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Permutation Codes

A permutation code of length n and distance d is a subset Γ ⊆ Sn
such that the Hamming distance between distinct elements of Γ is
at least d .

Example

A permutation code of length 4 and distance 4:

{1234, 2143, 3412}

A larger one:
{1234, 2143, 3412, 4321}.

Including any additional permutation will decrease the minimum
distance.
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Elementary values/bounds

Let M(n, d) denote the maximum size of a permutation code of
length n and distance d .

I M(n, n) = n (latin square)

I M(n, 2) = n! (all Sn)

I M(n, 3) = n!/2 (alternating group)

I M(n, d) ≤ n!/(d − 1)! (Johnson bound)

I M(n, d) ≤ n!/
∑b d−1
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Dk (sphere-packing bound)
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Codes from MOLS

Let N(n) denote the maximum number of MOLS of side length n.

Colbourn-Kløve-Ling (2004): N(n) ≥ r ⇒ M(n, n − 1) ≥ rn.
(Take all rn transversals and convert to permutations.)

Beth (1984): N(n) ≥ n1/14.8 for sufficiently large n.

Therefore, M(n, n − 1) ≥ n1+14.8 ≥ n1.0675 for large n.



A partial converse

We have M(6, 5) = 18 in spite of N(6) = 1.

Example

Here is a convenient code of size 12 given as ‘orthogonal’ partial
latin squares.

1 4 3 2
2 1 4 3

3 2 1 4
3 4 2 1
4 1 2 3
2 3 4 1

1 5 6 2
5 2 6 1
2 6 5 1

1 2 6 5
6 1 5 2

5 2 1 6

6 4 3 5
6 5 3 4
4 5 3 6
5 3 6 4

4 6 5 3
3 5 4 6



Main Result

Theorem (B.-D.,2020)

M(n, n − 1) ≥ n1.0797 for sufficiently large n.

Sketch of proof:

I M(q, q − 1) ≥ q(q − 1) for prime powers q.
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I Adapt Wilson’s construction for MOLS.

I Apply a number sieve.
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Thank you
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