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Heat equation on R

Consider the Cauchy problem for the heat equation:
∂

∂tu(x, t) + ∆u(x, t) = 0,

u(·, 0) ≡ 0;
(♠)

Here u : R× [0,T] → R, with ∆u(x, t) = − ∂2

∂x2 u(x, t).
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Tichonov solution

Natural solution: u ≡ 0;
Tichonov solution:

u(x, t) =
∞∑

k=0

gk(t)
(2k)!x

2k,

where

g(t) =
{
exp(t−2), t > 0,
0, t ≤ 0.

|u(x, t)| can be bounded at best by exp
(
C(ε) |x|2+ε).
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Täcklind’s uniqueness class

Täcklind proved that if |u(x, t)| ≤ h(|x|) for |x| large, where∫ ∞ r
ln h(r) dr = +∞,

then u ≡ 0. The solution to the Cauchy problem (♠) is unique
in such a class of functions.
In particular, bounded functions form a uniqueness class.
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Stochastic completeness
The Laplacian ∆ generates a semigroup of operators

Pt = exp(−t∆), t ≥ 0.

It is closely related to the Brownian motion (Bt)t≥0 on R:

Ptf(x) = Ex
(
f(Bt)

)
.

Bounded solutions form a uniqueness class ⇐⇒ stochastic
completeness, that is,

Pt1 = 1.
(Note that 1 − Pt1 is a bounded solution to the Cauchy
problem.)
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Heat equation on manifolds

Let (M, g) be a complete Riemannian manifold with the
Laplace-Beltrami operator ∆ (≥ 0).
Consider the Cauchy problem for the heat equation:

∂

∂tu(x, t) + ∆u(x, t) = 0,

u(·, 0) ≡ 0.
(♠)
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Grigor’yan’s uniqueness class

Theorem (Grigor’yan)
If u : M × [0,T] → R solves (♠) and satisfies∫ T

0

∫
B(x̄,r)

u2(x, t) d vol(x) dt ≤ h(r)

for r large, where ∫ ∞ r
ln h(r) dr = +∞,

then u ≡ 0.
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Proof strategy

A localized version of monotonicity formula:

d
dt

∫
M

u2(x, t) exp ξ(x, t) d vol(x) ≤ 0,

where ξ satisfies

∂

∂tξ(x, t) +
1
2 |∇ξ(x, t)|2 ≤ 0.

For example: ξ(x, t) = −d(x̄,x)2

2t .
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Stochastic completeness

The Laplacian ∆ generates a semigroup of operators

Pt = exp(−t∆), t ≥ 0.

It is closely related to the Brownian motion (Bt)t≥0 on (M, g):

Ptf(x) = Ex
(
f(Bt)

)
.

Bounded solutions form a uniqueness class ⇐⇒ stochastic
completeness, that is,

Pt1 = 1.

10 / 37



Background Weighted graphs Main results Sharpness

Volume growth criteria for stochastic completeness

The uniqueness class theorem, when applied to bounded
solutions, implies a sharp volume growth type criterion for
stochastic completeness.
Theorem (Grigor’yan)
Suppose ∫ ∞ rdr

ln
(
vol

(
Bd(x̄, r)

)) = ∞, (†)

then the Brownian motion on (M, g) is stochastically complete.
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Heat equation on Z

What happens for graphs?
∂

∂tu(x, t) + ∆u(x, t) = 0,

u(·, 0) ≡ 0.
(♠)

Here u : Z× [0,T] → R, with

∆u(n, t) = 2u(n, t)−
(
u(n − 1, t) + u(n + 1, t)

)
.
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Tichonov type solution
Natural solution: u ≡ 0;
Tichonov type solution:

u(n, t) =


g(t), n = 0;
∞∑

k=0

gk(t)
(2k)!(n + k) · · · (n + 1)n · · · (n − k + 1), n ≥ 1;

u(−n − 1, t), n ≤ −1.

where

g(t) =
{
exp(t−2), t > 0,
0, t ≤ 0.
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Growth

Note that for n ≥ 1,
∞∑

k=0

gk(t)
(2k)!(n + k) · · · (n + 1)n · · · (n − k + 1) =

n∑
k=0

· · · .

In contrary to the smooth case, for large |n|,

|u(n, t)| ≤ exp
(
C |n| ln |n|

)
.
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Questions

• What about the uniqueness class for general weighted
graphs? We cannot expect growth conditions as large as
the smooth case.

• What is the sharp volume growth type criterion for
stochastic completeness of weighted graphs?
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Weighted graphs
Let V be a discrete countable set with weights:

• µ : V → (0,∞), as a measure on V;
• w : V × V → [0,∞)

a w(x, y) = w(y, x);
b w(x, x) = 0;
c

∑
y∈V w(x, y) < +∞.

Denote x ∼ y when w(x, y) > 0. We assume connectedness.
The formal Laplacian:

(∆f)(x) = 1
µ(x)

∑
y∈V

w(x, y)(f(x)− f(y)).
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The heat semigroup

The Laplacian ∆ generates the heat semigroup

Pt = exp(−t∆), t ≥ 0,

which corresponds to a minimal continuous time Markov chain
on V.
Bounded solutions form a uniqueness class for the Cauchy
problem (♠) of the heat equation ⇐⇒ stochastic
completeness, that is,

Pt1 = 1.
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Z with weights

V = Z, with n ∼ n + 1, as a graph.
• µ(n) ≡ 1, w(n, n + 1) ≡ 1;
• µ(n) ≡ 1, w(0,−1) = 1,

w(n − 1, n) = w(−n,−n − 1) = n for n ≥ 1.
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Intrinsic metrics

Definition
A metric d on (V,w, µ) is called an intrinsic metric if

∀x ∈ V, 1
µ(x)

∑
y∈V

w(x, y)d(x, y)2 ≤ 1. (♢)

Remark
An intrinsic metric is sensible to the weights µ,w. Condition
(♢) is a discrete analogue of |∇d(x̄, ·)| ≤ 1. For simplicity, we
also assume bounded jump size: d(x, y) ≤ σ0 whenever x ∼ y.
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Examples of intrinsic metrics

V = Z, with n ∼ n + 1, as a graph.
• µ(n) ≡ 1, w(n, n + 1) ≡ 1; let d(n, n + 1) ≡

√
2

2 which is
naturally extended to a shortest path metric.

• µ(n) ≡ 1, w(0,−1) = 1,
w(n − 1, n) = w(−n,−n − 1) = n for n ≥ 1; let

d(n − 1, n) =
√

1
2 ∨ (2 |n|+ 1) ,

which is naturally extended to a shortest path metric.
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Uniqueness class
Theorem (H.)
Under some mild conditions, for some constant c > 0, if
u : V× [0,T] → R solves the Cauchy problem (♠) and satisfies∫ T

0

∫
B(x̄,r)

u2(x, t) dµ(x) dt ≤ exp
(
cσ0r ln r

)
for r large, then u ≡ 0.

Remark
As a consequence, if µ

(
B(x̄, r)

)
≤ exp

(
cσ0r ln r

)
for r large,

then the corresponding Markov chain is stochastically
complete.
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Difficulties
Lack of chain rule: unlike

|∇ exp ξ(x)| ≤ exp ξ(x) |∇ξ(x)| ,

we have at best
1

µ(x)
∑
y∈V

w(x, y)
(
exp ξ(x)− exp ξ(y)

)2

≤ exp 2
(
ξ(x) ∨ ξ(y)

) 1
µ(x)

∑
y∈V

w(x, y)
(
ξ(x)− ξ(y)

)2
.
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Stochastic completeness
Theorem (Folz)
Under some technical conditions, if∫ ∞ r dr

lnµ
(
B
(
x̄, r

)) = ∞,

then (V,w, µ) is stochastically complete.

Remark
Folz works by relating the Markov chain to a diffusion.
Stochastic completeness is about “very large” time property,
and is much more stable than the uniqueness class is (which
involves short time information as well).
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Goals of the present work

• to recover Grigor’yan’s uniqueness class for a certain
special class of weighted graphs;

• to apply stability arguments to obtain a generalized
version of Folz’s volume growth criterion.
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GL (globally local) condition
Let

sr := sup{d(x, y) | x, y ∈ X with x ∼ y and d(x, x̄) ∧ d(y, x̄) ≥ r}.

Definition
A weighted graph (V,w, µ) with an intrinsic metric d is called
globally local with respect to an increasing function
f : (0,∞) → (0,∞) if there is a constant A > 1 such that

lim sup
r→∞

srf(Ar)
r < ∞. (GL)
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Uniqueness class under the GL condition

Theorem (H., Keller, Schmidt)
Let a weighted graph (V,w, µ) with an intrinsic metric d be
globally local with respect to an increasing function
f : (0,∞) → (0,∞) with

∫∞ r
f(r) dr = +∞. Assume that balls

in d are finite. If u : V × [0,T] → R solves the Cauchy
problem (♠) and satisfies∫ T

0

∫
B(x̄,r)

u2(x, t) dµ(x) dt ≤ exp f(r)

for r large, then u ≡ 0.
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Stochastic completeness

Theorem (H., Keller, Schmidt)
Let (V,w, µ) be a weighted graph with an intrinsic metric d
such that balls in d are finite. If∫ ∞ r dr

lnµ
(
B
(
x̄, r

)) = ∞,

then (V,w, µ) is stochastically complete.
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Stability and modifications of weighted graphs

Main ingredients:
• a “piecing out” argument to deal with unbounded jump

size;
• adding new vertices to the original weighted graph to

split big jumps into smaller steps (a globally local one);
• a potential theoretic argument (the weak Omori-Yau

maximum principle) for stability of stochastic
completeness under modifications.
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A sharpness example

V = Z, with n ∼ n + 1, as a graph. Given weights µ(n) ≡ 1,
w(0,−1) = 1, w(n− 1, n) = w(−n,−n− 1) = n for n ≥ 1. Let

d(n − 1, n) =
√

1
2 ∨ (2 |n|+ 1) ,

which is naturally extended to a shortest path metric.
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A sharpness example

We have d(0, n) ≃
√

|n|, and sr ≃ 1
r for r large.

A Tichonov type solution:

u(n, t) =


g(t), n = 0;
∞∑

k=0

(
n
k

)
gk(t)

k! , n ≥ 1;

u(−n − 1, t), n ≤ −1.
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A sharpness example
Bound: ∫ T

0

∫
B(x̄,r)

u2(x, t) dµ(x) dt ≤ exp
(
Cr2 ln r

)
for r large.
Note

srf(Ar)
r ≃ ln r.

This example fails to be globally local with respect to
f(r) = Cr2 ln r (roughly by a factor of ln r), and a Tichonov
type solution is present.
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Thank you very much!
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