Optimal Drawdowns in Insurance

joint work with Leonie Brinker

Hanspeter Schmidli

University of Cologne

8th ECM, Portorož June 22nd, 2021

- Introduction
- The Classical Risk Model
- The Diffusion Approximation

University of Cologne

Hanspeter Schmidli

The Diffusion Approximation 00 0000 0000

1 Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples

University of Cologne

< □ > < 同 >

Hanspeter Schmidli

The Diffusion Approximation 00 0000 0000

1 Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

The Diffusion Approximation 00 0000 0000

1 Drawdowns

Introduction

- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

< ∃ >

< □ > < 同 >

Drawdowns	Classical Case	The Diffusion Approximation
0000		
000	00000	0000
Introduction		

Definition of Drawdown

For a surplus process X_t denote by

$$ar{X}_t = \max\{ar{x}, \sup_{s \leq t} X_s\}$$

the running maximum. The drawdown

 $D_t = \bar{X}_t - X_t$

(日) (四) (日) (日) (日)

University of Cologne

is the deviation from the running maximum. We allow a past maximum \bar{x} .

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
00000	0000	00
000	00000	0000
Introduction		

• Large drawdowns are a reputational risk

Hanspeter Schmidli

Optimal Drawdowns in Insurance

University of Cologne

Image: Image:

≣ ►

Drawdowns	Classical Case	The Diffusion Approximation
0000 000 00	0000 00000 00000000	00 0000 0000
Introduction		

- Large drawdowns are a reputational risk
- Investors compare with current maximum (risk for the manager)

< 口 > < 同

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
0000 000 00	0000 00000 00000000	00 0000 0000
Introduction		

- Large drawdowns are a reputational risk
- Investors compare with current maximum (risk for the manager)
- Goal is to keep surplus near maximum (stabilsation) which simplifies planning future strategies

Drawdowns	Classical Case	The Diffusion Approximation
0000 000 00	0000 00000 00000000	00 0000 0000
Introduction		

- Large drawdowns are a reputational risk
- Investors compare with current maximum (risk for the manager)
- Goal is to keep surplus near maximum (stabilsation) which simplifies planning future strategies
- We try to keep the drawdown below some level d

Drawdowns	Classical Case	The Diffusion Approximation
0000 000 00	0000 00000 00000000	00 0000 0000
Introduction		

- Large drawdowns are a reputational risk
- Investors compare with current maximum (risk for the manager)
- Goal is to keep surplus near maximum (stabilsation) which simplifies planning future strategies
- We try to keep the drawdown below some level d
- Drawdown below the critical level only for a short time

Drawdowns	Classical Case	The Diffusion Approximation
00000		
000	00000	0000
Introduction		

Reinsurance

The insurer buys proportional reinsurance with retention level $b_t \in [0, 1]$ at time t. That is, the insurer pays $b_t Y$, the reinsurer $(1 - b_t)Y$ of a claim of size Y. The reinsurer uses an expected value principle with safty loading θ . We assume that reinsurance is more expensive than first insurance in order that the problem below is not trivial. The insurer choses continuously a reinsurance strategy $\{b_t\}$.

Drawdowns	Classical Case	The Diffusion Approximation
00000		
	00000	0000
00	00000000	0000

The Optimisation Problem

The value of a reinsurance strategy b is

$$V^b(x) = \operatorname{I\!E} \left[\int_0^\infty \mathrm{e}^{-\delta t} \mathrm{I\!I}_{D^b_t > d} \, \mathrm{d}t
ight] \, .$$

We are interested in the optimal value

 $V(x) = \inf_{b} V^{b}(x)$

・ロト ・回ト ・ヨト ・

University of Cologne

and, if it exist, the optimal strategy b^* .

Hanspeter Schmidli

Introduction

.

The Classical Risk Model

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

∃ >

< □ > < 同 >

Drawdowns	Classical Case	The Diffusion Approximation
00000 000 00	0000 00000 00000000	00 0000 0000
The Classical Risk Model		

The Cramér–Lundberg Model

Let

$$X_t = \bar{x} - x + ct - \sum_{k=1}^{N_t} Y_k ,$$

where N is a Poisson process with rate λ and iid claim $\{Y_k\}$ with expected value μ . We write $c = (1 + \eta)\lambda\mu$ for some $\eta > 0$.

.∃ ▶ . ∢

Drawdowns	Classical Case	The Diffusion Approximation
000	00000	0000
00	00000000	0000
The Classical Risk Model		

The Cramér–Lundberg Model

Let

$$X_t = \bar{x} - x + ct - \sum_{k=1}^{N_t} Y_k ,$$

where N is a Poisson process with rate λ and iid claim $\{Y_k\}$ with expected value μ . We write $c = (1 + \eta)\lambda\mu$ for some $\eta > 0$. After reinsurance,

$$X_t^b = \bar{x} - x + \int_0^t c(b_s) \, \mathrm{d}s - \sum_{k=1}^{N_t} b_{T_k} - Y_k \; ,$$

. .

・ロト ・回ト ・ヨト ・ヨ

where $c(b) = c - (1 - b)(1 + \theta)\lambda\mu = (b\theta - (\theta - \eta))\lambda\mu$.

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
00000	0000	00
000		
00	00000000	0000
The Classical Risk Model		

We get the drawdown process

$$D_t^b = x + \sum_{k=1}^{N_t} b_{T_k-} Y_k - \int_0^t c(b_s) \, \mathrm{d}s + (\bar{X}_t^b - \bar{x}) \; .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

University of Cologne

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
00000	0000	00
000		
00	00000000	0000
The Classical Risk Model		

We get the drawdown process

$$D_t^b = x + \sum_{k=1}^{N_t} b_{T_k-} Y_k - \int_0^t c(b_s) \, \mathrm{d}s + (\bar{X}_t^b - \bar{x}) \; .$$

That is

• jumps upwards, (downwards) deterministic paths

《日》《聞》《臣》《臣》 通言 めんの

University of Cologne

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
00000	0000	00
000		
00	00000000	0000
The Classical Risk Model		

We get the drawdown process

$$D_t^b = x + \sum_{k=1}^{N_t} b_{T_k-} Y_k - \int_0^t c(b_s) \, \mathrm{d}s + (\bar{X}_t^b - \bar{x}) \; .$$

That is

- jumps upwards, (downwards) deterministic paths
- reflection in zero

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
00000	0000	00
000		
00	00000000	0000
The Classical Risk Model		

We get the drawdown process

$$D_t^b = x + \sum_{k=1}^{N_t} b_{T_k-} Y_k - \int_0^t c(b_s) \, \mathrm{d}s + (\bar{X}_t^b - \bar{x}) \; .$$

That is

- jumps upwards, (downwards) deterministic paths
- reflection in zero
- we now restrict to $b_t \in [b^0, 1]$ with $b^0 = (1 \eta/\theta)$, such that $c(b_t) \ge 0$.

- ∢ ≣ →

00

Classical Case 0000 00000 00000000 The Diffusion Approximation

1 Drawdowns

The Diffusion Approximation

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

ъ.

Image: Image:

< ∃⇒

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
000	00000	0000
00		
The Diffusion Approximation		

The Diffusion Approximation

With simplified notation, the diffusion approximation to the classical model is $X_t = \bar{x} - x + \eta t + \sigma W_t$ for some Brownian motion W. After reinsurance

$$X_t^b = \bar{x} - x + \int_0^t \{b_s \theta - (\theta - \eta)\} \, \mathrm{d}s + \sigma \int_0^t b_s \, \mathrm{d}W_s \, .$$

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
000	00000	0000
00		
The Diffusion Approximation		

The Diffusion Approximation

With simplified notation, the diffusion approximation to the classical model is $X_t = \bar{x} - x + \eta t + \sigma W_t$ for some Brownian motion W. After reinsurance

$$X_t^b = \bar{x} - x + \int_0^t \{b_s \theta - (\theta - \eta)\} \, \mathrm{d}s + \sigma \int_0^t b_s \, \mathrm{d}W_s \, .$$

The drawdown process becomes

$$D_t^b = x - \int_0^t \{b_s \theta - (\theta - \eta)\} \, \mathrm{d}s - \sigma \int_0^t b_s \, \mathrm{d}W_s + (\bar{X}_t^b - \bar{x}) \; .$$

University of Cologne

Hanspeter Schmidli

General Results

Classical Case • 000 • The Diffusion Approximation 00 0000 0000

1 Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation

2 The Classical Risk Model

- General Results
- The Solution
- Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

∃ >

< □ > < 同 >

Drawdowns
00
General Results

The Diffusion Approximation 00 0000 0000

< ロ > < 同 > < 三 > < 三

University of Cologne

Lipschitz Continuity

Lemma

The function V is increasing with $0 \le V(x) \le \delta^{-1}$ for all $x \in [0, \infty)$, fulfils $\lim_{x\to\infty} V(x) = \delta^{-1}$ and is Lipschitz continuous with

$$|V(x) - V(y)| \leq rac{\lambda + \delta}{\delta c(1)} |x - y| \; .$$

In particular, V is absolutely continuous and differentiable almost everywhere.

Hanspeter Schmidli

The Diffusion Approximation 00 0000 0000

General Results

Proof.

For $0 \le y < x$ choose a strategy \tilde{b} with $V^{\tilde{b}}(y) < V(y) + \varepsilon$. For initial capital x define h = (x - y)/c(1), $b_t = \tilde{b}_{t-h}$ if $T_1 \land t \ge h$ and $b_t = 1$, otherwise. Then

$$egin{aligned} &V(x)-V(y)-arepsilon\leq V^b(x)-V^{ ilde{b}}(y)\ &\leq &\int_0^h \mathrm{e}^{-\delta t}\,\mathrm{d}t-(1-\mathrm{e}^{-(\lambda+\delta)h})V^{ ilde{b}}(y)+(1-\mathrm{e}^{-\lambda h})\delta^{-1}\ &\leq &(\lambda+\delta)h/\delta=rac{\lambda+\delta}{\delta c(1)}(x-y)\;, \end{aligned}$$

Hanspeter Schmidli

Optimal Drawdowns in Insurance

University of Cologne

< ロ > < 同 > < 回 > < 回

The Diffusion Approximation 00 0000 0000

< ロ > < 同 > < 回 > < 回

University of Cologne

General Results

Proof.

For $0 \le y < x$ choose a strategy \tilde{b} with $V^{\tilde{b}}(y) < V(y) + \varepsilon$. For initial capital x define h = (x - y)/c(1), $b_t = \tilde{b}_{t-h}$ if $T_1 \land t \ge h$ and $b_t = 1$, otherwise. Then

$$egin{aligned} &V(x)-V(y)-arepsilon\leq V^b(x)-V^{ ilde{b}}(y)\ &\leq &\int_0^h \mathrm{e}^{-\delta t}\,\mathrm{d}t-(1-\mathrm{e}^{-(\lambda+\delta)h})V^{ ilde{b}}(y)+(1-\mathrm{e}^{-\lambda h})\delta^{-1}\ &\leq &(\lambda+\delta)h/\delta=rac{\lambda+\delta}{\delta c(1)}(x-y)\;, \end{aligned}$$

The other statements are clear.

Hanspeter Schmidli

Drawdowns
00

The Diffusion Approximation

General Results

Splitting of the Problem

Let

 $\vartheta_d = \inf\{t \ge 0 : D_t \le d\}, \qquad \vartheta^d = \inf\{t \ge 0 : D_t > d\}$

be the first entrance times. Then by considering the process until the stopping time

$$egin{array}{rcl} V(x) &=& \operatorname{I\!E}[\mathrm{e}^{-\deltaartheta^d}\,V(D_{artheta^d})]\;, & x\leq d\;, \ V(x) &=& \operatorname{I\!E}[\delta^{-1}(1-\mathrm{e}^{-\deltaartheta_d})+\mathrm{e}^{-\deltaartheta_d}\,V(d)]\;, & x>d\;. \end{array}$$

We can solve the two problems separately.

Hanspeter Schmidli

Image: Image:

< ∃ >

The Diffusion Approximation 00 0000 0000

1 Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation

2 The Classical Risk Model

- General Results
- The Solution
- Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

∃ >

< □ > < 同 >

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

Starting in the Critical Area

Problem: Maximise $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$.

University of Cologne

Hanspeter Schmidli

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

Starting in the Critical Area

Problem: Maximise $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$.

For x > d, reaching d one has to pass $y \in (d, x)$. Conclusion: $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$ is an exponential function.

University of Cologne

A D > A B > A B > A

Hanspeter Schmidli

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

Starting in the Critical Area

Problem: Maximise $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$.

For x > d, reaching d one has to pass $y \in (d, x)$. Conclusion: $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$ is an exponential function.

For any subinterval of a fixed length, the same quantity has to be maximised. Conclusion: the optimal strategy is constant.

• • • • • • • • • • • • • •

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

University of Cologne

Starting in the Critical Area

Problem: Maximise $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$.

For x > d, reaching d one has to pass $y \in (d, x)$. Conclusion: $\mathbb{E}^{x}[e^{-\delta \vartheta_{d}}]$ is an exponential function.

For any subinterval of a fixed length, the same quantity has to be maximised. Conclusion: the optimal strategy is constant.

 $V(x) = \delta^{-1} - (\delta^{-1} - V(d))e^{-\gamma(x-d)} \text{ where } \gamma \text{ is the positive solution to } c(1)\gamma - \lambda \mathbb{E}[1 - e^{-\gamma Y}] = \delta.$

Hanspeter Schmidli

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

Starting in the Non-Critical Area

Problem: Minimise $\operatorname{I\!E}[\mathrm{e}^{-\delta\vartheta^d}V(D_{\vartheta^d})]$ with V(d) unknown.

University of Cologne

Hanspeter Schmidli

Drawdowns

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

Starting in the Non-Critical Area

Problem: Minimise $\operatorname{I\!E}[\mathrm{e}^{-\delta \vartheta^d} V(D_{\vartheta^d})]$ with V(d) unknown.

Replace V(d) by $C \in (0, \delta^{-1})$, $V_C(x) = \inf_b \mathbb{E}[e^{-\delta \vartheta^d} V_C(D_{\vartheta^d})]$.

Lemma

There exists
$$C_0 \in (0, \delta^{-1})$$
 such that $V_C(d) \stackrel{\geq}{=} C$ iff $C \stackrel{\leq}{=} C_0$.

It turns out that $C_0 = V(d)$.

Hanspeter Schmidli

Optimal Drawdowns in Insurance

University of Cologne

(日)

Drawdowns

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

The HJB Equation

Theorem

 $V_C(x)$ solves for $x \leq d$ the HJB equation

 $\inf_{b\in [b^0,1]}\lambda\int_0^\infty V_C(x+by)\,\mathrm{d}G(y)-c(b)V_C'(x)-(\lambda+\delta)V_C(x)=0\;.$

Let $b_C(x)$ be a measurable version of the maximiser. Then the strategy $b_C(D_t^C)$ is optimal.

Hanspeter Schmidli

Optimal Drawdowns in Insurance

University of Cologne

<ロ> <同> <同> < 回> < 回>

Drawdowns
000

The Solution

Classical Case

The Diffusion Approximation 00 0000 0000

The HJB Equation II

Theorem

V(x) is the unique bounded continuous solution to the HJB equation

 $\inf_{b\in [b^0,1]}\lambda\int_0^\infty V(x+by)\,\mathrm{d}G(y)-c(b)V'(x)-(\lambda+\delta)V(x)=-1\!\!\mathrm{I}_{x>d}\;.$

Let b(x) be a measurable version of the maximiser. Then the strategy $b(D_t^*)$ is optimal.

Hanspeter Schmidli

University of Cologne

<ロ> (日) (日) (日) (日) (日)

The Diffusion Approximation

Examples

Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation

2 The Classical Risk Model

- General Results
- The Solution

Examples

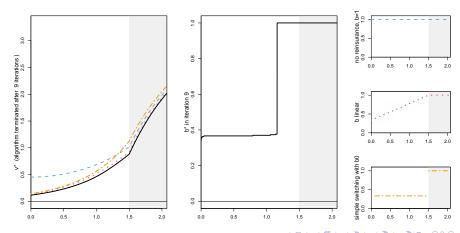
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

University of Cologne

Examples

Classical Case 0000 00000 0●0000000 The Diffusion Approximation 00 0000 0000

Exponentially Distributed Claims



University of Cologne

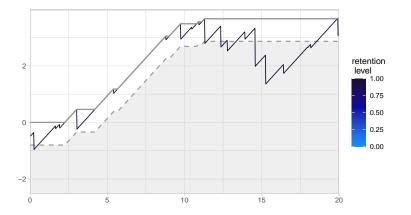
Hanspeter Schmidli

Examples

Classical Case

The Diffusion Approximation 00 0000 0000

Exponentially Distributed Claims: No Reinsurance



Hanspeter Schmidli

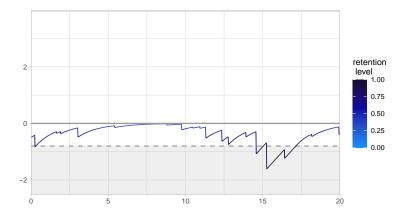
University of Cologne

Examples

Classical Case

The Diffusion Approximation 00 0000 0000

Exponentially Distributed Claims: Linear Reinsurance



University of Cologne

< 口 > < 同

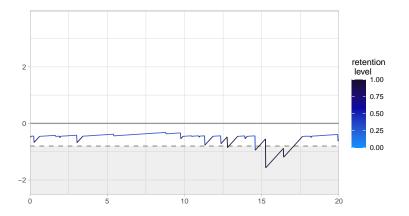
Hanspeter Schmidli

Examples

Classical Case

The Diffusion Approximation 00 0000 0000

Exponentially Distributed Claims: Optimal Reinsurance



University of Cologne

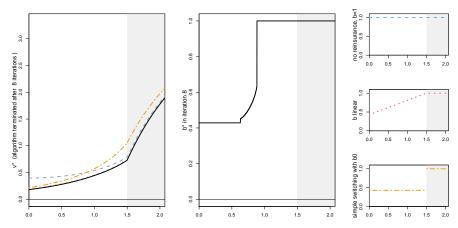
< 口 > < 同

Hanspeter Schmidli

Examples

Classical Case 0000 00000 0000000000 The Diffusion Approximation 00 0000 0000

Pareto Distributed Claims



< 口 > < 圖 > < 필 > < 필 > 三目 = のQ(

University of Cologne

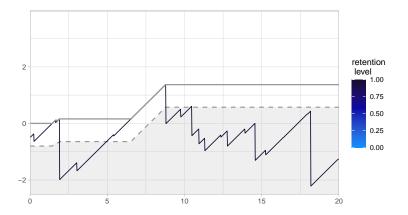
Hanspeter Schmidli

Examples

Classical Case

The Diffusion Approximation 00 0000 0000

Pareto Distributed Claims: No Reinsurance



Hanspeter Schmidli

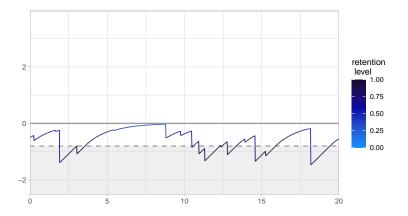
< ≣ > ঊ ≡ ৵ ৭০ University of Cologne

Examples

Classical Case

The Diffusion Approximation 00 0000 0000

Pareto Distributed Claims: Linear Reinsurance



Hanspeter Schmidli

< ≣ > ঊ ≡ ৵ ৭০ University of Cologne

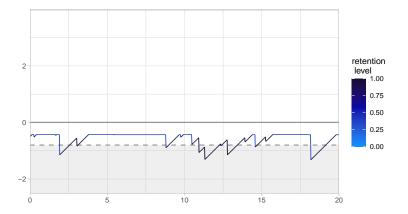
< □ > < 同 >

Examples

Classical Case

The Diffusion Approximation 00 0000 0000

Pareto Distributed Claims: Optimal Reinsurance



Hanspeter Schmidli

University of Cologne

< □ > < 同 >

The Diffusion Approximation ●○ ○○○○ ○○○○

Splitting of the Problem

Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

< □ > < 同 >

∃ >

Optimal Drawdowns in Insurance

Hanspeter Schmidli

Drawdowns	
00	

The Diffusion Approximation

Splitting of the Problem

Splitting of the Problem

As for the classical model

$$\begin{split} V(x) &= & \operatorname{I\!E}[\operatorname{e}^{-\delta\vartheta^d}V(d)] \;, \qquad \qquad x \leq d \;, \\ V(x) &= & \operatorname{I\!E}[\delta^{-1}(1-\operatorname{e}^{-\delta\vartheta_d})+\operatorname{e}^{-\delta\vartheta_d}V(d)] \;, \quad x > d \;. \end{split}$$

In the critical area $x > d \ b = 1$ and thus

$$V(x) = \delta^{-1} \{1 - (1 - \delta V(d)) e^{-\kappa(x-d)}\}$$

for
$$\kappa > 0$$
 solving $\frac{1}{2}\sigma^2\kappa^2 + \eta\kappa = \delta$.

メロト メタト メヨト

Hanspeter Schmidli

The Diffusion Approximation

1 Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- The Diffusion Approximation
 Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

< □ > < 同 >

∃ >

Hanspeter Schmidli

Drawdowns

The Solution

Classical Case 0000 00000 000000000 The Diffusion Approximation

The HJB Equation

Theorem

V(x) is the unique bounded continuously differentiable solution to

$$(\theta - \eta)V'(x) - \delta V(x) + \inf_{b \in [0,1]} \left\{ \frac{1}{2} b^2 \sigma^2 V''(x) - \theta b V'(x) \right\} = -\mathbb{I}_{x > d} .$$

Proof.

Explicit solution to the HJB and verification theorem.

Hanspeter Schmidli

Optimal Drawdowns in Insurance

University of Cologne

Drawdowns
00

The Solution

Classical Case 0000 00000 000000000 The Diffusion Approximation

Construction of the Solution

A non-trivial solution must be strictly convex. If $b \neq 1$,

$$\frac{\theta^2 V'(x)^2}{2\sigma^2 V''(x)} + \delta V(x) = (\theta - \eta) V'(x) .$$

The function $x \mapsto -\ln V'(x)$ is strictly decreasing with inverse function Y. Thus $V'(Y(z)) = e^{-z}$. Plugging this into the equation and differentiation leads to differential equation and an explicit solution. There is $x_0 \in (0, \infty]$ such that

$$b(x) = rac{ heta V'(x)}{\sigma^2 V''(x)} \leq 1 \;, \quad x \in [0, x_0] \;.$$

Compound V(x) on $[0, x_0 \land d]$ with the solution with b(x) = 1 to a smooth solution.

Hanspeter Schmidli

Optimal Drawdowns in Insurance

University of Cologne

Drawdowns
000
00
The Solution

The Diffusion Approximation

The Behaviour at Zero

Theorem

The strategy $b(D_t^*)$ is optimal. Under the optimal strategy \bar{X}_t^* is constant.

Hanspeter Schmidli

University of Cologne

メロン メロン メビン メ

The Diffusion Approximation

Value Function and Optimal Strategy

Drawdowns

- Introduction
- The Classical Risk Model
- The Diffusion Approximation
- 2 The Classical Risk Model
 - General Results
 - The Solution
 - Examples
- 3 The Diffusion Approximation
 - Splitting of the Problem
 - The Solution
 - Value Function and Optimal Strategy

< □ > < 同 >

∃ >

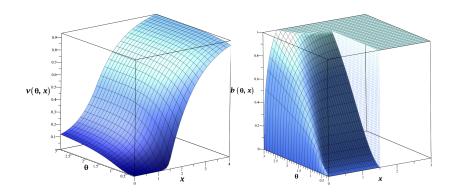
Hanspeter Schmidli

Drawdowns

The Diffusion Approximation

Value Function and Optimal Strategy

Value Function and b(x)



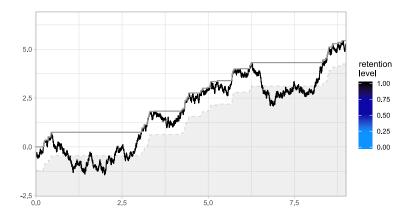
-□▶ ▲圖▶ ▲볼▶ ▲볼▶ ▲템革 釣��

University of Cologne

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
	00000	0000
00	00000000	0000
Value Function and Optimal St	rategy	

No Reinsurance



< ≣ > ঊ ≡ ৵ ৭০ University of Cologne

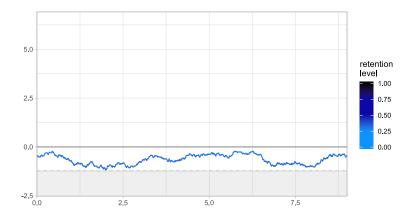
(문) (문

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hanspeter Schmidli

Drawdowns	Classical Case	The Diffusion Approximation
00000	0000	00
000	00000	0000
		0000
Value Eunction and Optimal S	trategy	

Optimal Reinsurance



Hanspeter Schmidli

< ≣ > ঊ ≡ ৵ ৭০ University of Cologne

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Brinker, L. and S. (2021). Optimal discounted drawdowns in a diffusion approximation under proportional reinsurance. Preprint.
- Brinker, L. and S. (2021). Optimal drawdowns in the classical risk model under proportional reinsurance. Preprint.

S. (2008). Stochastic Control in Insurance. Springer-Verlag, I ondon.

Hanspeter Schmidli

Thank you for your attention

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで