Flows in infinite networks

8thECM, CA18232: Variational Methods and Equations on Graphs

Marjeta Kramar Fijavž

University of Ljubljana, Slovenia

Institute of Mathematics, Physics and Mechanics

Christian Budde, M.K.F, *Bi-continuous semigroups for flows in infinite networks*, J. Networks Heterogeneous Media, to appear.

Infinite networks, metric graphs

Infinite networks, metric graphs

G = (V, E), simple, locally finite $e_j \simeq [0, 1]$

$$\mathbb{B}_{ij} = egin{cases} w_{ij}, & e_j(0) = e_i(1) \ 0, & ext{else} \end{cases}$$

Flows in networks

Flows in networks

• on every edge e_j:

$$\frac{d}{dt}u_j(x,t) = \frac{d}{dx}u_j(x,t)$$
(TE)

• in every vertex v_i:

$$u_j(1,t) = \sum_{k \in J} \mathbb{B}_{jk} u_k(0,t)$$
(BC)

• at *t* = 0:

$$u_j(x,0) = f_j(x) \tag{IC}$$

$$(TE) + (BC) + (IC) = (F)$$

I996 Barletti, 2005 → KF & Sikolya, Matrai, Radl, Dorn, Keicher, Banasiak, Puchalska, Namayanja, ...

Semigroup approach

- $X := L^1([0,1], \mathbb{C}^m)$ or $X := L^1([0,1], \ell^1)$
- $A := \operatorname{diag}(\frac{d}{dx}), \ D(A) := \{f \in \mathrm{W}^{1,1} \mid f(1) = \mathbb{B}f(0)\}$
- (F) \iff (ACP) : $\dot{u} = Au, u(0) = u_0$
- A generates strongly continuous semigroup (T(t)) on X:

$$T(t)f(x) = \mathbb{B}^n f(t+x-n), n \le t+x < n+1, n \in \mathbb{N}_0 \quad (1)$$

Bi-continuous semigroups

2001 ~> Kühnemund, Farkas, Albanese, Lorenzi, Budde, ...

Assumptions

X Banach space with norm $\|\cdot\|$ & locally convex topology τ s.t.

(i)
$$\tau$$
 is Hausdorff, coarser then $\|\cdot\|$ -topology
(ii) every $\|\cdot\|$ -bounded τ -Cauchy sequence in τ -convergent
(iii) $\|f\| = \sup_{\varphi \in (X, \tau)', \|\varphi\| \le 1} |\varphi(f)|$

Bi-continuous semigroups

Definition

 $(\mathcal{T}(t))_{t\geq 0}\subset \mathcal{L}(X)$ is a *bi-continuous semigroup* on X if

(i)
$$T(t+s) = T(t)T(s)$$
 and $T(0) = I$, $s, t \ge 0$

(ii)
$$t \mapsto T(t) f$$
 au -continuous for every $f \in X$

(iii)
$$\|T(t)\| \leq Me^{\omega t}, t \geq 0$$

(iv) if $||f_n|| < \infty$, $f_n \xrightarrow{\tau} 0$ then $T(s)f_n \xrightarrow{\tau} 0$ -uniformly for $s \in [0, t_0]$

Its generator:

$$Af := \tau - \lim_{t \to 0} \frac{T(t)f - f}{t}$$
$$D(A) := \left\{ f \mid \tau - \text{lim exists and } \sup_{t \in (0,1]} \frac{\|T(t)f - f\|}{t} < \infty \right\}$$

L^{∞} -wellposedness of (*F*)

Theorem

The operator

$$A:= ext{diag}\left(rac{d}{dx}
ight), \quad D(A):=\{f\in \mathrm{W}^{1,\infty}\mid f(1)=\mathbb{B}f(0)\},$$

generates a contraction bi-continuous semigroup on $L^{\infty}([0,1], \ell^1)$ with respect to the weak*-topology. This semigroup is given in (1).

- ✓ include velocities in (*TE*): $c_j \frac{d}{dx} u_j(x, t)$ or $c_j(x) \frac{d}{dx} u_j(x, t)$
- ✓ include absorption term in (TE): $q_j(x)u_j(t,x)$
- \checkmark consider general matrix $\mathbb B$
- ✓ study long-time behaviour (Dobrick, 2021)
- $\times\,$ study further properties (stability, control,...)