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Joint work

Christian Budde, M.K.F, Bi-continuous semigroups for flows in

infinite networks, J. Networks Heterogeneous Media, to appear.
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Infinite networks, metric graphs



Infinite networks, metric graphs

G = (V ,E ), simple, locally finite

ej ' [0, 1]

Bij =

wij , ej(0) = ei (1)

0, else
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Flows in networks



Flows in networks

• on every edge ej :

d

dt
uj(x , t) =

d

dx
uj(x , t) (TE)

• in every vertex vi :

uj(1, t) =
∑
k∈J

Bjkuk(0, t) (BC)

• at t = 0:

uj(x , 0) = fj(x) (IC)

(TE ) + (BC ) + (IC ) = (F )
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Flows in networks

1996 Barletti, 2005  KF & Sikolya, Matrai, Radl, Dorn,

Keicher, Banasiak, Puchalska, Namayanja, . . .

Semigroup approach

• X := L1([0, 1],Cm) or X := L1([0, 1], `1)

• A := diag( d
dx ), D(A) := {f ∈W1,1 | f (1) = Bf (0)}

• (F ) ⇐⇒ (ACP) : u̇ = Au, u(0) = u0

• A generates strongly continuous semigroup (T (t)) on X :

T (t)f (x) = Bnf (t + x − n), n ≤ t + x < n + 1, n ∈ N0 (1)
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Bi-continuous semigroups

2001  Kühnemund, Farkas, Albanese, Lorenzi, Budde, . . .

Assumptions

X Banach space with norm ‖ · ‖ & locally convex topology τ s.t.

(i) τ is Hausdorff, coarser then ‖ · ‖-topology

(ii) every ‖·‖-bounded τ -Cauchy sequence in τ -convergent

(iii) ‖f ‖ = sup
ϕ∈(X ,τ)′,‖ϕ‖≤1

|ϕ(f )|

6



Bi-continuous semigroups

Definition

(T (t))t≥0 ⊂ L(X ) is a bi-continuous semigroup on X if

(i) T (t + s) = T (t)T (s) and T (0) = I , s, t ≥ 0

(ii) t 7→ T (t)f τ -continuous for every f ∈ X

(iii) ‖T (t)‖ ≤ Meωt , t ≥ 0

(iv) if ‖fn‖ <∞, fn
τ→ 0 then T (s)fn

τ→ 0-uniformly for s ∈ [0, t0]

Its generator:

Af := τ − lim
t→0

T (t)f − f

t

D(A) :=

{
f | τ − lim exists and sup

t∈(0,1]

‖T (t)f − f ‖
t

<∞

}
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L∞-wellposedness of (F )



L∞-wellposedness of (F )

Theorem

The operator

A := diag

(
d

dx

)
, D(A) := {f ∈W1,∞ | f (1) = Bf (0)},

generates a contraction bi-continuous semigroup on L∞([0, 1], `1)

with respect to the weak∗-topology. This semigroup is given in (1).
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Generalisations and further results

X include velocities in (TE ): cj
d
dx uj(x , t) or cj(x) d

dx uj(x , t)

X include absorption term in (TE ): qj(x)uj(t, x)

X consider general matrix B

X study long-time behaviour (Dobrick, 2021)

× study further properties (stability, control,. . . )
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