M_{-1}(t(x-y), y)$ with M_{-1} is the harmonic mean
There exists a vector v and operators A, B on some Hilbert space such that

$$
D_{t}(\rho \| \sigma)=\left\langle v, M_{-1}(t(A-B), B) v\right\rangle
$$

$A=$ left multiplication by σ and $B=$ right multiplication by ρ
Var. expression for harmonic mean: $\left\langle v, M_{-1}(X, Y) v\right\rangle=\inf _{z+z^{\prime}=v}\langle z, X z\rangle+\left\langle z^{\prime}, Y z^{\prime}\right\rangle$

$$
\begin{aligned}
D_{t}(\rho \| \sigma) & =\inf _{z}\langle z, t(A-B) z\rangle+\langle v-z, B(v-z)\rangle \\
& =\inf _{z} t \operatorname{tr}\left[z^{*} \sigma z\right]-t \operatorname{tr}\left[z^{*} z \rho\right]+\operatorname{tr}\left[(v-z)^{*}(v-z) \rho\right] \\
& =\inf _{z} t \operatorname{tr}\left[z z^{*} \sigma\right]+(1-t) \operatorname{tr}\left[z^{*} z \rho\right]+\operatorname{tr}[\rho]-\operatorname{tr}\left[\left(z+z^{*}\right) \rho\right]
\end{aligned}
$$

using the fact that $v=I$

Back to the quantum relative entropy

Putting things together

$$
\begin{aligned}
(\ln 2) D(\rho \| \sigma) & \leq-\sum_{i=1}^{m} w_{i} D_{t_{i}}(\rho \| \sigma) \\
& \leq-\inf _{z_{1}, \ldots, z_{m}} \sum_{i=1}^{m} w_{i}\left(t_{i} \operatorname{tr}\left[z_{i} z_{i}^{*} \sigma\right]+\left(1-t_{i}\right) \operatorname{tr}\left[z_{i}^{*} z_{i} \rho\right]+\operatorname{tr}[\rho]-\operatorname{tr}\left[\left(z_{i}+z_{i}^{*}\right) \rho\right]\right)
\end{aligned}
$$

Exactly the form we wanted when $m \rightarrow \infty$, we get equality

Back to the quantum relative entropy

Putting things together
$(\ln 2) D(\rho \| \sigma) \leq-\sum_{i=1}^{m} w_{i} D_{t_{i}}(\rho \| \sigma)$

$$
\leq-\inf _{z_{1}, \ldots, z_{m}} \sum_{i=1}^{m} w_{i}\left(t_{i} \operatorname{tr}\left[z_{i} z_{i}^{*} \sigma\right]+\left(1-t_{i}\right) \operatorname{tr}\left[z_{i}^{*} z_{i} \rho\right]+\operatorname{tr}[\rho]-\operatorname{tr}\left[\left(z_{i}+z_{i}^{*}\right) \rho\right]\right)
$$

Exactly the form we wanted when $m \rightarrow \infty$, we get equality

Back to motivating problem

$$
\begin{aligned}
\inf _{\text {strategies }} & H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho_{A B X Y E}} \\
\text { s.t. } & \operatorname{tr}\left[\left(M_{a} \mid \times \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]=p(a b \mid x y)
\end{aligned}
$$

Apply formula for $\rho \leftarrow \rho_{A B E}$ and $\sigma \leftarrow I_{A B} \otimes \rho_{E}$ (all conditioned on $X=x^{*}, Y=y^{*}$)

$$
\begin{aligned}
& H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho} \\
& \geq \inf _{Z_{1}, \ldots, Z_{m}} \sum_{i=1}^{m} w_{i}\left(1+\operatorname{tr}\left[\rho_{A B E}\left(Z_{i}+Z_{i}^{*}+\left(1-t_{i}\right) Z_{i}^{*} Z_{i}\right)\right]+t \operatorname{tr}\left[I_{A B} \otimes \rho_{E} Z_{i} Z_{i}^{*}\right]\right) \\
& =\inf _{Z_{i, a b}} \sum_{i=1}^{m} w_{i}\left(1+\sum_{a b} \operatorname{tr}\left[\rho_{Q_{A} Q_{B} E} M_{a \mid x^{*}} N_{b \mid y^{*}}\left(Z_{i, a b}+Z_{i, a b}^{*}+\left(1-t_{i}\right) Z_{i, a b}^{*} Z_{i, a b}\right)\right]+t_{i} \operatorname{tr}\left[\rho_{E} Z_{i, a b} Z_{i, a b}^{*}\right]\right)
\end{aligned}
$$

The family of NC poly optimization

Back to motivating problem

$$
\begin{aligned}
\inf _{\text {strategies }} & H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho_{A B X Y E}} \\
\text { s.t. } & \operatorname{tr}\left[\left(M_{a \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B} E}\right]=p(a b \mid x y)
\end{aligned}
$$

Parameter $m \geq 1$

$$
\begin{aligned}
\inf _{i, a b}, M_{a \mid \times}, N_{b \mid y},|\psi\rangle & \sum_{i=1}^{m} w_{i}\left(1+\sum_{a b}\langle\psi| M_{a \mid \times *} N_{b \mid y}\left(Z_{i, a b}+Z_{i, a b}^{*}+\left(1-t_{i}\right) Z_{i, a b}^{*} Z_{i, a b}\right)|\psi\rangle+t_{i}\langle\psi| Z_{i, a b} Z_{i, a b}^{*}|\psi\rangle\right) \\
\text { s.t. } & \langle\psi| M_{a \mid x} N_{b \mid y}|\psi\rangle=p(a b \mid x y) \\
& \sum_{a} M_{a \mid x}=\sum_{b} N_{b \mid y}=1 \quad M_{a \mid x}, N_{b \mid y} \geq 0 \\
& {\left[M_{a \mid x}, N_{b \mid y}\right]=0 } \\
& Z_{i, a b}, Z_{i, a b}^{*} \text { commute with all } M_{a^{\prime} \mid x}, N_{b^{\prime} \mid y}
\end{aligned}
$$

The family of NC poly optimization

Back to motivating problem

$$
\begin{aligned}
\inf _{\text {strategies }} & H\left(A B \mid X=x^{*}, Y=y^{*} E\right)_{\rho_{A B X Y E}} \\
\text { s.t. } & \operatorname{tr}\left[\left(M_{\mathrm{a} \mid x} \otimes N_{b \mid y} \otimes I_{E}\right) \rho_{Q_{A} Q_{B}}\right]=p(a b \mid x y)
\end{aligned}
$$

Parameter $m \geq 1$

$$
\begin{aligned}
\inf _{z_{i, a b}, M_{a \mid \times}, N_{b \mid y},|\psi\rangle} & \sum_{i=1}^{m} w_{i}\left(1+\sum_{a b}\langle\psi| M_{a \mid \times *} N_{b \mid y}\left(Z_{i, a b}+Z_{i, a b}^{*}+\left(1-t_{i}\right) Z_{i, a b}^{*} z_{i, a b}\right)|\psi\rangle+t_{i}\langle\psi| Z_{i, a b} Z_{i, a b}^{*}|\psi\rangle\right) \\
\text { s.t. } & \langle\psi| M_{a \mid x} N_{b \mid y}|\psi\rangle=p(a b \mid x y) \\
& \sum_{a} M_{a \mid x}=\sum_{b} N_{b \mid y}=I \quad M_{a \mid x}, N_{b \mid y} \geq 0 \\
& {\left[M_{a \mid x}, N_{b \mid y}\right]=0 } \\
& Z_{i, a b}, Z_{i, a b}^{*} \text { commute with all } M_{a^{\prime} \mid x}, N_{b^{\prime} \mid y}
\end{aligned}
$$

Can give an a priori bound $\left\|Z_{i, a b}\right\| \leq \alpha_{m}$ to get convergence of NPA
But the bound α_{m} grows with m

Application: randomness expansion

Numerically: Tighter bounds and computationally faster that other methods

A sample plot showing tightness

Open problems

- Concrete problem about convergence:

NC polynomial p with variables X_{j} and Z_{i} with $\left[X_{j}, Z_{i}\right]=0$
Assume X_{j} all bounded and Z_{i} unrestricted
Can one show convergence of SDP hierarchies?

- More general methods: We used concavity of entropy, can one construct hierarchies for more general settings? e.g., maximizing entropy?

