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1. Preliminaries

Definition 1

A Riemannian manifold (M, g) is said to be homogeneous if for every two

points p and q in M , there exists an isometry of M , mapping p into q.

1982 W.Thurston −→ ”geometrization conjecture”

The eight simply connected 3-dim homogeneous spaces (”model geometries”):

E3, S3, H3, S2 × R, H2 × R, Nil, Sol, ˜SL(2,R)

W. M. Thurston, Three-dimensional Geometry and Topology I, Princeton Math.

Series., vol. 35 (S. Levy ed.), 1997.



Thurston geometries

1-dim Thurston geometry

E1

2-dim Thurston geometries

E2, H2, S2

3-dim Thurston geometries

the constant sectional curvature geometries: E3, H3, S3

the product geometries: H2 × R, S2 × R

the twisted product geometries: Nil, Sol, ˜SL(2,R)

P. Scott, The Geometries of 3-Manifolds, Bull. London Math. Soc., 15 (1983), 401-487.

E. Molnár, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge

Algebra Geom. 38 (2) (1997), 261–288.



4-dim Thurston geometries

R.O. Filipkiewicz, Four dimensional geometries, PhD Thesis, University of Warwick, 1984.

Nineteen 4-dim Thurston geometries

E4, H4, S4, P2(C), H2(C)

S2 × S2, S2 × E2, S2 × H2, E2 × H2, H2 × H2

S3 × E1, H3 × E1, S̃L2 × E1, Nil3 × E1

Nil4, Sol4m,n, Sol40, Sol41, F 4

C.T.C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25, (1986), 119-152.

in most cases (14), a geometric structure carries preferred complex structure



Kähler structure

Definition 2

A Kähler structure on a Riemannian manifold (M, g) is given by a two-form Ω and a

field of endomorphisms of the tangent bundle J satisfying the following conditions:

J is an almost complex structure: J2 = −I

metric g is compatible with J : g(X,Y ) = g(JX, JY ), ∀X,Y ∈ TM

the fundamental (Kähler) form Ω(X,Y ) := g(JX, Y )

the 2-form Ω is symplectic: dΩ = 0

J is integrable i.e. its Nijenhuis tensor vanishes: NJ = 0

Definition 3

A Kähler manifold is a Riemannian manifold M equipped with a Kähler structure.



Classification of 4-dim Thurston geometries

C.T.C. Wall, Geometric structures on compact complex analytic surfaces,

Topology 25, (1986), 119-152.

Kähler complex non-Kähler non-complex

CP2, CH2, E4 S3 × E1, Nil3 × E1 H4, S4

S2 × S2, S2 × E2, S2 × H2 S̃L2R× E1 H3 × E1

F4, E2 × H2, H2 × H2 Sol40, Sol41 Nil4, Sol4m,n

Corollary 1.1

If X is one of S3 × E1, Nil3 × E1, S̃L2R× E1, Sol40, Sol41, then X does not posses a

Kähler structure compatible with the geometry.

complex non-Kahler =⇒ locally conformal Kähler (LCK)



LCK manifold

M = (M,J, g) - Hermitian manifold with non-closed Kähler form Ω

Definition 4

M is said to be a locally conformal Kähler manifold (LCK manifold) if there exits an

open covering {Uα}α∈Λ of M and a family of smooth functions σα : Uα → R such

that

d(e−σαΩ) = 0 on Uα ∀α.

Uα = M =⇒ M is globally conformal Kähler (GCK) manifold.

On LCK manifold 1-form ω = dσα (Lee form) is globally defined and satisfies

dΩ = ω ∧Ω.

The vector field B metrically dual to ω is called Lee vector field.

The vector field A = JB is called anti-Lee vector field.



Magnetic curve

in electromagnetic theory, a magnetic curve is a trajectory of charged

particle moving in Euclidean space under a static magnetic field ~B

Newton’s second law of motion ~F = m~a implies

Lorentz force law

m
d~v

dt
(t) = q ~v(t)× ~B~r(t)

m - mass of the particle

v - velocity of the particle

q - charge of the particle



Magnetic equation

~B = (b1, b2, b3) 7−→ F = b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2

Gauss′s law for magnetism ∇~B = 0 ⇐⇒ dF = 0

generalization to arbitrary Riemannian manifold with a closed 2-form F

Lorentz equation �� ��∇γ ′γ ′ = q Φ (γ′)

Φ - an endomorphism field → Lorentz force

g(ΦX,Y ) = F (X,Y )

Definition 5

A curve γ(t) is called a magnetic curve if it satisfies the Lorentz equation.

Notice: Φ = 0 =⇒ ∇γ ′γ ′ = 0 =⇒ geodesic equation



Magnetic curves in 3-dim Thurston geometries

S. L. Druţă-Romaniuc, J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in Sasakian manifolds, J.

Nonlinear Math. Phys. 22 (2015) 3, 428–447.

S.L. Druţă-Romaniuc, J. Inoguchi, M.I. Munteanu, A.I. Nistor, Magnetic curves in cosymplectic manifolds,

Report Math. Phys. 78 (2016) 33–47.

J. Inoguchi, M. I. Munteanu, Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23

(2019) 8, 2161–2205.

J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in quasi-Sasakian 3-manifolds, Anal. Math. Phys.

9 (2019), 43–61.

M.I. Munteanu, Magnetic curves in a Euclidean space: One example, several approaches, Publ. de L’Institut

Math. 94 (108) (2013) 141–150.

Z. Erjavec, J. Inoguchi, Magnetic curves in Sol3, J. Nonlinear Math. Phys. 25 (2) (2018), 198–210.

Z. Erjavec, J. Inoguchi, On magnetic curves in almost cosymplectic Sol space, Results Math. 75:113 (2020)

16 pg.



Magnetic curves vs J-trajectories

on a Kähler manifold: Kähler form =⇒ Kähler magnetic field

on an LCK manifold: Kähler form is not closed (not magnetic!)

Definition 6

A curve γ(t) is called a J-trajectory if it satisfies the equation ∇γ̇ γ̇ = qJγ̇.

Gauss’s law in 4-dim

on a Kähler manifold

dΩ = 0 =⇒ ω = 0

on an LCK manifold

dΩ = ω ∧ Ω =⇒ dω = 0



2. Geometry of Sol40 space

R4(x, y, z, t) equipped with Riemannian metric

(ds)2 = e−2t
(
(dx)2 + (dy)2

)
+ e4t(dz)2 + (dt)2

gij =


e−2t 0 0 0

0 e−2t 0 0

0 0 e4t 0

0 0 0 1


(x1, y1, z1, t1) ∗ (x2, y2, z2, t2) = (x1 + et1x2, y1 + et1y2, z1 + e−2t1z2, t1 + t2)

warped product representations of Sol40:

H2(−4)×e−t E
2,

H3(−1)×e2t E
1.



Levi-Civita connection

The orthonormal frame {e1, e2, e3, e4}

e1 = et
∂

∂x
, e2 = et

∂

∂y
, e3 = e−2t ∂

∂z
, e4 =

∂

∂t

The dual coframe {θ1, θ2, θ3, θ4}

ϑ1 = e−tdx, ϑ2 = e−tdy, ϑ3 = e2tdz, ϑ4 = dt.

Levi-Civita connection

∇e1e1 = e4 ∇e1e2 = 0 ∇e1e3 = 0 ∇e1e4 = −e1

∇e2e1 = 0 ∇e2e2 = e4 ∇e2e3 = 0 ∇e2e4 = −e2

∇e3e1 = 0 ∇e3e2 = 0 ∇e3e3 = −2e4∇e3e4 = 2e3

∇e4e1 = 0 ∇e4e2 = 0 ∇e4e3 = 0 ∇e4e4 = 0



Hermitian structure on Sol40

g-orthogonal almost complex structure J

Je1 = −e2, Je2 = e1, Je3 = e4, Je4 = −e3.

Kähler form

Ω = 2e−2tdx ∧ dy − 2e2tdz ∧ dt

dΩ = ω ∧ Ω =⇒ ω = −2dt

The homogeneous Hermitian space (Sol40, J) is a (non-Kähler) globally conformal

Kähler surface with Lee field B = −2e4 and anti Lee field A = 2e3.



Typical submanifolds of Sol40

g = e−2t ((dx)2 + (dy)2) + e4t(dz)2 + (dt)2

Euclidean plane

M(1, 2; z0, t0) := {(x, y, z0, t0) ∈ Sol40}

non totally geodesic in Sol40

a fiber of Sol40 = H2(−4)×e−t E2

totally umbilic in Sol40

Hyperbolic plane

M(3, 4;x0, y0) := {(x0, y0, z, t) ∈ Sol40}

totally geodesic in Sol40

a leaf of Sol40 = H2(−4)×e−t E2



Typical submanifolds of Sol40

g = e−2t ((dx)2 + (dy)2) + e4t(dz)2 + (dt)2

Euclidean 3-space

M(1, 2, 3; t0) := {(x, y, z, t0) ∈ Sol40}

minimal in Sol40

non totally geodesic in Sol40

Hyperbolic 3-space

M(1, 2, 4; z0) := {(x, y, z0, t) ∈ Sol40}

totally geodesic in Sol40

a leaf of Sol40 = H3(−1)×e2t E1.



3. J-trajectories in Sol40 space

γ(s) = (x(s),y(s), z(s), t(s)) =⇒ γ̇(s) = ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
+ ż(s)

∂

∂z
+ ṫ(s)

∂

∂t

γ̇(s) = e−t(s)ẋ(s)e1 + e−t(s)ẏ(s)e2 + e2t(s)ż(s)e3 + ṫ(s)e4�� ��∇γ̇ γ̇ = q J γ̇

∇γ̇ γ̇ = e−t(s)
(
ẍ(s)− 2ẋ(s)ṫ(s)

)
e1

+ e−t(s)
(
ÿ(s)− 2ẏ(s)ṫ(s)

)
e2

+ e2t(s)
(
z̈(s) + 4ż(s)ṫ(s)

)
e3

+
(
ẗ(s) + e−2t(s)

(
ẋ(s)2 + ẏ(s)2

)
− 2e4t(s)ż(s)2

)
e4

Jγ̇(s) = e−t(s)ẏ(s)e1 − e−t(s)ẋ(s)e2 − ṫ(s)e3 + e2t(s)ż(s)e4



The system

System of differential equations

ẍ(s)− 2ẋ(s)ṫ(s) = q ẏ(s)

ÿ(s)− 2ẏ(s)ṫ(s) = −q ẋ(s)

z̈(s) + 4ż(s)ṫ(s) = −q e−2t(s)ṫ(s) (1)

ẗ(s) + e−2t(s) (ẋ(s)2 + ẏ(s)2) = e2t(s)
(
qż(s) + 2e2t(s)ż(s)2

)
Arc length condition

e−2t(s)ẋ(s)2 + e−2t(s)ẏ(s)2 + e4t(s)ż(s)2 + ṫ(s)2 = 1



Solving the system

ẋ(s) = ae2t(s) sin(qs+ c), ẏ(s) = ae2t(s) cos(qs+ c)

ż(s) = be−4t(s) −
q

2
e−2t(s), a, b, c ∈ R

ẗ(s) + a2e2t(s) + bqe−2t(s) − 2b2e−4t(s) = 0

Arc length condition

ṫ(s)2 + a2e2t(s) − bqe−2t(s) + b2e−4t(s) +
q2

4
− 1 = 0

Case 1: a = b = 0 and ṫ(s)2 = 1− q2

4

Case 2: t(s) = const = k, a = a(k, q) and b = b(k, q)

Case 3: a = 0 and b 6= 0

Case 4: a 6= 0 and b = 0



Solution in Case 1�� ��a = b = 0 ṫ(s)2 = 1− q2

4

x(s) = x0, z(s) =
q

2
√

4− q2
e−
√

4−q2s−2t0 ,

y(s) = y0, t(s) =

√
4− q2

2
s+ t0.

J-trajectory lies in the hyperbolic plane M(3, 4;x0, y0)

Applying the coordinate change X(s) := 2z(s), Y (s) := e−2t(s),

(X(s), Y (s)) is a curve in H2(−4) = {(X, Y ) ∈ R2 | Y > 0} given by

X =
q√

4− q2
Y



J-trajectory in Case 1

J-trajectories for x(t) = x0, y(t) = 0, t0 = 0, q = 1, s ∈ [−3, 3]

Figure: J-trajectories in M(3, 4;x0, 0) and H2(−4)

curvatures: κ1 = |q| and κ2 = 0



Solution in Case 2�� ��t(s) = t0 = const =⇒ a, b = const

a = ∓
√

2e−t0

6

√
12− q2 − q

√
q2 + 12 b =

e2t0

6
(2q −

√
q2 + 12),

a = ∓
√

2e−t0

6

√
12− q2 + q

√
q2 + 12 b =

e2t0

6
(2q +

√
q2 + 12)

x(s) = −
a

q
e2t0 cos(qs+ c), z(s) = e−2t0

(
be−2t0 −

q

2

)
s+ d,

y(s) =
a

q
e2t0 sin(qs+ c), t(s) = t0.

J-trajectory lies in the Euclidean space M(1, 2, 3; t0)



J-trajectory in Case 2

J-trajectory for q = 1, a = 2, b = 3, c = 0, d = 0, t0 = 1, and s ∈ [−10, 10].

Figure: J-trajectory in M(1, 2, 3; t0)

curvatures: κ1 = |q| and κ2 = 1
4

√
1−

(
be−2t0 − q

2

)2



Solution in Case 3�� ��a = 0 and b 6= 0

x(s) = x0, z(s) =

∫
be
−4t(s) −

q

2
e
−2t(s)

ds,

y(s) = y0, t(s) is a solution of (2).

Arctan
2

 e2t(s)(q2 − 4)− 2bq√
q2 − 4

√
4e4t(s) − (qe2t(s) − 2b)2

 = (q
2 − 4)(c1 − s)

2
, c1 ∈ R (2)

�� ��q = 2

x(s) = x0, z(s) =
2(s− c2)

b
(
1 + 4(s− c2)2

) ,
y(s) = y0, t(s) =

1

2
ln

[
b

2

(
1 + 4(s− c2)

2
)]
.

J-trajectory lies in the hyperbolic plane M(3, 4;x0, y0)

X(s) := 2z(s), Y (s) := e
−2t(s)

=⇒ X
2

=
2− bY
16b2



J-trajectory in Case 3

J-trajectories for
�� ��q = 2 x(t) = x0, y(t) = 0, b = 2, c2 = 0, 001, s ∈ [−3, 3]

Figure: J-trajectories in M(3, 4;x0, 0) and H2(−4)

curvatures: κ1 = |q| and κ2 = 0



Solution in Case 4�� ��a 6= 0 and b = 0

ṫ(s)2 + a2e2t(s) +
q2

4
− 1 = 0

q ∈ 〈−2, 2〉

t(s) =
1

2
ln

[
4− q2

4a2
sech2

(
1

2

√
4− q2 (±s− d)

)]
(3)

x(s) =

∫
ae2t(s) sin(qs+ c)ds, z(s) =

∫
−
q

2
e−2t(s)ds,

y(s) =

∫
ae2t(s) cos(qs+ c)ds, t(s) is given by (3).



The main theorem

Theorem 3.1

The J-trajectories in the model space Sol40 are solutions of the ODE-system (1). In particular, some analytical

solutions of (1) are

(a) curves given by parametric equations

x(s) = x0, z(s) = ∓e−2t0s + z0,

y(s) = y0, t(s) = t0, for q = ±2,

or

x(s) = x0, z(s) = q

2

√
4−q2

e
−
√

4−q2s−2t0 ,

y(s) = y0, t(s) =

√
4−q2
2

s + t0, for q ∈ 〈−2, 2〉,

where x0, y0, z0, t0 ∈ R,

(b) curves given by parametric equations

x(s) = − a
q

cos(qs + c), z(s) = e−2k
(
be−2k − q

2

)
s + d,

y(s) = a
q

sin(qs + c), t(s) = k,

where a, b are given by (2), c, d, k ∈ R and q ∈ R\{0},



The main theorem

Theorem 3.2

(c) curves given by parametric equations

x(s) = x0, z(s) =
∫
be−4t(s) − q

2
e−2t(s)ds,

y(s) = y0, t(s) is a solution of (2),

where x0, y0, b, q ∈ R,

(d) curves given by parametric equations

x(s) =
∫
ae2t(s) sin(qs + c) ds, z(s) = a2q

q2−4

(
(s± d) + 1√

4−q2
sinh(

√
4− q2(s± d))

)
,

y(s) =
∫
ae2t(s) cos(qs + c) ds, t(s) = 1

2
ln

[
4−q2

4a2
sech2

(
1
2

√
4− q2 (±s− d)

)]
,

where q ∈ 〈−2, 2〉 and a, c, d ∈ R.



4. Curvature properties of J-trajectories

Definition 7

If γ is a curve in a Riemannian manifold M , parametrized by arc length s, we say that

γ is a Frenet curve of osculating order r if there exist orthonormal vector fields E1,

E2, · · · , Er along γ such that

γ̇ = E1, ∇γ̇E1 = κ1E2, ∇γ̇eE2 = −κ1E1 + κ2E3, · · · ,

∇γ̇Er−1 = −κr−2Er−2 + κr−1Er, ∇γ̇Er = −κr−1Er−1,

where κ1, κ2, · · · , κr−1 are positive C∞ functions of s.

A geodesic is regarded as a Frenet curve of osculating order 1.

A circle is defined as a Frenet curve of osculating order 2 with constant κ1.

A helix of order r is a Frenet curve of osculating order r, such that all the

curvatures κ1, κ2, · · · , κr−1 are constant.



On curvatures of J-trajectories in Sol40

Proposition 4.1

Let γ be a non-geodesic J-trajectory with strength q 6= 0 parameterized by arc length

in Sol40. Then κ2 = 0 if and only if both x-coordinate and y-coordinate of γ are

constant.

Proposition 4.2

Let γ be a non-geodesic J-trajectory with strength q 6= 0 parameterized by arc length

in Sol40. Assume that κ2 > 0. Then κ2 is a constant if and only if t-coordinate of γ

is a constant.

Proposition 4.3

Let γ be a non-geodesic J-trajectory with strength q 6= 0 parameterized by arc length

in Sol40. If we assume κ2 > 0, then κ3 = 0 if and only if z is a constant.



Summary

Some basic definitions and facts (complex structure, Kähler form,

LCK manifold) are repeated.

Geometry of Sol40 space is described.

J-trajectories in Sol40 space are examined.

Curvature properties of J-trajectories in Sol40 are considered.

Recent work

Z. Erjavec, J. Inoguchi, Magnetic curves in H3 × R, accepted for publication in J Korean Math Soc

Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie group Sol40, submitted.

Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie group Sol41, in prepair.



Thank you for your attention!
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