A lower bound on permutation codes of distance $n-1$

Sergey Bereg and Peter J. Dukes*

June 22, 2021

손색 University
 of Victoria
 Mathematics \& Statistics

Permutation Codes
Definition
Elementary bounds
Codes from MOLS
Main Result
Proof sketch
References

Permutation Codes

A permutation code of length n and distance d is a subset $\Gamma \subseteq \mathcal{S}_{n}$ such that the Hamming distance between distinct elements of Γ is at least d.

Permutation Codes

A permutation code of length n and distance d is a subset $\Gamma \subseteq \mathcal{S}_{n}$ such that the Hamming distance between distinct elements of Γ is at least d.

Example

A permutation code of length 4 and distance 4:
$\{1234,2143,3412\}$

Permutation Codes

A permutation code of length n and distance d is a subset $\Gamma \subseteq \mathcal{S}_{n}$ such that the Hamming distance between distinct elements of Γ is at least d.

Example

A permutation code of length 4 and distance 4:

$$
\{1234,2143,3412\}
$$

A larger one:

$$
\{1234,2143,3412,4321\} .
$$

Including any additional permutation will decrease the minimum distance.

Elementary values/bounds

Let $M(n, d)$ denote the maximum size of a permutation code of length n and distance d.

Elementary values/bounds

Let $M(n, d)$ denote the maximum size of a permutation code of length n and distance d.

- $M(n, n)=n \quad$ (latin square)
- $M(n, 2)=n!\quad\left(\right.$ all $\left.\mathcal{S}_{n}\right)$
- $M(n, 3)=n!/ 2 \quad$ (alternating group)

Elementary values/bounds

Let $M(n, d)$ denote the maximum size of a permutation code of length n and distance d.

- $M(n, n)=n \quad$ (latin square)
- $M(n, 2)=n!\quad\left(\right.$ all $\left.\mathcal{S}_{n}\right)$
- $M(n, 3)=n!/ 2 \quad$ (alternating group)

$$
\left[\begin{array}{ll}
\rightharpoonup M(n, d) \leq n!/(d-1)! & \text { (Johnson bound) } \\
\rightarrow M(n, d) \leq n!/ \sum_{k=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor}\binom{n}{k} D_{k} & \text { (sphere-packing bound) } \\
\longrightarrow d=n-1: M(n, n-1) \leq n(n-1)
\end{array}\right.
$$

Codes from MOLS

Let $N(n)$ denote the maximum number of MOLS of side length n.
Colbourn-Kløve-Ling (2004): $N(n) \geq r \Rightarrow M(n, n-1) \geq r n$. (Take all $r n$ transversals and convert to permutations.)

Beth (1984): $N(n) \geq n^{1 / 14.8}$ for sufficiently large n.
Therefore, $M(n, n-1) \geq n^{1+14.8} \geq n^{1.0675}$ for large n.

A partial converse

We have $M(6,5)=18$ in spite of $N(6)=1$.

Example
Here is a convenient code of size 12 given as 'orthogonal' partial latin squares.

1	4			3	2
	2	1		4	3
		3	2	1	4
3			4	2	1
4	1	2	3		
2	3	4	1		

1		5	6	2	
5	2	6	1		
2	6		5		1
	1	2		6	5
6		1		5	2
	5		2	1	6

	6	4	3		5
6			5	3	4
4	5	3		6	
5	3	6	4		
	4		6	5	3
3		5		4	6

Main Result

Theorem (B.-D.,2020)
$M(n, n-1) \geq n^{1.0797}$ for sufficiently large n.

Main Result

Theorem (B.-D.,2020)
$M(n, n-1) \geq n^{1.0797}$ for sufficiently large n.
Sketch of proof:

- $M(q, q-1) \geq q(q-1)$ for prime powers q.

Main Result

Theorem (B.-D.,2020)
$M(n, n-1) \geq n^{1.0797}$ for sufficiently large n.
Sketch of proof:

- $M\left(q^{2}, q^{2}-1\right) \sim q^{4}$ for prime powers q.

Main Result

Theorem (B.-D.,2020)
$M(n, n-1) \geq n^{1.0797}$ for sufficiently large n.
Sketch of proof:

- $M\left(q^{2}, q^{2}-1\right) \sim q^{4}$ for prime powers q.
- $M\left(q^{2}+1, q^{2}\right) \geq q^{3}$ for prime powers q.

Main Result

Theorem (B.-D.,2020)
$M(n, n-1) \geq n^{1.0797}$ for sufficiently large n.
Sketch of proof:

- $M\left(q^{2}, q^{2}-1\right) \sim q^{4}$ for prime powers q.
- $M\left(q^{2}+1, q^{2}\right) \geq q^{3}$ for prime powers q.
- Adapt Wilson's construction for MOLS.
- Apply a number sieve.

Q: Can we raise the exponent for MoLS and/or PC?

Thank you

References

S. Bereg and P.J. Dukes, A lower bound on permutation codes of distance $n-1$. DCC (2020) 88, 63-72.
T. Beth, Eine Bemerkung zur Abschtzung der Anzahl orthogonaler lateinischer Quadrate mittels Siebverfahren. Abh. Math. Sem. Univ. Hamburg 53 (1983), 284-288.
R.M. Wilson, Concerning the number of mutually orthogonal Latin squares. Discrete Math. 9 (1974), 181-198.

