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Introduction

(] Lassa fever is an acute viral hemorrhagic fever illness caused by Lassa virus.

O It is endemic in West African countries like Liberia, Sierra Leone, Guinea and Nigeria.

O There are about 100,000 to 300,000 infected cases that result in 5,000 deaths annually.

[ Lassa virus transmission can also occur through contaminated medical equipment such as reused
needles in health care settings.

d The incubation period of Lassa fever is about one to three weeks [1].

[ The signs and symptoms of Lassa fever occurs within the incubation period of the virus after the
patient comes in contact with the virus.



Introduction cont’d

O There is no vaccine against Lassa fever except non-pharmaceutical interventions such as

prompt isolation of infected persons, quarantine of exposed persons and contact tracing.

O Quarantine: the restriction of movement or separation of susceptible people who are exposed
to a communicable disease for a period of days that is equivalent to the incubation period of the
disease.

U Isolation: the separation of symptomatic persons who have a communicable disease from the

healthy.



Introduction cont’d

Several researchers have developed mathematical models of Lassa fever in order to help
eradicate the disease such as Obabiyi and Onifade [2], Omale and Edibo [3] and Innocent and
Omo [4].

dObabiyi and Onifade [2] considered early diagnosis of infected humans, hygiene
environment maintenance and use of new needle when taking. Omale and Edibo [3]
considered treatment as control measures. Innocent and Omo [4] advised that good health
policy should be implemented in order to reduce the basic reproduction number less than one.



Research question

How can quarantine and isolation as control measures guide
public health experts, infectious disease physicians,
epidemiologists, and policy makers in eliminating Lassa
fever virus in the population?




Model Formulation

dThe Lassa fever model considers two populations, namely: human

population, Ny, (t) and the rodent population, N,.(t).

JdThe human population is sub-divided into six compartments;
Susceptible human class, Sy, (t), Exposed human class, Ej, (%),
Quarantined human class, Qp(t), Infected human class, I, (t),
Isolated human class, [, (t) and Recovered human class,Ry, (t) such
that

Np(t) = Sp(t) + Ep(t) + In(t) + Ju(t) + Ry (L) + Qn(2).



Model formulation cont’d

The rodent population, N,.(t) , is subdivided into susceptible
rodent, S,-(t), and infected rodent, I.(t) such that

Ny (t) = 5-(t) + I.(¢).



Model flow diagram
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Model equations

d
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where S, (0) > 0,E,(0) =0, Q,(0) =0, 1,(0) =0, J,(0) =0, R,(0) =0,S5,.(0) >0, and I,(0) = 0 are the initial

conditions.



Parameter descriptions for the Lassa
fever model

Parameters | Parameter description and their dimensions Parameters | Parameter description and their dimensions
Ay Human recruitment rate, Human x Day! 8 Isolation rate for infected persons, Day!
[ Effective contact rate for infected individuals, dimensionless dy Disease-induced rate for infected persons, Day!
52 Effactive contact rate for 1solated individuals, dimensionless d- Disease-induced rate for 1solated persons, Day-!
B2 Effective contact rate for infected rodents, dimensionless ¥1 Recovery rate. Day!
T Proportion of people born by infected mothers, dimensionless Hp Natural death rate for human population, Day-!
¥ Quarantine rate, Day! A, Rodents recruitment rate, Human x Day!
k Progression from Exposed to infected class, Day! B, Contact rate for susceptible rodent getting infected, Day!
a Susceptible rate for quarantine persons without symptoms, Day! i, Natural death rate for rodents population, Day!
® Isolation rate for quarantine persons with symptoms_ Day-! dq Hunting or pesticide or other predator rate population, Day-!




Boundedness and positivity of the
solutions

J The Lassa fever model of equations has solutions which are contained in the feasible region

and is bounded in ();

Q = {(Sn(0), En(©), Qn(0, In(O, Jn (), R (0, $,(0), 1, ()) € R : Ny < 22, Ny < 20

1 Assume that the initial solution set

{(Sh(O), Eh (O), Qh(O), Ih (O),]h(O), Rh(O), Sr(O), I«,- (0)) 2 0} Th€ SOhltiOIl set
(S, (D), ER (), Q,,(0), (1), ], (1), Ry (1), S, (£), I.(t)) € RE of the model equations are non-

negative.



Disease-free equilibrium

The disease-free equilibrium point, Ey, is given by
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Effective reproduction number

d The effective reproduction number, R,, is computed using the next generation

approach described by Van den Driessche and Watmough [5].

d The effective reproduction number, R, is
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where f=u,+y+k, g=oc+u,+yY, h=u,+d{+6, p=pu,+d, + v,
q = Uy +d3, Rgp ¢ the effective reproduction number of human population,

R, ¢ the effective reproduction number of the rodent population.



Stability of the disease-free
equilibrium state

Theorem. The DFE, E;, of the model equations is locally and globally asymptotically stable
it Reop, Ror < 1 and unstable if Rpp, Ropr > 1 in ().




Existence stability of the endemic
equilibrium

Solving the model equations at the steady-state in terms of A gives
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where A is the solution of the polynomial AA*> + BA+ C = 0,



Existence stability of the endemic
equilibrium contd.

with

A = qApRerpn(Yhp + vho + ghp + gkp) + qApRerv1(Yhe + 6gk),

B = fghpqApRerttn(1 — Rep) + phAh,BB.uh(g(.uh + k) +y(up + QD))(l — Rer),
C= fghpAr,BB.ufZL(l — Rep).

A is positive. Applying Descarte’s rule of signs to determine the sign of 4, a
unique endemic equih%)rium exists for any sign of B if Rpp > 1 and R, > 1.

0 Theorem. The model eﬁuations has a unique (positive) equilibrium
whenever Ry, > 1, and R,,- > 1 otherwise none.



Bifurca

on analysis

The approach of centre manifold theory described by
Castillo - Chavez and Song is used to investigate the ~ %%*°
existence of forward bifurcationat R, = 1
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Lassa fever invades the population.



Numerical Simulation

J Numerical Simulations of the model are carried out using the
initial conditions, S (0) = 1000, E,(0) = 250, Q,(0) =
150,1,,(0) = 50,/,(0) = 30,R;(0) =5,5,.(0) =500, =
30 and parameter values in Table 1 except where specified
otherwise.



Numerical simulation cont’d
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Figure 1. Simulation showing the effect of quarantine and isolation on infected population.




Numerical simulation cont’d
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Figure 2. Simulation showing the effect of 1solating the infected persons on infected population.




Numerical simulation cont’d
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Figure 3. Simulation showing the effect of 1solating the infected persons on isolation population.




Numerical simulation cont’d
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Figure 4. Simulation showing the effect of quarantine exposed persons on the infected population.
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Numerical simulation cont’d
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Figure 5. Simulation showing the effect of quarantine exposed persons on the isolation population.




Discussion and conclusion cont’d

dOur study is limited by some of the assumptions made to
develop the model.

JWe have assumed in the model that some individuals in the
population were quarantined and 1solated, which is considered
reasonable in many cases [Cetron ¢f a/ (2004) , Yan and Zou,
(2008)], although this assumption can produce confounding effects
1n some clrcumstances.



Discussion and conclusion cont’d

JThe results revealed that the use of quarantine and isolation as
control interventions against l.assa fever have great impact in
control/curtailing Lassa fever transmission and it may eventually
leads to its elimination eventually.

d1n other words, the use of quarantine and isolation may be a
prohibitive drain on resources unless the number of cases is small.
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