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Introduction

Definition of Drawdown

For a surplus process Xt denote by

X̄t = max{x̄ , sup
s≤t

Xs}

the running maximum. The drawdown

Dt = X̄t − Xt

is the deviation from the running maximum. We allow a past
maximum x̄ .
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Introduction

Interpretation

Large drawdowns are a reputational risk

Investors compare with current maximum (risk for the
manager)

Goal is to keep surplus near maximum (stabilsation) which
simplifies planning future strategies

We try to keep the drawdown below some level d

Drawdown below the critical level only for a short time
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Introduction

Reinsurance

The insurer buys proportional reinsurance with retention level
bt ∈ [0, 1] at time t. That is, the insurer pays btY , the reinsurer
(1− bt)Y of a claim of size Y . The reinsurer uses an expected
value principle with safty loading θ. We assume that reinsurance is
more expensive than first insurance in order that the problem
below is not trivial. The insurer choses continuously a reinsurance
strategy {bt}.
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Introduction

The Optimisation Problem

The value of a reinsurance strategy b is

V b(x) = IIE
[∫ ∞

0
e−δt1IDb

t >d dt
]
.

We are interested in the optimal value

V (x) = inf
b
V b(x)

and, if it exist, the optimal strategy b∗.
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The Classical Risk Model

The Cramér–Lundberg Model

Let

Xt = x̄ − x + ct −
Nt∑
k=1

Yk ,

where N is a Poisson process with rate λ and iid claim {Yk} with
expected value µ. We write c = (1 + η)λµ for some η > 0.

After reinsurance,

X b
t = x̄ − x +

∫ t

0
c(bs) ds −

Nt∑
k=1

bTk−Yk ,

where c(b) = c − (1− b)(1 + θ)λµ = (bθ − (θ − η))λµ.
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The Classical Risk Model

The Drawdown Process

We get the drawdown process

Db
t = x +

Nt∑
k=1

bTk−Yk −
∫ t

0
c(bs) ds + (X̄ b

t − x̄) .

That is

jumps upwards, (downwards) deterministic paths

reflection in zero

we now restrict to bt ∈ [b0, 1] with b0 = (1− η/θ), such that
c(bt) ≥ 0.
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The Diffusion Approximation

The Diffusion Approximation

With simplified notation, the diffusion approximation to the
classical model is Xt = x̄ − x + ηt + σWt for some Brownian
motion W . After reinsurance

X b
t = x̄ − x +

∫ t

0
{bsθ − (θ − η)} ds + σ

∫ t

0
bs dWs .

The drawdown process becomes

Db
t = x −

∫ t

0
{bsθ − (θ − η)} ds − σ

∫ t

0
bs dWs + (X̄ b

t − x̄) .
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General Results

Lipschitz Continuity

Lemma

The function V is increasing with 0 ≤ V (x) ≤ δ−1 for all
x ∈ [0,∞), fulfils limx→∞ V (x) = δ−1 and is Lipschitz continuous
with

|V (x)− V (y)| ≤ λ+ δ

δc(1)
|x − y | .

In particular, V is absolutely continuous and differentiable almost
everywhere.
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General Results

Proof.

For 0 ≤ y < x choose a strategy b̃ with V b̃(y) < V (y) + ε. For
initial capital x define h = (x − y)/c(1), bt = b̃t−h if T1 ∧ t ≥ h
and bt = 1, otherwise. Then

V (x)− V (y)− ε ≤ V b(x)− V b̃(y)

≤
∫ h

0
e−δt dt − (1− e−(λ+δ)h)V b̃(y) + (1− e−λh)δ−1

≤ (λ+ δ)h/δ =
λ+ δ

δc(1)
(x − y) ,

The other statements are clear.
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General Results

Splitting of the Problem

Let

ϑd = inf{t ≥ 0 : Dt ≤ d} , ϑd = inf{t ≥ 0 : Dt > d}

be the first entrance times. Then by considering the process until
the stopping time

V (x) = IIE[e−δϑ
d
V (Dϑd )] , x ≤ d ,

V (x) = IIE[δ−1(1− e−δϑd ) + e−δϑdV (d)] , x > d .

We can solve the two problems separately.
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The Solution

Starting in the Critical Area

Problem: Maximise IIEx [e−δϑd ].

For x > d , reaching d one has to pass y ∈ (d , x). Conclusion:
IIEx [e−δϑd ] is an exponential function.

For any subinterval of a fixed length, the same quantity has to be
maximised. Conclusion: the optimal strategy is constant.

V (x) = δ−1 − (δ−1 − V (d))e−γ(x−d) where γ is the positive
solution to c(1)γ − λIIE[1− e−γY ] = δ.
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The Solution

Starting in the Non-Critical Area

Problem: Minimise IIE[e−δϑ
d
V (Dϑd )] with V (d) unknown.

Replace V (d) by C ∈ (0, δ−1), VC (x) = infb IIE[e−δϑ
d
VC (Dϑd )].

Lemma

There exists C0 ∈ (0, δ−1) such that VC (d) T C iff C S C0.

It turns out that C0 = V (d).
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The Solution

The HJB Equation

Theorem

VC (x) solves for x ≤ d the HJB equation

inf
b∈[b0,1]

λ

∫ ∞
0

VC (x + by) dG (y)− c(b)V ′C (x)− (λ+ δ)VC (x) = 0 .

Let bC (x) be a measurable version of the maximiser. Then the
strategy bC (DC

t ) is optimal.

Hanspeter Schmidli University of Cologne
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The Solution

The HJB Equation II

Theorem

V (x) is the unique bounded continuous solution to the HJB
equation

inf
b∈[b0,1]

λ

∫ ∞
0

V (x+by) dG (y)−c(b)V ′(x)−(λ+δ)V (x) = −1Ix>d .

Let b(x) be a measurable version of the maximiser. Then the
strategy b(D∗t ) is optimal.
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Examples

Exponentially Distributed Claims
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Examples

Exponentially Distributed Claims: No Reinsurance
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Examples

Exponentially Distributed Claims: Linear Reinsurance
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Examples

Exponentially Distributed Claims: Optimal Reinsurance
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Examples

Pareto Distributed Claims
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Examples

Pareto Distributed Claims: No Reinsurance
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Examples

Pareto Distributed Claims: Linear Reinsurance
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Examples

Pareto Distributed Claims: Optimal Reinsurance
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Splitting of the Problem

Splitting of the Problem

As for the classical model

V (x) = IIE[e−δϑ
d
V (d)] , x ≤ d ,

V (x) = IIE[δ−1(1− e−δϑd ) + e−δϑdV (d)] , x > d .

In the critical area x > d b = 1 and thus

V (x) = δ−1{1− (1− δV (d))e−κ(x−d)}

for κ > 0 solving 1
2σ

2κ2 + ηκ = δ.
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The Solution
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The Solution

The HJB Equation

Theorem

V (x) is the unique bounded continuously differentiable solution to

(θ−η)V ′(x)−δV (x)+ inf
b∈[0,1]

{1

2
b2σ2V ′′(x)−θbV ′(x)

}
= −1Ix>d .

Proof.

Explicit solution to the HJB and verification theorem.
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The Solution

Construction of the Solution

A non-trivial solution must be strictly convex. If b 6= 1,

θ2V ′(x)2

2σ2V ′′(x)
+ δV (x) = (θ − η)V ′(x) .

The function x 7→ − lnV ′(x) is strictly decreasing with inverse
function Y . Thus V ′(Y (z)) = e−z . Plugging this into the
equation and differentiation leads to differential equation and an
explicit solution. There is x0 ∈ (0,∞] such that

b(x) =
θV ′(x)

σ2V ′′(x)
≤ 1 , x ∈ [0, x0] .

Compound V (x) on [0, x0 ∧ d ] with the solution with b(x) = 1 to
a smooth solution.
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The Solution

The Behaviour at Zero

Theorem

The strategy b(D∗t ) is optimal. Under the optimal strategy X̄ ∗t is
constant.
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Value Function and Optimal Strategy
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Value Function and b(x)
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No Reinsurance
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Optimal Reinsurance
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