J-trajectories in Sol_{0}^{4}

Zlatko Erjavec, Jun-ichi Inoguchi
University of Zagreb, Croatia; University of Tsukuba, Japan

8th European Congress of Mathematics

Portorož, June 22, 2021

Contents

(1) Preliminaries

- Thurston geometries
- LCK manifolds
- Magnetic curves vs J-trajectories
(2) Geometry of Sol ${ }_{0}^{4}$ space
(3) J-trajectories in Sol ${ }_{0}^{4}$ space
(9) Curvature properties of J-trajectories in Sol ${ }_{0}^{4}$

1. Preliminaries

Definition 1

A Riemannian manifold (M, g) is said to be homogeneous if for every two points p and q in M, there exists an isometry of M, mapping p into q.

1982 W.Thurston \longrightarrow "geometrization conjecture"
The eight simply connected 3-dim homogeneous spaces ("model geometries"):

$$
E^{3}, S^{3}, H^{3}, S^{2} \times \mathbb{R}, H^{2} \times \mathbb{R}, \text { Nil, Sol, } S \widetilde{L(2, \mathbb{R})}
$$

W. M. Thurston, Three-dimensional Geometry and Topology I, Princeton Math. Series., vol. 35 (S. Levy ed.), 1997.

Thurston geometries

1-dim Thurston geometry

- \mathbb{E}^{1}

2-dim Thurston geometries

- $\mathbb{E}^{2}, \mathbb{H}^{2}, \mathbb{S}^{2}$

3-dim Thurston geometries

- the constant sectional curvature geometries: $\mathbb{E}^{3}, \mathbb{H}^{3}, \mathbb{S}^{3}$
- the product geometries: $\mathbb{H}^{2} \times \mathbb{R}, \mathbb{S}^{2} \times \mathbb{R}$
- the twisted product geometries: Nil, Sol, $S \widetilde{L(2, \mathbb{R})}$P. Scott, The Geometries of 3-Manifolds, Bull. London Math. Soc., 15 (1983), 401-487.
E. Molnár, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge Algebra Geom. 38 (2) (1997), 261-288.

4-dim Thurston geometries

R.O. Filipkiewicz, Four dimensional geometries, PhD Thesis, University of Warwick, 1984.

Nineteen 4-dim Thurston geometries

- $\mathbb{E}^{4}, \mathbb{H}^{4}, \mathbb{S}^{4}, \mathbb{P}^{2}(\mathbb{C}), \mathbb{H}^{2}(\mathbb{C})$
- $\mathbb{S}^{2} \times \mathbb{S}^{2}, \mathbb{S}^{2} \times \mathbb{E}^{2}, \mathbb{S}^{2} \times \mathbb{H}^{2}, \mathbb{E}^{2} \times \mathbb{H}^{2}, \mathbb{H}^{2} \times \mathbb{H}^{2}$
- $\mathbb{S}^{3} \times \mathbb{E}^{1}, \mathbb{H}^{3} \times \mathbb{E}^{1}, \widetilde{S L_{2}} \times \mathbb{E}^{1}, N i l^{3} \times \mathbb{E}^{1}$
- Nil 4, Sol $_{m, n}^{4}$, Sol $_{0}^{4}$, Sol $_{1}^{4}, F^{4}$C.T.C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25, (1986), 119-152.
- in most cases (14), a geometric structure carries preferred complex structure

Definition 2

A Kähler structure on a Riemannian manifold (M, g) is given by a two-form Ω and a field of endomorphisms of the tangent bundle J satisfying the following conditions:

- J is an almost complex structure: $J^{2}=-I$
- metric g is compatible with $J: g(X, Y)=g(J X, J Y), \quad \forall X, Y \in T M$
- the fundamental (Kähler) form $\Omega(X, Y):=g(J X, Y)$
- the 2 -form Ω is symplectic: $d \Omega=0$
- J is integrable i.e. its Nijenhuis tensor vanishes: $N_{J}=0$

Definition 3

A Kähler manifold is a Riemannian manifold M equipped with a Kähler structure.

Classification of 4-dim Thurston geometries

C.T.C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25, (1986), 119-152.

Kähler	complex non-Kähler	non-complex
$\mathbb{C} P^{2}, \mathbb{C} H^{2}, \mathbb{E}^{4}$	$\mathbb{S}^{3} \times \mathbb{E}^{1}, \mathrm{Nil}_{3} \times \mathbb{E}^{1}$	$\mathbb{H}^{4}, \mathbb{S}^{4}$
$\mathbb{S}^{2} \times \mathbb{S}^{2}, \mathbb{S}^{2} \times \mathbb{E}^{2}, \mathbb{S}^{2} \times \mathbb{H}^{2}$	$\widetilde{\mathrm{SL}}_{2} \mathbb{R} \times \mathbb{E}^{1}$	$\mathbb{H}^{3} \times \mathbb{E}^{1}$
$\mathrm{~F}^{4}, \mathbb{E}^{2} \times \mathbb{H}^{2}, \mathbb{H}^{2} \times \mathbb{H}^{2}$	$\mathrm{Sol}_{0}^{4}, \mathrm{Sol}_{1}^{4}$	$\mathrm{Nil}^{4}, \mathrm{Sol}_{m, n}^{4}$

Corollary 1.1
If X is one of $\mathbb{S}^{3} \times \mathbb{E}^{1}, \mathrm{Nil}_{3} \times \mathbb{E}^{1}, \widetilde{\mathrm{SL}}_{2} \mathbb{R} \times \mathbb{E}^{1}, \mathrm{Sol}_{0}^{4}, \operatorname{Sol}_{1}^{4}$, then X does not posses a Kähler structure compatible with the geometry.
complex non-Kahler \Longrightarrow locally conformal Kähler (LCK)

LCK manifold

$M=(M, J, g)$ - Hermitian manifold with non-closed Kähler form Ω

Definition 4

M is said to be a locally conformal Kähler manifold (LCK manifold) if there exits an open covering $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of M and a family of smooth functions $\sigma_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}$ such that

$$
d\left(e^{-\sigma_{\alpha}} \Omega\right)=0 \text { on } U_{\alpha} \forall \alpha
$$

$U_{\alpha}=M \quad \Longrightarrow \quad M$ is globally conformal Kähler (GCK) manifold.

On LCK manifold 1-form $\omega=\mathbf{d} \sigma_{\alpha}$ (Lee form) is globally defined and satisfies

$$
\mathrm{d} \boldsymbol{\Omega}=\omega \wedge \boldsymbol{\Omega}
$$

The vector field B metrically dual to ω is called Lee vector field.
The vector field $A=J B$ is called anti-Lee vector field.

Magnetic curve

- in electromagnetic theory, a magnetic curve is a trajectory of charged particle moving in Euclidean space under a static magnetic field \vec{B}

Newton's second law of motion $\vec{F}=m \vec{a}$ implies

Lorentz force law

$$
m \frac{d \vec{v}}{d t}(t)=q \vec{v}(t) \times \vec{B}_{\vec{r}(t)}
$$

- m-mass of the particle
- v - velocity of the particle
- q-charge of the particle

Magnetic equation

$$
\begin{gathered}
\overrightarrow{\mathbb{B}}=\left(b_{1}, b_{2}, b_{3}\right) \longmapsto F=b_{1} d x_{2} \wedge d x_{3}+b_{2} d x_{3} \wedge d x_{1}+b_{3} d x_{1} \wedge d x_{2} \\
\quad \text { Gauss's law for magnetism } \nabla \overrightarrow{\mathbb{B}}=0 \quad \Longleftrightarrow \quad d F=0
\end{gathered}
$$

- generalization to arbitrary Riemannian manifold with a closed 2-form F Lorentz equation

$$
\nabla_{\gamma^{\prime}} \gamma^{\prime}=q \Phi\left(\gamma^{\prime}\right)
$$

- Φ - an endomorphism field \rightarrow Lorentz force

$$
g(\Phi X, Y)=F(X, Y)
$$

Definition 5
A curve $\gamma(t)$ is called a magnetic curve if it satisfies the Lorentz equation.

Notice: $\quad \Phi=0 \Longrightarrow \nabla_{\gamma^{\prime}} \gamma^{\prime}=0 \quad \Longrightarrow$ geodesic equation

Magnetic curves in 3-dim Thurston geometries
 tries

S. L. Druță-Romaniuc, J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in Sasakian manifolds, J. Nonlinear Math. Phys. 22 (2015) 3, 428-447.
S.L. Druță-Romaniuc, J. Inoguchi, M.I. Munteanu, A.I. Nistor, Magnetic curves in cosymplectic manifolds, Report Math. Phys. 78 (2016) 33-47.
J. Inoguchi, M. I. Munteanu, Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23 (2019) 8, 2161-2205.
J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in quasi-Sasakian 3-manifolds, Anal. Math. Phys. 9 (2019), 43-61.
M.I. Munteanu, Magnetic curves in a Euclidean space: One example, several approaches, Publ. de L'Institut Math. 94 (108) (2013) 141-150.
Z. Erjavec, J. Inoguchi, Magnetic curves in Sol_{3}, J. Nonlinear Math. Phys. 25 (2) (2018), 198-210.
Z. Erjavec, J. Inoguchi, On magnetic curves in almost cosymplectic Sol space, Results Math. 75:113 (2020) 16 pg.

Magnetic curves vs J-trajectories

- on a Kähler manifold: Kähler form \Longrightarrow Kähler magnetic field
- on an LCK manifold: Kähler form is not closed (not magnetic!)

Definition 6

A curve $\gamma(t)$ is called a J-trajectory if it satisfies the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=q J \dot{\gamma}$.
Gauss's law in 4-dim

- on a Kähler manifold

$$
d \Omega=0 \quad \Longrightarrow \quad \omega=0
$$

- on an LCK manifold

$$
d \Omega=\omega \wedge \Omega \quad \Longrightarrow \quad d \omega=0
$$

2. Geometry of Sol ${ }_{0}^{4}$ space

- $\mathbb{R}^{4}(x, y, z, t)$ equipped with Riemannian metric

$$
\begin{gathered}
(d s)^{2}=e^{-2 t}\left((d x)^{2}+(d y)^{2}\right)+e^{4 t}(d z)^{2}+(d t)^{2} \\
g_{i j}=\left(\begin{array}{cccc}
e^{-2 t} & 0 & 0 & 0 \\
0 & e^{-2 t} & 0 & 0 \\
0 & 0 & e^{4 t} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\left(x_{1}, y_{1}, z_{1}, t_{1}\right) *\left(x_{2}, y_{2}, z_{2}, t_{2}\right)=\left(x_{1}+e^{t_{1}} x_{2}, y_{1}+e^{t_{1}} y_{2}, z_{1}+e^{-2 t_{1}} z_{2}, t_{1}+t_{2}\right)
\end{gathered}
$$

- warped product representations of Sol_{0}^{4} :

$$
\begin{aligned}
& \mathbb{H}^{2}(-4) \times_{e^{-t}} \mathbb{E}^{2}, \\
& \mathbb{H}^{3}(-1) \times_{e^{2 t}} \mathbb{E}^{1} .
\end{aligned}
$$

Levi-Civita connection

The orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$

$$
\mathbf{e}_{\mathbf{1}}=e^{t} \frac{\partial}{\partial x}, \quad \mathbf{e}_{\mathbf{2}}=e^{t} \frac{\partial}{\partial y}, \quad \mathbf{e}_{\mathbf{3}}=e^{-2 t} \frac{\partial}{\partial z}, \quad \mathbf{e}_{\mathbf{4}}=\frac{\partial}{\partial t}
$$

The dual coframe $\left\{\theta^{1}, \theta^{2}, \theta^{3}, \theta^{4}\right\}$

$$
\vartheta^{1}=e^{-t} d x, \quad \vartheta^{2}=e^{-t} d y, \quad \vartheta^{3}=e^{2 t} d z, \quad \vartheta^{4}=d t .
$$

Levi-Civita connection

$$
\begin{array}{lllll}
\nabla_{\mathbf{e}_{1}} \mathbf{e}_{\mathbf{1}}=\mathbf{e}_{4} & \nabla_{\mathbf{e}_{1}} \mathbf{e}_{2}=0 & \nabla_{\mathbf{e}_{1}} \mathbf{e}_{3}=0 & \nabla_{\mathbf{e}_{1}} \mathbf{e}_{4}=-\mathbf{e}_{\mathbf{1}} \\
\nabla_{\mathbf{e}_{2}} \mathbf{e}_{\mathbf{1}}=0 & \nabla_{\mathbf{e}_{2}} \mathbf{e}_{2}=\mathbf{e}_{4} & \nabla_{\mathbf{e}_{2}} \mathbf{e}_{3}=0 & \nabla_{\mathbf{e}_{2}} \mathbf{e}_{4}=-\mathbf{e}_{2} \\
\nabla_{\mathbf{e}_{3}} \mathbf{e}_{\mathbf{1}}=0 & \nabla_{\mathbf{e}_{3}} \mathbf{e}_{2}=0 & \nabla_{\mathbf{e}_{3}} \mathbf{e}_{\mathbf{3}}=-2 \mathbf{e}_{4} \nabla_{\mathbf{e}_{3}} \mathbf{e}_{4}=2 \mathbf{e}_{3} \\
\nabla_{\mathbf{e}_{4}} \mathbf{e}_{\mathbf{1}}=0 & \nabla_{\mathbf{e}_{4}} \mathbf{e}_{2}=0 & \nabla_{\mathbf{e}_{4}} \mathbf{e}_{\mathbf{3}}=0 & \nabla_{\mathbf{e}_{4}} \mathbf{e}_{4}=0
\end{array}
$$

g-orthogonal almost complex structure J

$$
J e_{1}=-e_{2}, \quad J e_{2}=e_{1}, \quad J e_{3}=e_{4}, \quad J e_{4}=-e_{3}
$$

Kähler form

$$
\begin{gathered}
\Omega=2 \mathrm{e}^{-2 \mathrm{t}} \mathrm{dx} \wedge \mathrm{dy}-2 \mathrm{e}^{2 \mathrm{t}} \mathrm{dz} \wedge \mathrm{dt} \\
d \Omega=\omega \wedge \Omega \quad \Longrightarrow \quad \omega=-2 \mathrm{dt}
\end{gathered}
$$

The homogeneous Hermitian space $\left(\mathrm{Sol}_{0}^{4}, J\right)$ is a (non-Kähler) globally conformal Kähler surface with Lee field $B=-2 \mathbf{e}_{4}$ and anti Lee field $\mathrm{A}=\mathbf{2} \mathbf{e}_{\mathbf{3}}$.

Typical submanifolds of Sol ${ }_{0}^{4}$

$$
g=e^{-2 t}\left((d x)^{2}+(d y)^{2}\right)+e^{4 t}(d z)^{2}+(d t)^{2}
$$

Euclidean plane

$$
M\left(1,2 ; z_{0}, t_{0}\right):=\left\{\left(x, y, z_{0}, t_{0}\right) \in \mathrm{Sol}_{0}^{4}\right\}
$$

- non totally geodesic in Sol_{0}^{4}
- a fiber of $\mathrm{Sol}_{0}^{4}=\mathbb{H}^{2}(-4) \times{ }_{e^{-t}} \mathbb{E}^{2}$
- totally umbilic in Sol_{0}^{4}

Hyperbolic plane

$$
M\left(3,4 ; x_{0}, y_{0}\right):=\left\{\left(x_{0}, y_{0}, z, t\right) \in \operatorname{Sol}_{0}^{4}\right\}
$$

- totally geodesic in Sol_{0}^{4}
- a leaf of $\mathrm{Sol}_{0}^{4}=\mathbb{H}^{2}(-4) \times{ }_{e^{-t}} \mathbb{E}^{2}$

Typical submanifolds of Sol ${ }_{0}^{4}$

$$
g=e^{-2 t}\left((d x)^{2}+(d y)^{2}\right)+e^{4 t}(d z)^{2}+(d t)^{2}
$$

Euclidean 3-space

$$
M\left(1,2,3 ; t_{0}\right):=\left\{\left(x, y, z, t_{0}\right) \in \operatorname{Sol}_{0}^{4}\right\}
$$

- minimal in Sol_{0}^{4}
- non totally geodesic in Sol_{0}^{4}

Hyperbolic 3-space

$$
M\left(1,2,4 ; z_{0}\right):=\left\{\left(x, y, z_{0}, t\right) \in \operatorname{Sol}_{0}^{4}\right\}
$$

- totally geodesic in Sol_{0}^{4}
- a leaf of $\operatorname{Sol}_{0}^{4}=\mathbb{H}^{3}(-1) \times e^{2 t} \mathbb{E}^{1}$.

3. J-trajectories in Sol ${ }_{0}^{4}$ space

$$
\begin{aligned}
& \gamma(\mathbf{s})=(\mathbf{x}(\mathbf{s}), \mathbf{y}(\mathbf{s}), \mathbf{z}(\mathbf{s}), \mathbf{t}(\mathbf{s})) \Longrightarrow \dot{\gamma}(s)=\dot{x}(s) \frac{\partial}{\partial x}+\dot{y}(s) \frac{\partial}{\partial y}+\dot{z}(s) \frac{\partial}{\partial z}+\dot{t}(s) \frac{\partial}{\partial t} \\
& \dot{\gamma}(s)=e^{-t(s)} \dot{x}(s) e_{1}+e^{-t(s)} \dot{y}(s) e_{2}+e^{2 t(s)} \dot{z}(s) e_{3}+\dot{t}(s) e_{4} \\
& \nabla \dot{\gamma} \dot{\gamma}=q J \dot{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\dot{\gamma}} \dot{\gamma}= & e^{-t(s)}(\ddot{x}(s)-2 \dot{x}(s) \dot{t}(s)) e_{1} \\
& +e^{-t(s)}(\ddot{y}(s)-2 \dot{y}(s) \dot{t}(s)) e_{2} \\
& +e^{2 t(s)}(\ddot{z}(s)+4 \dot{z}(s) \dot{t}(s)) e_{3} \\
& +\left(\ddot{t}(s)+e^{-2 t(s)}\left(\dot{x}(s)^{2}+\dot{y}(s)^{2}\right)-2 e^{4 t(s)} \dot{z}(s)^{2}\right) e_{4}
\end{aligned}
$$

$$
J \dot{\gamma}(s)=e^{-t(s)} \dot{y}(s) e_{1}-e^{-t(s)} \dot{x}(s) e_{2}-\dot{t}(s) e_{3}+e^{2 t(s)} \dot{z}(s) e_{4}
$$

The system

System of differential equations

$$
\begin{align*}
\ddot{x}(s)-2 \dot{x}(s) \dot{t}(s) & =q \dot{y}(s) \\
\ddot{y}(s)-2 \dot{y}(s) \dot{t}(s) & =-q \dot{x}(s) \\
\ddot{z}(s)+4 \dot{z}(s) \dot{t}(s) & =-q e^{-2 t(s)} \dot{t}(s) \tag{1}\\
\ddot{t}(s)+e^{-2 t(s)}\left(\dot{x}(s)^{2}+\dot{y}(s)^{2}\right) & =e^{2 t(s)}\left(q \dot{z}(s)+2 e^{2 t(s)} \dot{z}(s)^{2}\right)
\end{align*}
$$

Arc length condition

$$
e^{-2 t(s)} \dot{x}(s)^{2}+e^{-2 t(s)} \dot{y}(s)^{2}+e^{4 t(s)} \dot{z}(s)^{2}+\dot{t}(s)^{2}=1
$$

$$
\begin{gathered}
\dot{x}(s)=a e^{2 t(s)} \sin (q s+c), \quad \dot{y}(s)=a e^{2 t(s)} \cos (q s+c) \\
\dot{z}(s)=b e^{-4 t(s)}-\frac{q}{2} e^{-2 t(s)}, \quad a, b, c \in \mathbb{R}
\end{gathered}
$$

$$
\ddot{t}(s)+a^{2} e^{2 t(s)}+b q e^{-2 t(s)}-2 b^{2} e^{-4 t(s)}=0
$$

Arc length condition

$$
\dot{t}(s)^{2}+a^{2} e^{2 t(s)}-b q e^{-2 t(s)}+b^{2} e^{-4 t(s)}+\frac{q^{2}}{4}-1=0
$$

- Case 1: $a=b=0$ and $\dot{t}(s)^{2}=1-\frac{q^{2}}{4}$
- Case 2: $t(s)=\mathrm{const}=k, a=a(k, q)$ and $b=b(k, q)$
- Case 3: $a=0$ and $b \neq 0$
- Case 4: $a \neq 0$ and $b=0$

Solution in Case 1
$a=b=0 \quad \dot{t}(s)^{2}=1-\frac{q^{2}}{4}$

$$
\begin{aligned}
& x(s)=x_{0}, \quad z(s)=\frac{q}{2 \sqrt{4-q^{2}}} e^{-\sqrt{4-q^{2}} s-2 t_{0}}, \\
& y(s)=y_{0}, \quad t(s)=\frac{\sqrt{4-q^{2}}}{2} s+t_{0} .
\end{aligned}
$$

- J-trajectory lies in the hyperbolic plane $M\left(3,4 ; x_{0}, y_{0}\right)$

Applying the coordinate change $X(s):=2 z(s), Y(s):=e^{-2 t(s)}$,

$$
\begin{aligned}
(X(s), Y(s)) \text { is a curve in } \mathbb{H}^{2}(-4) & =\left\{(X, Y) \in \mathbb{R}^{2} \mid Y>0\right\} \quad \text { given by } \\
X & =\frac{q}{\sqrt{4-q^{2}}} Y
\end{aligned}
$$

J-trajectories for $x(t)=x_{0}, y(t)=0, t_{0}=0, q=1, s \in[-3,3]$

Figure: J-trajectories in $M\left(3,4 ; x_{0}, 0\right)$ and $\mathbb{H}^{2}(-4)$

- curvatures: $\kappa_{1}=|q|$ and $\kappa_{2}=0$

Solution in Case 2
$t(s)=t_{0}=\mathrm{const} \Longrightarrow a, b=\mathrm{const}$

$$
\begin{array}{ll}
a=\mp \frac{\sqrt{2} e^{-t_{0}}}{6} \sqrt{12-q^{2}-q \sqrt{q^{2}+12}} & b=\frac{e^{2 t_{0}}}{6}\left(2 q-\sqrt{q^{2}+12}\right), \\
a=\mp \frac{\sqrt{2} e^{-t_{0}}}{6} \sqrt{12-q^{2}+q \sqrt{q^{2}+12}} & b=\frac{e^{2 t_{0}}}{6}\left(2 q+\sqrt{q^{2}+12}\right)
\end{array}
$$

$$
\begin{aligned}
x(s)=-\frac{a}{q} e^{2 t_{0}} \cos (q s+c), & z(s)=e^{-2 t_{0}}\left(b e^{-2 t_{0}}-\frac{q}{2}\right) s+d \\
y(s)=\frac{a}{q} e^{2 t_{0}} \sin (q s+c), & t(s)=t_{0}
\end{aligned}
$$

- J-trajectory lies in the Euclidean space $M\left(1,2,3 ; t_{0}\right)$
J-trajectory for $q=1, a=2, b=3, c=0, d=0, t_{0}=1$, and $s \in[-10,10]$.

Figure: J-trajectory in $M\left(1,2,3 ; t_{0}\right)$

- curvatures: $\kappa_{1}=|q|$ and $\kappa_{2}=\frac{1}{4} \sqrt{1-\left(b e^{-2 t_{0}}-\frac{q}{2}\right)^{2}}$

$$
a=0 \quad \text { and } \quad b \neq 0
$$

$$
\begin{gather*}
x(s)=x_{0}, \quad z(s)=\int b e^{-4 t(s)}-\frac{q}{2} e^{-2 t(s)} d s \\
y(s)=y_{0}, \quad t(s) \text { is a solution of }(2) \\
\operatorname{Arctan}^{2}\left[\frac{e^{2 t(s)}\left(q^{2}-4\right)-2 b q}{\sqrt{q^{2}-4} \sqrt{4 e^{4 t(s)}-\left(q e^{2 t(s)}-2 b\right)^{2}}}\right]=\left(q^{2}-4\right)\left(c_{1}-s\right)^{2}, \quad c_{1} \in \mathbb{R} \tag{2}
\end{gather*}
$$

$$
q=2
$$

$$
\begin{array}{ll}
x(s)=x_{0}, & z(s)=\frac{2\left(s-c_{2}\right)}{b\left(1+4\left(s-c_{2}\right)^{2}\right)}, \\
y(s)=y_{0}, & t(s)=\frac{1}{2} \ln \left[\frac{b}{2}\left(1+4\left(s-c_{2}\right)^{2}\right)\right] .
\end{array}
$$

- J-trajectory lies in the hyperbolic plane $M\left(3,4 ; x_{0}, y_{0}\right)$

$$
X(s):=2 z(s), Y(s):=e^{-2 t(s)} \quad \Longrightarrow \quad X^{2}=\frac{2-b Y}{16 b^{2}}
$$

J-trajectories for $q=2 x(t)=x_{0}, y(t)=0, b=2, c_{2}=0,001, s \in[-3,3]$

Figure: J-trajectories in $M\left(3,4 ; x_{0}, 0\right)$ and $\mathbb{H}^{2}(-4)$

- curvatures: $\kappa_{1}=|q|$ and $\kappa_{2}=0$

Solution in Case 4

$$
\begin{aligned}
& a \neq 0 \text { and } \quad b=0 \\
& \dot{t}(s)^{2}+a^{2} e^{2 t(s)}+\frac{q^{2}}{4}-1=0
\end{aligned}
$$

$q \in\langle-2,2\rangle$

$$
\begin{equation*}
t(s)=\frac{1}{2} \ln \left[\frac{4-q^{2}}{4 a^{2}} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{4-q^{2}}(\pm s-d)\right)\right] \tag{3}
\end{equation*}
$$

$$
\begin{array}{ll}
x(s)=\int a e^{2 t(s)} \sin (q s+c) d s, & z(s)=\int-\frac{q}{2} e^{-2 t(s)} d s, \\
y(s)=\int a e^{2 t(s)} \cos (q s+c) d s, & t(s) \text { is given by (3). }
\end{array}
$$

The main theorem

Theorem 3.1

The J-trajectories in the model space Sol_{0}^{4} are solutions of the ODE-system (1). In particular, some analytical solutions of (1) are
(a) curves given by parametric equations

$$
\begin{array}{ll}
x(s)=x_{0}, & z(s)=\mp e^{-2 t_{0}} s+z_{0}, \\
y(s)=y_{0}, & t(s)=t_{0}, \quad \text { for } q= \pm 2,
\end{array}
$$

or

$$
\begin{array}{ll}
x(s)=x_{0}, & z(s)=\frac{q}{2 \sqrt{4-q^{2}}} e^{-\sqrt{4-q^{2}} s-2 t_{0}}, \\
y(s)=y_{0}, & t(s)=\frac{\sqrt{4-q^{2}}}{2} s+t_{0}, \quad \text { for } q \in\langle-2,2\rangle,
\end{array}
$$

where $x_{0}, y_{0}, z_{0}, t_{0} \in \mathbb{R}$,
(b) curves given by parametric equations

$$
\begin{array}{ll}
x(s)=-\frac{a}{q} \cos (q s+c), & z(s)=e^{-2 k}\left(b e^{-2 k}-\frac{q}{2}\right) s+d, \\
y(s)=\frac{a}{q} \sin (q s+c), & t(s)=k,
\end{array}
$$

where a, b are given by (2), $c, d, k \in \mathbb{R}$ and $q \in \mathbb{R} \backslash\{0\}$,

The main theorem

Theorem 3.2

(c) curves given by parametric equations

$$
\begin{aligned}
& x(s)=x_{0}, \quad z(s)=\int b e^{-4 t(s)}-\frac{q}{2} e^{-2 t(s)} d s \\
& y(s)=y_{0}, \quad t(s) \text { is a solution of }(2)
\end{aligned}
$$

where $x_{0}, y_{0}, b, q \in \mathbb{R}$,
(d) curves given by parametric equations

$$
\begin{aligned}
& x(s)=\int a e^{2 t(s)} \sin (q s+c) d s, \quad z(s)=\frac{a^{2} q}{q^{2}-4}\left((s \pm d)+\frac{1}{\sqrt{4-q^{2}}} \sinh \left(\sqrt{4-q^{2}}(s \pm d)\right)\right) \\
& y(s)=\int a e^{2 t(s)} \cos (q s+c) d s, \quad t(s)=\frac{1}{2} \ln \left[\frac{4-q^{2}}{4 a^{2}} \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{4-q^{2}}(\pm s-d)\right)\right]
\end{aligned}
$$

where $q \in\langle-2,2\rangle$ and $a, c, d \in \mathbb{R}$.

4. Curvature properties of J-trajectories

Definition 7

If γ is a curve in a Riemannian manifold M, parametrized by arc length s, we say that γ is a Frenet curve of osculating order \mathbf{r} if there exist orthonormal vector fields E_{1}, E_{2}, \cdots, E_{r} along γ such that

$$
\begin{aligned}
& \dot{\gamma}=E_{1}, \nabla_{\dot{\gamma}} E_{1}=\kappa_{1} E_{2}, \nabla_{\dot{\gamma} e} E_{2}=-\kappa_{1} E_{1}+\kappa_{2} E_{3}, \cdots, \\
& \nabla_{\dot{\gamma}} E_{r-1}=-\kappa_{r-2} E_{r-2}+\kappa_{r-1} E_{r}, \nabla_{\dot{\gamma}} E_{r}=-\kappa_{r-1} E_{r-1},
\end{aligned}
$$

where $\kappa_{1}, \kappa_{2}, \cdots, \kappa_{r-1}$ are positive C^{∞} functions of s.

- A geodesic is regarded as a Frenet curve of osculating order 1.
- A circle is defined as a Frenet curve of osculating order 2 with constant κ_{1}.
- A helix of order r is a Frenet curve of osculating order r, such that all the curvatures $\kappa_{1}, \kappa_{2}, \cdots, \kappa_{r-1}$ are constant.

On curvatures of J-trajectories in Sol ${ }_{0}^{4}$

Proposition 4.1

Let γ be a non-geodesic J-trajectory with strength $q \neq 0$ parameterized by arc length in Sol_{0}^{4}. Then $\kappa_{2}=0$ if and only if both x-coordinate and y-coordinate of γ are constant.

Proposition 4.2

Let γ be a non-geodesic J-trajectory with strength $q \neq 0$ parameterized by arc length in Sol_{0}^{4}. Assume that $\kappa_{2}>0$. Then κ_{2} is a constant if and only if t-coordinate of γ is a constant.

Proposition 4.3

Let γ be a non-geodesic J-trajectory with strength $q \neq 0$ parameterized by arc length in Sol_{0}^{4}. If we assume $\kappa_{2}>0$, then $\kappa_{3}=0$ if and only if z is a constant.

Summary

- Some basic definitions and facts (complex structure, Kähler form, LCK manifold) are repeated.
- Geometry of Sol ${ }_{0}^{4}$ space is described.
- J-trajectories in Sol l_{0}^{4} space are examined.
- Curvature properties of J-trajectories in Sol l_{0}^{4} are considered.

Recent work

Z. Erjavec, J. Inoguchi, Magnetic curves in $\mathbb{H}^{3} \times \mathbb{R}$, accepted for publication in J Korean Math Soc
Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie group Sol_{0}^{4}, submitted.
Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie group Sol ${ }_{1}^{4}$, in prepair.

Thank you for your attention!

References

T. Adachi, Kähler magnetic fields on a complex projective space, Proc Japan Acad. 70A, 12-13 (1994).
T. Adachi, Kähler magnetic flow for a manifold of constant biholomorphic sectional curvature, Tokyo J Math. 18, 473-483 (1995).

O. Ateș, M.I. Munteanu, A.I. Nistor, Periodic J-trajectories on $\mathbb{R} \times \mathbb{S}^{3}$, J. Geom. Phys. 133, 141-152 (2018).

R. Biggs, C.C. Remsing, On the classification of real four-dimensional Lie groups, J. Lie Theory 26(4), 1001-1035 (2016).

J. Inoguchi, J-trajectories in locally conformal Kahler manifolds with parallel anti Lee field, Int. Electr. J Geom. 13 (2) (2020) 30-44.

J. Inoguchi, J.-E. Lee, J-trajectories in Vaisman manifolds, submitted.

D. Kalinin, Trajectories of charged particles in Kähler magnetic fields, Rep. Math. Phys. 39, 299-309 (1997)

Y. Kamishima, Note on locally conformal Kähler surfaces, Geom. Dedicata 84, 115-124 (2001)

