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Permutation Codes

A permutation code of length n and distance d is a subset ' C S,
such that the Hamming distance between distinct elements of I is
at least d.

Example

A permutation code of length 4 and distance 4:
{1234,2143, 3412}

A larger one:
{1234,2143,3412,4321}.

Including any additional permutation will decrease the minimum
distance.
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Elementary values/bounds

Let M(n, d) denote the maximum size of a permutation code of
length n and distance d.

» M(n,n)=n  (latin square)
» M(n,2)=n! (all Sp)
» M(n,3) = n!/2 (alternating group)

v

M(n,d) < n!/(d —1)! (Johnson bound)
d—1
M(n,d) < n!/Z,E:O : (1) D (sphere-packing bound)

v

c‘:n—l : M(nln—l) S. n({\—\),




















































































Codes from MOLS

Let N(n) denote the maximum number of MOLS of side length n.

Colbourn-Klgve-Ling (2004): N(n) > r = M(n,n—1) > m.
(Take all rn transversals and convert to permutations.)

Beth (1984): N(n) > n'/148 for sufficiently large n.

Therefore, M(n,n — 1) > n't148 > p-0675 for |arge n.



A partial converse

We have M(6,5) = 18 in spite of N(6) = 1.

Example

Here is a convenient code of size 12 given as ‘orthogonal’ partial

latin squares.

14 312 1 5162
2|1 413 512161
312|1|4 216 5 1
3 4121 1]2 65
411123 6 1 512
2131411 5 21116

6
6 3
415 6
513

4 5
3 4
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Main Result

Theorem (B.-D.,2020)
M(n,n — 1) > n'97%7 for sufficiently large n.
Sketch of proof:

» M(q?, g% —1) ~ g* for prime powers q.
> M(q2 + 1, q2) > q3 for prime powers q.
» Adapt Wilson's construction for MOLS.

> Apply a number sieve.

Q: Conwe ruse fhe exponent Sor MoLS and/or PC 7






















































































































































Thank you
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