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1. Preliminaries

Definition 1
A Riemannian manifold (M, g) is said to be homogeneous if for every two
points p and q in M, there exists an isometry of M, mapping p into q.

1982 W.Thurston — " geometrization conjecture”

The eight simply connected 3-dim homogeneous spaces (" model geometries”):

E? S° H® S° xR, H> xR, Nil, Sol, SL(2,R)

Q W. M. Thurston, Three-dimensional Geometry and Topology |, Princeton Math.
Series., vol. 35 (S. Levy ed.), 1997.



Thurston geometries

1-dim Thurston geometry

o E!
2-dim Thurston geometries

@ E2, H?, §?

3-dim Thurston geometries

@ the constant sectional curvature geometries: E3, H3, $3
@ the product geometries: H? x R, S2 x R

@ the twisted product geometries: Nil, Sol, SL(2,R)

@ P. Scott, The Geometries of 3-Manifolds, Bull. London Math. Soc., 15 (1983), 401-487.

@ E. Molnar, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beitrage

Algebra Geom. 38 (2) (1997), 261-288.



4-dim Thurston geometries

Q R.O. Filipkiewicz, Four dimensional geometries, PhD Thesis, University of Warwick, 1984.
Nineteen /-dim Thurston geometries

@ E4, M4, S% P2(C), H2(C)

o S% xS2, S% x E2, §% x H?, E2 x H?, H? x H?

@ S3 xE! H3 x E!, SL, x E!, Nil3 x E!
@ Nil%, Solt Sol%, Sol4, F4

m,n’

@ C.T.C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25, (1986), 119-152.

@ in most cases (14), a geometric structure carries preferred complex structure



Kahler structure

Definition 2
A Kabhler structure on a Riemannian manifold (M, g) is given by a two-form ) and a

field of endomorphisms of the tangent bundle J satisfying the following conditions:

@ J is an almost complex structure: J? = —1I

@ metric g is compatible with J: g(X,Y) =g¢(JX,JY), VX, Y e€TM
@ the fundamental (Kahler) form Q(X,Y) := g(JX,Y)

@ the 2-form Q) is symplectic: d$2 =0

@ J is integrable i.e. its Nijenhuis tensor vanishes: Nj = 0

Definition 3

A Kahler manifold is a Riemannian manifold M equipped with a Kihler structure.



Classification of 4-dim Thurston geometries

@ C.T.C. Wall, Geometric structures on compact complex analytic surfaces,
Topology 25, (1986), 119-152.

Kahler complex non-Kahler non-complex
cpP?, cH? E* s3 x E!, Nilg x E! H4, st
s? x §2, 8% x E2, 8 x H? SLoR x E! H3 x E!
F4, E? x H?, H? x H2 Solg, Sol} Nil4, Sol?,

Corollary 1.1
If X is one of S® x E1, Nilz x E1, S‘EQR x EL, Sol?, Sol4, then X does not posses a

Kahler structure compatible with the geometry.

complex non-Kahler = locally conformal Kahler (LCK)



LCK manifold

M = (M, J, g) - Hermitian manifold with non-closed Kahler form Q

Definition 4
M is said to be a locally conformal Kdhler manifold (LCK manifold) if there exits an
open covering {Ua }aep of M and a family of smooth functions o : Us — R such
that

d(e7?2Q) =0 on U, Va.

« =M = M is globally conformal Kihler (GCK) manifold.

On LCK manifold 1-form w = do (Lee form) is globally defined and satisfies

dQ =w A Q.

The vector field B metrically dual to w is called Lee vector field.

The vector field A = J B is called anti-Lee vector field.



Magnetic curve

@ in electromagnetic theory, a magnetic curve is a trajectory of charged

particle moving in Euclidean space under a static magnetic field B
Newton's second law of motion £ = ma implies

Lorentz force law
dv . =
ma(t) = q 9(t) X By

@ m - mass of the particle
@ v - velocity of the particle

@ q - charge of the particle



Magnetic equation

B = (by,ba,b3) —> F = by dzo A dxs + ba deg A dxy + by dxg A dxg

Gauss’s law for magnetism VE=0 <= dF=0

@ generalization to arbitrary Riemannian manifold with a closed 2-form F'

Lorentz equation

(V' =a2 ()]

@ & - an endomorphism field — Lorentz force

g(®X,Y) = F(X,Y)

Definition 5

A curve () is called a magnetic curve if it satisfies the Lorentz equation.

Notice: ®=0 = V., v'=0 —> geodesic equation



Magnetic curves in 3-dim Thurston geometries

[3

W) & W ) [

S. L. Drutd-Romaniuc, J. Inoguchi, M. I. Munteanu, A. |. Nistor, Magnetic curves in Sasakian manifolds, J.
Nonlinear Math. Phys. 22 (2015) 3, 428-447.

S.L. Drutd-Romaniuc, J. Inoguchi, M.l. Munteanu, A.l. Nistor, Magnetic curves in cosymplectic manifolds,
Report Math. Phys. 78 (2016) 33-47.

J. Inoguchi, M. I. Munteanu, Magnetic curves in the real special linear group, Adv. Theor. Math. Phys. 23
(2019) 8, 2161-2205.

J. Inoguchi, M. I. Munteanu, A. I. Nistor, Magnetic curves in quasi-Sasakian 3-manifolds, Anal. Math. Phys.
9 (2019), 43-61.

M.I. Munteanu, Magnetic curves in a Euclidean space: One example, several approaches, Publ. de L'Institut
Math. 94 (108) (2013) 141-150.

Z. Erjavec, J. Inoguchi, Magnetic curves in Solg, J. Nonlinear Math. Phys. 25 (2) (2018), 198-210.

Z. Erjavec, J. Inoguchi, On magnetic curves in almost cosymplectic Sol space, Results Math. 75:113 (2020)
16 pg.



Magnetic curves vs J-trajectories

@ on a Kahler manifold: Kahler form = Kahler magnetic field

@ on an LCK manifold: Kahler form is not closed (not magnetic!)

Definition 6
A curve y(t) is called a J-trajectory if it satisfies the equation V5 = ¢J7.

Gauss’s law in 4-dim

@ on a Kahler manifold
d2=0 — w=0

@ on an LCK manifold
dQQ=wAQ — dw =20



2. Geometry of Sol; space

@ R*(z,y, 2,t) equipped with Riemannian metric

(ds)® = e " ((dz)? + (dy)?) + e*(dz)* + (dt)?

e 2t 0 0 o0

_ 0 2t 0 o
9ij = 0 0 ettt 0o
0 0 0o 1

(x1,91, 21, t1) * (T2, Y2, 22, t2) = (z1 + elaa, y1 +elya, 21 +e 2zg, t1 +t2)

@ warped product representations of Solg:
H?(—4) X, E?,
H?(—1) X 2¢ E'.



Levi-Civita connection

The orthonormal frame {e1,e2,es,e4}

0 0 5 O 0
elzet—, ezzet— ez = ¢ ol =

ox oy’

The dual coframe {01,62,63,0%}

9t =etde, 9 =etdy, 03 =e*dz, V*=dt.

Levi-Civita connection

Ve,€1 =e4 Ve,e2 =0 Ve,e3=0 Ve,€4 = —€1
Vey,e1 =0 Ves,e2 =e4 Ve,e3 =0 Ve,€4 = —€2
Vese1 =0 Vegez =0 Vezez = —2e4Vezeq = 2e3

Vejse1 =0 Vese2 =0 Vej,e3 =0 Vese4 =0



Hermitian structure on Sol}

g-orthogonal almost complex structure J

Jey = —ea, Jexa=e1, Jes=es, Jes= —e3.

Kdhler form

Q = 2e ?*dx A dy — 2e%*dz A dt

dA=wAQ) — w=-2dt

The homogeneous Hermitian space (Sols, J) is a (non-Kahler) globally conformal

Kahler surface with Lee field B = —2e4 and anti Lee field A = 2e3.



Typical submanifolds of Sol]

g= e ((d2)* + (dy)*) + € (d2)” + (dt)®
FEuclidean plane
M(1,2; 20, t0) := {(z, ¥, 20, t0) € Solg}
@ non totally geodesic in Solé
@ a fiber of Solg = H2(—4) x,—: E2

@ totally umbilic in Solg
Hyperbolic plane
M (3,4;70,y0) := {(z0, 0, 2, t) € Solg}

@ totally geodesic in Solg

@ a leaf of Sol§ = H?(—4) x,—: E?



Typical submanifolds of Sol]

g=e " ((dz)* + (dy)®) + €"(d2)* + (dt)?
FEuclidean 3-space
M(1,2,3;t0) == {(z,y, 2, t0) € Solg}

@ minimal in Solg

@ non totally geodesic in Solf)1

Hyperbolic 3-space

M(1,2,4; z0) := {(x,y, 20,t) € Solg}

@ totally geodesic in Solé

@ a leaf of Sold = H3(—1) x 2t EL.



3. J-trajectories in Sol, space

105) = (x(6),¥(6), 2(6),66) = 3(5) = ()5 +i(5) 5 +2(0) g + )y

A(s) = e~ i(s)er + e g(s)ea + €21 2(s)es + i(s)es
Viy=qJ 7y

Vg = et (i(s) — 28(s)é(s)) ex
+ 75 (§i(s) — 20(s)i(s)) e2
1 e2t(s) (2(s) +42(s)i(s)) es
. (E(s) + e (3()? 4 §(s)?) — 2e4t(8>2(8)2) ea

Ji(s) = et g(s)er — et i(s)ea — i(s)es + €2 5(s)ey



The system

System of differential equations

i(s) — 22(s)i(s) = qy(s)

§(s) = 29(s)i(s) = —qi(s)

(s) +44(s)i(s) = —qe *Wi(s) (1)
t(s) + e ) (:b(s)z + y(s)Q) = 2t (q,é'(s) + 26%(5)2(5)2)

Arc length condition

672t(s>x~(8)2 + 672t(5)y-(s)2 + €4t<5)2(3)2 +t($)2 -1



Solving the system

i(s) = ae®™ sin(gs +¢),  §(s) = ae®*(®) cos(gs + ¢)

2(s) = be~4t() — ge_zt(s), a,b,c € R

i(s) + a2e2t(5) 4 pge—2t(s) _ 9p2c—4t(s) — ¢

Arc length condition

2
i(s)2 + a2e2t(s) _ bq€72t(s) T b2e4t(s) 4 q 1=0
4
Casel: a=b=0 and t'(s)2=17§
Case 2: t(s) = const = k, a = a(k,q) and b = b(k, q)
Case3: a=0 and b#0

e 6 o ¢

Case4: a#0 and b=0



Solution in Case 1

a(s) =30,  2(s) = — e Vi~Psm200,
2¢/4 — g2

/4_ 2]
y(s) = o, t(s) = — 9" s+ to.

@ J-trajectory lies in the hyperbolic plane M (3,4; 0, y0)
Applying the coordinate change X (s) := 2z(s), Y (s) := e=2t(s),

(X (s),Y(s))isacurvein H2(—4) = {(X,Y) € R? |Y > 0} given by




J-trajectory in Case 1

J-trajectories for x(t) = zo, y(t) =0, to =0, ¢ =1, s € [-3,3]

50
40
30

20

Figure: J-trajectories in M(3,4;x0,0) and H2(—4)

@ curvatures: k1 = |g| and K2 =0



Solution in Case 2

t(s) = to = const | => a,b = const

2t(

(29 — \/q? +12),

V2e~t0 e
a = 12 — g2 —qy/q2 +12 b=
% q° —qy/q A
VZe~f0 e2to
@ =F—" 12—-¢24+4q\/q?2+12 b= 7 (2¢ + /4% + 12)

z(s) = —Ze2to cos(gs + ¢), 2(s) = e~ 2% <bei2t0 = g) s+d,
q 2

y(s) = 9 e2to sin(gs + ¢), t(s) = to.
q

@ J-trajectory lies in the Euclidean space M (1,2, 3;t0)



J-trajectory in Case 2

J-trajectory for =1, a=2,b=3,¢=0,d=0, to = 1, and s € [-10, 10].

Figure: J-trajectory in M(1,2,3;t0)

@ curvatures: k; = |q| and Ky = i\/l — (be=2to — %)2



Solution in Case 3

[a:O and b;éO]

z(s) = =g, 2(s) = /be—‘“(s) _ ge_%(s)ds,
y(s) = vo, t(s) is a solution of (2).
2t(s) (o2 _ 4) — 2b
Arctan? ° (q ) d = (> —4)(c1 —8)%, c1€R 2)
/a2 —4 4\/464t(s) — (ge2t(s) — 2p)2

==z z(s) = &
z(s) = zg, (s) b (14 4(s —c2)2)’
1 b 2
O #(s) = - In b (1 +4(s — c2) )] .

@ J-trajectory lies in the hyperbolic plane M (3,4; 0, yo0)

2 —bY

X(s) = 22(s), Y(s) = e 2 — X% = 1662



J-trajectory in Case 3

J-trajectories for o(t) =z, y(t) =0, b=2, c; = 0,001, s € [3,3]

Figure: J-trajectories in M(3,4;x0,0) and H2(—4)

@ curvatures: k1 = |q| and K2 =0



Solution in Case 4

[a;éO and b:O]

. q°
i(s)? + a?e?(®) 4 T 1=0

t(s) = % In [ﬂsechQ (%M(is _ d))} 3)

4a?

) :/ath(s)sin(qurc)ds, 2(s) :/,ge—m(s)ds’

y(s) = /ae2t(5) cos(gs + c)ds, t(s) is given by (3).



The main theorem

Theorem 3.1

The J-trajectories in the model space Solé are solutions of the ODE-system (1). In particular, some analytical

solutions of (1) are

(a) curves given by parametric equations
z(s) = 20,
y(s) = vo,

or

z(s) = =g,

y(s) = o,
where zg, Yo, 20, to € R,

(b) curves given by parametric equations

z(s) = Fe2t0s + zg,
t(s) = to, for g = £2,

#e) = q e—\/4—q2572t07
21/4—q2

\/4—q2
t(s) = ——5—s + to, for ¢ € (=2,2),

z(s) = 7% cos(gs +c), z(s) =e 2F (b€72k — %) s+d,

y(s) = sin(gs +¢),  t(s) =k,

where a, b are given by (2), ¢, d, k € R and g € R\{0},



The main theorem

Theorem 3.2

(c) curves given by parametric equations
z(s) = @,
y(s) = vo,

where g, yo, b, q € R,

(d) curves given by parametric equations
z(s) = [ ae?t(s) sin(gs + ¢) ds,
y(s) = [ ae?t(s) cos(gs + ¢) ds,

where ¢ € (—2,2) and a,c,d € R.

z(s) = fbe74t(s) - %eih(S)ds,

t(s) is a solution of (2),

z(s) =

a2q
q2—4

%ln[

((s:td)Jr U sinh(\/47q2(s:td))>,

4—q2
4a2

4—g2

sech? (%ﬂ(:ﬂ:s — d))] 9



4. Curvature properties of J-trajectories

Definition 7
If v is a curve in a Riemannian manifold M, parametrized by arc length s, we say that
v is a Frenet curve of osculating order r if there exist orthonormal vector fields Ej,

FEo,--- , E, along v such that

Y= E1, VyE1 = k1E2, VyeE2 = —k1E1 + k2E3, -+,
VﬁEr—l = —Kr—2Er_2+ 5r—1Er7 v-yE'r = _K/T‘—IE’I‘—17

where K1, K2, ,kr—1 are positive C° functions of s.

@ A geodesic is regarded as a Frenet curve of osculating order 1.
@ A circle is defined as a Frenet curve of osculating order 2 with constant k.

@ A helix of order r is a Frenet curve of osculating order r, such that all the

curvatures K1, k2, -+ ,Kr—1 are constant.



On curvatures of J-trajectories in Sol}

Proposition 4.1
Let v be a non-geodesic J-trajectory with strength q # 0 parameterized by arc length
in Solé. Then k2 = 0 if and only if both z-coordinate and y-coordinate of ~ are

constant.

Proposition 4.2
Let v be a non-geodesic J-trajectory with strength q # 0 parameterized by arc length
in Solé. Assume that k2 > 0. Then k2 is a constant if and only if ¢-coordinate of

is a constant.

Proposition 4.3
Let ~v be a non-geodesic J-trajectory with strength q # 0 parameterized by arc length

in Solé. If we assume kg > 0, then k3 = 0 if and only if z is a constant.



Summary

@ Some basic definitions and facts (complex structure, Kdihler form,
LCK manifold) are repeated.

@ Geometry of Sol§ space is described.
@ J-trajectories in Soly space are evamined.

@ Curvature properties of J-trajectories in Solg are considered.

Recent work

@ Z. Erjavec, J. Inoguchi, Magnetic curves in H3 X R, accepted for publication in J Korean Math Soc
@ Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie group Sol%. submitted.

@ Z. Erjavec, J. Inoguchi, J-trajectories in 4-dimensional solvable Lie group Sol‘ll, in prepair.



Thank you for your attention!
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